Innovando en el mercado de repuestos OEM con optimización de inventario impulsada por IA

El sector de posventa ofrece a los fabricantes de equipos originales una ventaja decisiva al ofrecer un flujo de ingresos constante y fomentar la lealtad del cliente mediante la entrega confiable y oportuna de piezas de repuesto. Sin embargo, la gestión del inventario y la previsión de la demanda en el mercado de posventa está plagada de desafíos, incluidos patrones de demanda impredecibles, amplias gamas de productos y la necesidad de entregas rápidas. Los métodos tradicionales a menudo no son suficientes debido a la complejidad y variabilidad de la demanda en el mercado de posventa. Las últimas tecnologías pueden analizar grandes conjuntos de datos para predecir la demanda futura con mayor precisión y optimizar los niveles de inventario, lo que conduce a un mejor servicio y menores costos.

Este blog explora cómo las últimas tecnologías impulsadas por IA pueden transformar el mercado de repuestos OEM mediante el análisis de grandes conjuntos de datos para predecir la demanda futura con mayor precisión, optimizar los niveles de inventario, mejorar la precisión de los pronósticos y mejorar la satisfacción del cliente, lo que en última instancia conduce a un mejor servicio y menores costos.

 

Mejora de la precisión de los pronósticos con IA  

Utilizando tecnología de última generación, las organizaciones pueden mejorar significativamente la precisión de los pronósticos analizando datos históricos, reconociendo patrones y prediciendo la demanda futura. Nuestra última tecnología de optimización y planificación de inventario (IP&O) utiliza inteligencia artificial para proporcionar información en tiempo real y automatizar los procesos de toma de decisiones. Emplea técnicas de pronóstico adaptativo para garantizar que los pronósticos sigan siendo relevantes a medida que cambian las condiciones del mercado. El sistema integra algoritmos avanzados para gestionar datos intermitentes y realizar modificaciones en tiempo real mientras maneja cálculos complejos y considera factores como plazos de entrega, errores de pronóstico, estacionalidad y tendencias del mercado. Al aprovechar mejores entradas de datos y análisis avanzados, las empresas pueden reducir significativamente los errores de pronóstico y minimizar los costos asociados con el exceso de existencias y el desabastecimiento. Nuestra plataforma IP&O está diseñada para manejar las complejidades y desafíos exclusivos de la gestión de repuestos, como la demanda intermitente y una gran variedad de repuestos.

Módulo de Reparación y Devolución: La plataforma simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el actual conjunto de repuestos rotativos. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si esperar a que se completen las reparaciones y vuelvan a estar en servicio o comprar repuestos de servicio adicionales a los proveedores, evitando compras y gastos innecesarios. tiempo de inactividad del equipo.

 Previsión de demanda intermitente: La tecnología patentada de pronóstico de demanda intermitente de IP&O proporciona pronósticos altamente precisos para artículos con patrones de demanda esporádicos típicos del mercado de repuestos. Esta capacidad es crucial para optimizar los niveles de inventario y garantizar que las piezas críticas estén disponibles cuando sea necesario sin exceso de existencias.

Optimización de inventario en tiempo real: Nuestra tecnología ajusta dinámicamente las políticas de inventario para alinearse con los patrones cambiantes de la demanda y las condiciones del mercado. Calcula los puntos de reorden óptimos y las cantidades de pedidos, equilibrando los niveles de servicio con los costos de inventario. Esto garantiza que los OEM puedan mantener altos niveles de servicio y al mismo tiempo minimizar el exceso de inventario y los costos de mantenimiento relacionados.

Planificación de escenarios y análisis hipotético: IP&O permite a los usuarios crear múltiples escenarios de inventario para evaluar el impacto de diferentes políticas de inventario en los niveles y costos de servicio. Esta capacidad ayuda a los OEM a tomar decisiones informadas sobre estrategias de almacenamiento y responder de manera proactiva a los cambios del mercado o las interrupciones de la cadena de suministro.

Integración perfecta de ERP: La plataforma ofrece una integración perfecta con los principales sistemas ERP, como Epicor y NetSuite, lo que permite la sincronización automática de pronósticos y datos de inventario. Esta integración facilita la ejecución eficiente de órdenes de reabastecimiento y garantiza que los niveles de inventario estén continuamente alineados con los últimos pronósticos de demanda.

Precisión de pronóstico e informes:  Nuestro sistema avanzado proporciona informes detallados y paneles de control que rastrean la precisión de los pronósticos, el rendimiento del inventario y la confiabilidad de los proveedores. Al analizar estas métricas, los OEM pueden perfeccionar continuamente sus modelos de pronóstico y mejorar el desempeño general de la cadena de suministro.

 

Los ejemplos del mundo real ilustran el impacto sustancial de la previsión y la optimización del inventario impulsadas por la IA en el mercado de repuestos OEM. Prevost Parts, una división de un fabricante canadiense líder de autobuses interurbanos y carrocerías de autocares, utilizó IP&O para abordar la demanda intermitente de más de 25.000 piezas activas. Al integrar pronósticos de ventas precisos y requisitos de existencias de seguridad en su sistema ERP, respaldados por inteligencia artificial y ajustes de aprendizaje automático en tiempo real, redujeron los pedidos pendientes en 65%, perdieron ventas en 59% y aumentaron las tasas de cumplimiento de 93% a 96% en solo tres meses. Esta transformación mejoró significativamente su asignación de inventario, reduciendo los costos de transporte e inventario.

 

La incorporación de IA y ML en los procesos de IP&O no es solo una actualización tecnológica sino un movimiento estratégico que puede transformar el mercado de repuestos OEM. La tecnología IP&O garantiza una mejor calidad del servicio y la satisfacción del cliente al mejorar la precisión de los pronósticos, optimizar los niveles de inventario y reducir los costos. A medida que el sector del mercado de repuestos siga creciendo y evolucionando, adoptar la IA será clave para seguir siendo competitivo y satisfacer las expectativas de los clientes de manera eficiente.

 

 

Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

 

Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

 

    Dominar el pronóstico automático para datos de series temporales

    En este blog, analizaremos el pronóstico automático para proyecciones de demanda de series temporales, centrándonos en técnicas, desafíos y mejores prácticas clave. Existen múltiples métodos para predecir la demanda futura de un artículo, y esto se vuelve complejo cuando se trata de miles de artículos, cada uno de los cuales requiere una técnica de pronóstico diferente debido a sus patrones de demanda únicos. Algunos artículos tienen una demanda estable, otros tienen una tendencia al alza o a la baja y algunos presentan estacionalidad. Seleccionar el método correcto para cada elemento puede resultar abrumador. Aquí exploraremos cómo la previsión automática simplifica este proceso.

    La previsión automática se vuelve fundamental en la gestión de proyecciones de demanda a gran escala. Con miles de elementos, no resulta práctico seleccionar manualmente un método de pronóstico para cada uno. La previsión automática utiliza software para tomar estas decisiones, garantizando precisión y eficiencia en el proceso de previsión. Su importancia radica en su capacidad para manejar de manera eficiente necesidades de pronóstico complejas y a gran escala. Elimina la necesidad de selección manual, ahorrando tiempo y reduciendo errores. Este enfoque es particularmente beneficioso en entornos con diversos patrones de demanda, donde cada artículo puede requerir un método de pronóstico diferente.

     

    Consideraciones clave para una previsión eficaz

    1. Desafíos de la previsión manual:
      • Inviabilidad: Elegir manualmente métodos de pronóstico para miles de artículos es inmanejable.
      • Inconsistencia: el error humano puede generar pronósticos inconsistentes e inexactos.
    2. Criterios para la selección del método:
      • Medición de errores: el criterio principal para seleccionar un método de pronóstico es el error de pronóstico típico, definido como la diferencia entre los valores previstos y reales. Este error se promedia a lo largo del horizonte de pronóstico (por ejemplo, pronósticos mensuales durante un año).
      • Análisis de reserva: esta técnica simula el proceso de esperar a que transcurra un año ocultando algunos datos históricos, haciendo pronósticos y luego revelando los datos ocultos para calcular errores. Esto ayuda a elegir el mejor método en tiempo real.
    3. Torneo de pronóstico:
      • Comparación de métodos: diferentes métodos compiten para pronosticar cada elemento, ganando el método que produce el error promedio más bajo.
      • Ajuste de parámetros: cada método se prueba con varios parámetros para encontrar la configuración óptima. Por ejemplo, se puede intentar un suavizado exponencial simple con diferentes factores de ponderación.

     

    Los algoritmos detrás de la previsión automática eficaz

    La previsión automática es altamente computacional pero factible con tecnología moderna. El proceso implica:

    • Segmentación de datos: Dividir los datos históricos en segmentos ayuda a gestionar y aprovechar diferentes aspectos de los datos históricos para realizar pronósticos más precisos. Por ejemplo, para un producto con demanda estacional, los datos pueden segmentarse por temporadas para capturar tendencias y patrones específicos de cada temporada. Esta segmentación permite a los pronosticadores hacer y probar pronósticos de manera más efectiva.
    • Simulaciones repetidas: El uso de simulaciones deslizantes implica probar y refinar pronósticos repetidamente durante diferentes períodos. Este método valida la precisión de los métodos de pronóstico aplicándolos a diferentes segmentos de datos. Un ejemplo es el método de ventana deslizante, donde una ventana de tamaño fijo se mueve a través de los datos de la serie temporal, generando pronósticos para cada posición para evaluar el desempeño.
    • Optimización de parámetros: La optimización de parámetros implica probar múltiples variantes de cada método de pronóstico para encontrar el que tenga mejor rendimiento. Al ajustar parámetros, como el factor de suavizado en los métodos de suavizado exponencial o el número de observaciones pasadas en los modelos ARIMA, los pronosticadores pueden ajustar los modelos para mejorar el rendimiento.

    Por ejemplo, en nuestro software permitimos que varios métodos de pronóstico compitan por el mejor desempeño en un elemento determinado. El conocimiento de la previsión automática se traslada inmediatamente a la media móvil simple, la media móvil lineal, el suavizado exponencial único, el suavizado exponencial doble, el suavizado exponencial de Winters y el pronóstico promocional. Esta competencia garantiza que se seleccione el método más adecuado basándose en evidencia empírica, no en juicios subjetivos. El ganador del torneo es el método más cercano a predecir valores de datos nuevos a partir de los antiguos. La precisión se mide mediante el error absoluto promedio (es decir, el error promedio, ignorando los signos menos). El promedio se calcula sobre un conjunto de pronósticos, cada uno usando una porción de los datos, en un proceso conocido como simulación deslizante, que hemos explicado anteriormente en un blog anterior.

     

    Métodos utilizados en la previsión automática

    Normalmente, hay seis métodos de pronóstico extrapolativo que compiten en el torneo de pronóstico automático:

    • media móvil simple
    • Media móvil lineal
    • Suavizado exponencial simple
    • Suavizado exponencial doble
    • Versión aditiva del suavizado exponencial de Winters
    • Versión multiplicativa del suavizado exponencial de Winters

    Los dos últimos métodos son apropiados para series estacionales; sin embargo, quedan automáticamente excluidos del torneo si hay menos de dos ciclos estacionales completos de datos (por ejemplo, menos de 24 períodos de datos mensuales u ocho períodos de datos trimestrales). Estos seis métodos clásicos basados en suavizado han demostrado ser fáciles de entender, fáciles de calcular y precisos. Puedes excluir cualquiera de estos métodos del torneo si tienes preferencia por algunos de los competidores y no por otros.

    La previsión automática de datos de series temporales es esencial para gestionar proyecciones de demanda a gran escala de manera eficiente y precisa. Las empresas pueden lograr una mayor precisión de los pronósticos y optimizar sus procesos de planificación automatizando la selección de métodos de pronóstico y utilizando técnicas como el análisis de reservas y los torneos de pronóstico. Adoptar estas técnicas avanzadas de pronóstico garantiza que las empresas se mantengan a la vanguardia en entornos de mercado dinámicos y tomen decisiones informadas basadas en proyecciones de datos confiables.

     

     

     

    Gestión de inventario basada en pronósticos para una mejor planificación

    La gestión de inventario basada en pronósticos, o lógica MRP (planificación de requisitos de materiales), es una metodología de planificación anticipada para gestionar el inventario. Este método garantiza que las empresas puedan satisfacer la demanda sin exceso de existencias, lo que inmoviliza el capital, o falta de existencias, lo que puede provocar pérdidas de ventas y clientes insatisfechos.

    Al anticipar la demanda y ajustar los niveles de inventario en consecuencia, este enfoque ayuda a mantener el equilibrio adecuado entre tener suficiente stock para satisfacer las necesidades de los clientes y minimizar los costos de exceso de inventario. Las empresas pueden optimizar las operaciones, reducir el desperdicio y mejorar la satisfacción del cliente al predecir las necesidades futuras. Analicemos cómo funciona esto.

     

    Conceptos básicos de la gestión de inventarios basada en pronósticos

    Modelos de dinámica de inventario: Los modelos de dinámica de inventario son fundamentales para comprender y gestionar los niveles de inventario. El modelo más simple, conocido como modelo “diente de sierra”, demuestra que los niveles de inventario disminuyen con la demanda y se reponen justo a tiempo. Sin embargo, los escenarios del mundo real suelen requerir modelos más sofisticados. Al incorporar elementos estocásticos y variabilidad, como las simulaciones de Monte Carlo, las empresas pueden tener en cuenta las fluctuaciones aleatorias en la demanda y el tiempo de entrega, proporcionando un pronóstico más realista de los niveles de inventario.

    plataforma IP&O mejora el modelado de la dinámica del inventario a través de capacidades avanzadas de simulación y análisis de datos. Al aprovechar la IA y los algoritmos de aprendizaje automático, nuestra plataforma IP&O puede predecir los patrones de demanda con mayor precisión, ajustando los modelos en tiempo real en función de los datos más recientes. Esto conduce a niveles de inventario más precisos, lo que reduce el riesgo de desabastecimiento y exceso de existencias.

    Determinación de la cantidad y el momento del pedido: La gestión eficaz del inventario requiere saber cuándo y cuánto pedir. Esto implica pronosticar la demanda futura y calcular el tiempo de reposición de existencias. Al predecir cuándo el inventario alcanzará los niveles de seguridad, las empresas pueden planificar sus pedidos para garantizar un suministro continuo.

    Nuestras últimas herramientas destacan por optimizar las cantidades y los plazos de los pedidos mediante el uso de análisis predictivos e inteligencia artificial. Estos sistemas pueden analizar grandes cantidades de datos, incluidas ventas históricas y tendencias del mercado. Al hacerlo, proporcionan pronósticos de demanda más precisos y optimizan los puntos de reorden, asegurando que el inventario se reponga justo a tiempo y sin exceso.

    Calcular el tiempo de entrega: El tiempo de entrega es el período desde que se realiza un pedido hasta que se recibe el stock. Varía según la disponibilidad de componentes. Por ejemplo, si un producto se ensambla a partir de varios componentes, el plazo de entrega lo determinará el componente con el plazo de entrega más largo.

    Las soluciones inteligentes impulsadas por IA mejoran el cálculo del tiempo de entrega al integrarse con los sistemas de gestión de la cadena de suministro. Estos sistemas rastrean el desempeño de los proveedores y los plazos de entrega históricos para proporcionar estimaciones de plazos de entrega más precisas. Además, las tecnologías inteligentes pueden alertar a las empresas sobre posibles retrasos, lo que permite realizar ajustes proactivos en los planes de inventario.

    Cálculo del stock de seguridad: El stock de seguridad actúa como un amortiguador para proteger contra la variabilidad en la oferta y la demanda. Calcular el stock de seguridad implica analizar la variabilidad de la demanda y establecer un nivel de stock que cubra la mayoría de los escenarios potenciales, minimizando así el riesgo de desabastecimiento.

    La tecnología IP&O mejora significativamente el cálculo del stock de seguridad mediante análisis avanzados. Al monitorear continuamente los patrones de demanda y las variables de la cadena de suministro, los sistemas inteligentes pueden ajustar dinámicamente los niveles de existencias de seguridad. Los algoritmos de aprendizaje automático pueden predecir picos o caídas de la demanda y ajustar el stock de seguridad en consecuencia, garantizando niveles óptimos de inventario y minimizando los costos de mantenimiento.

    La importancia de una previsión precisa en la gestión de inventarios

    Una previsión precisa es clave para minimizar los errores de previsión, que pueden provocar un exceso de inventario o desabastecimiento. Técnicas como la utilización de datos históricos, la mejora de la entrada de datos y la aplicación de métodos de pronóstico avanzados ayudan a lograr una mayor precisión. Los errores de pronóstico pueden tener implicaciones financieras importantes: un pronóstico excesivo genera un exceso de inventario, mientras que un pronóstico insuficiente conduce a la pérdida de oportunidades de ventas. Gestionar estos errores mediante el seguimiento sistemático y el ajuste de los métodos de previsión es crucial para mantener niveles óptimos de inventario.

    El stock de seguridad garantiza que las empresas satisfagan las necesidades de los clientes incluso si la demanda real se desvía de la previsión. Este colchón protege contra picos imprevistos de demanda o retrasos en el reabastecimiento. Los pronósticos precisos, la gestión eficaz de errores y el uso estratégico del stock de seguridad mejoran la gestión de inventario basada en pronósticos. Las empresas pueden comprender la dinámica del inventario, determinar las cantidades y los plazos correctos para los pedidos, calcular plazos de entrega precisos y establecer niveles de existencias de seguridad adecuados.

    El uso de tecnología de vanguardia como IP&O proporciona ventajas significativas al ofrecer información de datos en tiempo real, análisis predictivos y modelos adaptativos. Esto conduce a una gestión de inventario más eficiente, costos reducidos y una mayor satisfacción del cliente. En general, IP&O permite a las empresas planificar mejor y responder rápidamente a los cambios del mercado, garantizando que mantengan el equilibrio de inventario adecuado para satisfacer las necesidades de los clientes sin incurrir en costos innecesarios.

     

     

    Haga de la optimización de inventario impulsada por IA un aliado para su organización
    En este blog, exploraremos cómo las organizaciones pueden lograr una eficiencia y precisión excepcionales con la optimización del inventario impulsada por la IA. Los métodos tradicionales de gestión de inventario a menudo resultan insuficientes debido a su naturaleza reactiva y su dependencia de procesos manuales. Mantener niveles óptimos de inventario es fundamental para satisfacer la demanda de los clientes y minimizar los costos. La introducción de la optimización del inventario impulsada por la IA puede reducir significativamente la carga de los procesos manuales, brindando alivio a los gerentes de la cadena de suministro de tareas tediosas. Con la IA, podemos predecir la demanda con mayor precisión, reducir el exceso de existencias, evitar desabastecimientos y, en última instancia, mejorar los resultados de nuestra organización. Exploremos cómo este enfoque no solo aumenta las ventas y la eficiencia operativa, sino que también eleva la satisfacción del cliente al garantizar que los productos estén siempre disponibles cuando sea necesario.

     

    Información para mejorar la toma de decisiones en la gestión de inventarios

    1. Precisión de pronóstico mejorada Los algoritmos avanzados de aprendizaje automático analizan datos históricos para identificar patrones que los humanos podrían pasar por alto. Técnicas como la agrupación, la detección de cambios de régimen, la detección de anomalías y el análisis de regresión proporcionan información profunda sobre los datos. Medir el error de pronóstico es esencial para perfeccionar los modelos de pronóstico; por ejemplo, técnicas como el error absoluto medio (MAE) y el error cuadrático medio (RMSE) ayudan a cuantificar la precisión de los pronósticos. Las empresas pueden mejorar la precisión monitoreando y ajustando continuamente los pronósticos en función de estas métricas de error. como el Planificador de demanda en un minorista de hardware declarado, "Con las mejoras en nuestros pronósticos y planificación de inventario que permitió Smart Software, hemos podido reducir el stock de seguridad en 20% y al mismo tiempo reducir los desabastecimientos en 35%".
    1. Análisis de datos en tiempo real Los sistemas de última generación pueden procesar grandes cantidades de datos en tiempo real, lo que permite a las empresas ajustar sus niveles de inventario de forma dinámica en función de las tendencias actuales de la demanda y las condiciones del mercado. Los algoritmos de detección de anomalías pueden identificar y corregir automáticamente picos o caídas repentinas en la demanda, garantizando que los pronósticos sigan siendo precisos. Una historia de éxito notable proviene de Smart IP&O, que permitió a una empresa reducir el inventario en 20% mientras mantenía los niveles de servicio mediante el análisis continuo de datos en tiempo real y el ajuste de los pronósticos en consecuencia. Destacado Gerente de Materiales de FedEx Tech, "Cualquiera que sea la solicitud, debemos cumplir con nuestro compromiso de servicio al día siguiente: Smart nos permite ajustar el riesgo de nuestro inventario para asegurarnos de que tenemos los productos y piezas disponibles para lograr los niveles de servicio que nuestros clientes requieren".
    1. Mejora de la eficiencia de la cadena de suministro Las plataformas tecnológicas inteligentes pueden optimizar toda la cadena de suministro, desde la adquisición hasta la distribución, prediciendo los plazos de entrega y optimizando las cantidades de los pedidos. Esto reduce el riesgo de exceso y falta de existencias. Por ejemplo, al utilizar la gestión de inventario basada en pronósticos, Smart Software ayudó a un fabricante a optimizar su cadena de suministro, reduciendo los tiempos de entrega en 15% y mejorando la eficiencia general. El vicepresidente de operaciones de Procon Pump declaró: "Una de las cosas que me gusta de esta nueva herramienta... es que puedo evaluar las consecuencias de las decisiones sobre el almacenamiento del inventario antes de implementarlas".
    1. Toma de decisiones mejorada La IA proporciona información y recomendaciones prácticas, lo que permite a los gerentes tomar decisiones informadas. Esto incluye identificar artículos de baja rotación, pronosticar la demanda futura y optimizar los niveles de existencias. El análisis de regresión, por ejemplo, puede relacionar las ventas con variables externas como la estacionalidad o indicadores económicos, proporcionando una comprensión más profunda de los impulsores de la demanda. Uno de los clientes de Smart Software informó una mejora significativa en los procesos de toma de decisiones, lo que resultó en un aumento de 30% en los niveles de servicio y al mismo tiempo redujo el exceso de inventario en 15%. "Smart IP&O nos permitió modelar la demanda en cada ubicación de almacenamiento y, utilizando una planificación basada en el nivel de servicio, determinar cuánto almacenar para lograr el nivel de servicio que requerimos", señaló el Responsable de Compras en Empresas Seneca.
    1. Reducción de costo Al optimizar los niveles de inventario, las empresas pueden reducir los costos de mantenimiento y minimizar las pérdidas por productos obsoletos o caducados. Los sistemas impulsados por IA también reducen la necesidad de realizar comprobaciones manuales de inventario, lo que ahorra tiempo y costes laborales. Un estudio de caso reciente muestra cómo se logró la implementación de la planificación y optimización del inventario (IP&O) dentro de los 90 días posteriores al inicio del proyecto. Durante los seis meses siguientes, IP&O permitió ajustar los parámetros de almacenamiento de varios miles de artículos, lo que resultó en reducciones de inventario de $9,0 millones y al mismo tiempo mantuvo los niveles de servicio objetivo.

     

    Al aprovechar algoritmos avanzados y análisis de datos en tiempo real, las empresas pueden mantener niveles óptimos de inventario y mejorar el rendimiento general de su cadena de suministro. La planificación y optimización del inventario (IP&O) es una herramienta poderosa que puede ayudar a su organización a alcanzar estos objetivos. La incorporación de optimización de inventario de última generación en su organización puede generar mejoras significativas en la eficiencia, la reducción de costos y la satisfacción del cliente.

     

     

    Utilidades preparadas para el futuro: análisis avanzados para la optimización de la cadena de suministro

    Las empresas de servicios públicos tienen requisitos únicos de optimización de la cadena de suministro, principalmente garantizando un alto tiempo de actividad al mantener todas las máquinas críticas en funcionamiento continuo. Lograr esto implica mantener una alta disponibilidad de repuestos para garantizar un suministro consistente, confiable y seguro. Además, como entidades reguladas, las empresas de servicios públicos también deben gestionar y controlar cuidadosamente los costos.

    Gestionar las cadenas de suministro de manera eficiente

    Para mantener un suministro eléctrico fiable a 99.99%+ Para niveles de servicio, por ejemplo, las empresas de servicios públicos deben poder responder rápidamente a los cambios en la demanda en el corto plazo y anticipar con precisión la demanda futura. Para ello, deben tener una cadena de suministro bien organizada que les permita comprar los equipos, materiales y servicios necesarios de los proveedores adecuados en el momento adecuado, en las cantidades adecuadas y al precio adecuado.

    Hacerlo se ha vuelto cada vez más desafiante en los últimos 3 años.

    • Los requisitos de seguridad, confiabilidad y prestación de servicios son más estrictos.
    • Las interrupciones en la cadena de suministro, los plazos de entrega impredecibles de los proveedores y los picos intermitentes en el uso de piezas siempre han sido problemáticos, pero ahora son más la regla que la excepción.
    • La desregulación a principios de la década de 2000 eliminó las piezas de repuesto de la lista de artículos reembolsados directamente, lo que obligó a las empresas de servicios públicos a pagar las piezas de repuesto directamente con los ingresos.[1]
    • La necesidad constante de capital combinada con tasas de interés que aumentan agresivamente significa que los costos se examinan más que nunca.

    Como resultado, la optimización de la cadena de suministro (SCO) se ha convertido en una práctica empresarial cada vez más crítica para las empresas de servicios públicos. Para hacer frente a estos desafíos, las empresas de servicios públicos ya no pueden simplemente gestionar su cadena de suministro: deben optimizarla. Y para ello, serán necesarias inversiones en nuevos procesos y sistemas.

    [1] Scala et al. “Inventario de Riesgos y Repuestos en Empresas Eléctricas”. Actas de la Conferencia de Investigación de Ingeniería Industrial.

    Advanced Analytics and Optimization: Future-Proofing Utility Supply Chains

    Planificación y optimización de inventario   

    Las inversiones específicas en tecnología de optimización de inventario ofrecen un camino a seguir para cada empresa de servicios públicos. Las soluciones de optimización de inventario deben priorizarse porque:

    1. Puede implementarse en una fracción del tiempo requerido para iniciativas en otras áreas, como la gestión de almacenes, el diseño de la cadena de suministro y las consolidaciones de compras. No es raro comenzar a generar beneficios después de 90 días y tener una implementación de software completa en menos de 180 días.
    2. Puede generar un ROI masivo, con rendimientos 20x y beneficios financieros de siete cifras al año. Al pronosticar mejor el uso de piezas, las empresas de servicios públicos reducirán los costos al comprar solo el inventario necesario mientras controlan el riesgo de desabastecimiento que conduce a tiempos de inactividad y niveles de servicio deficientes.
    3. Proporcionar apoyo fundamental para otras iniciativas. Una cadena de suministro sólida se basa en pronósticos de uso sólidos y planes de compra de inventario.

    Utilizando análisis predictivos y algoritmos avanzados, la optimización de inventario ayuda a las empresas de servicios públicos a maximizar los niveles de servicio y reducir los costos operativos mediante la optimización de los niveles de inventario de piezas de repuesto. Por ejemplo, una empresa de servicios eléctricos podría usar pronósticos estadísticos para predecir el uso futuro de piezas, realizar auditorías de inventario para identificar el exceso de inventario y aprovechar los resultados analíticos para identificar dónde deben enfocarse primero los esfuerzos de optimización del inventario. Al hacer esto, la empresa de servicios públicos puede garantizar que las máquinas funcionen a niveles óptimos y reducir el riesgo de demoras costosas debido a la falta de repuestos.

    Mediante el uso de análisis y datos, puede identificar qué repuestos y equipos es más probable que se necesiten y pedir solo los artículos necesarios. Esto ayuda a garantizar que el equipo tenga un alto tiempo de actividad. Recompensa el monitoreo y el ajuste regulares de los niveles de inventario para que cuando cambien las condiciones operativas, pueda detectar el cambio y ajustarlo en consecuencia. Esto implica que los ciclos de planificación deben operar a un ritmo lo suficientemente alto como para mantenerse al día con las condiciones cambiantes. apalancamiento de pronóstico probabilístico recalibrar las políticas de almacenamiento de repuestos para cada ciclo de planificación garantiza que las políticas de almacenamiento (como los niveles mínimos/máximos) estén siempre actualizadas y reflejen el uso de piezas y los plazos de entrega de los proveedores más recientes.

     

    Niveles de servicio y la curva de compensación

    El nivel de servicio Curva de compensación relaciona la inversión en inventario con la disponibilidad de artículos medida por el nivel de servicio. El nivel de servicio es la probabilidad de que no ocurra escasez entre el momento en que solicita más existencias y cuando llega al estante. Sorprendentemente, pocas empresas tienen datos sobre esta importante métrica en toda su flota de repuestos.

    La curva de compensación del nivel de servicio expone el vínculo entre los costos asociados con los diferentes niveles de servicio y los requisitos de inventario necesarios para alcanzarlos. Saber qué componentes son importantes para mantener altos niveles de servicio es clave para el proceso de optimización y está determinado por varios factores, incluida la estandarización de artículos del inventario, la criticidad, el uso histórico y las órdenes de reparación futuras conocidas. Al comprender esta relación, las empresas de servicios públicos pueden asignar mejor los recursos, como cuando se usan las curvas para identificar áreas donde se pueden reducir los costos sin afectar la confiabilidad del sistema.

    Service Level tradeoff curve utilities costs inventory requirements Software

    Con el software de optimización de inventario, establecer políticas de almacenamiento es pura conjetura: es posible saber cómo cualquier aumento o disminución afectará los niveles de servicio, además de las estimaciones aproximadas. Nadie sabe realmente cómo se desarrollarán los cambios en términos de inversión en inventarios, costos operativos y costos de escasez. La mayoría de los servicios públicos dependen de métodos de regla general y ajustar arbitrariamente las políticas de almacenamiento de manera reactiva después de que algo haya salido mal, como una gran falta de existencias o una pérdida de inventario. Cuando los ajustes se realizan de esta manera, no hay un análisis basado en hechos que detalle cómo se espera que este cambio afecte las métricas que importan: niveles de servicio y valores de inventario.

    El software de optimización de inventario puede calcular las curvas de compensación cuantitativas y detalladas requeridas para tomar decisiones informadas sobre políticas de inventario o incluso recomendar el nivel de servicio objetivo que resulte en el costo operativo general más bajo (la suma de los costos de mantenimiento, pedido y desabastecimiento). Usando este análisis, los grandes aumentos en los niveles de existencias pueden justificarse matemáticamente cuando la reducción prevista en los costos de escasez supera el aumento en la inversión en inventario y los costos de mantenimiento asociados. Al establecer niveles de servicio apropiados y recalibrar las políticas en todas las partes activas una vez en cada ciclo de planificación (al menos una vez al mes), las empresas de servicios públicos pueden minimizar el riesgo de interrupciones mientras controlan los gastos.

    Quizás los aspectos más críticos de la respuesta a la avería del equipo son los relacionados con el logro de una arreglo por primera vez lo más rápido posible. Tener los repuestos adecuados disponibles puede ser la diferencia entre completar un solo viaje y aumentar el tiempo medio de reparación, asumir los costos asociados con varias visitas y hacer que las relaciones con los clientes se deterioren.

    Con un software moderno, puede comparar el rendimiento anterior y aprovechar los métodos de pronóstico probabilístico para simular el rendimiento futuro. Al someter a prueba sus políticas actuales de almacenamiento de inventario frente a todos los escenarios plausibles de uso futuro de piezas, sabrá de antemano cómo es probable que funcionen las políticas de almacenamiento actuales y propuestas. Cecha un vistazo a nuestra publicación de blog sobre cómo medir la precisión de su pronóstico de nivel de servicio para ayudarlo a evaluar la precisión de las recomendaciones de inventario que los proveedores de software pretenden proporcionar beneficios.

     

    Optimizing Utility Supply Chains Advanced Analytics for Future Readiness

     

    Aprovechando el análisis avanzado y la IA

    Al introducir la automatización, cada empresa de servicios públicos tiene sus propios objetivos que perseguir, pero se debe comenzar evaluando las operaciones actuales para identificar áreas que pueden volverse más efectivas. Algunas empresas pueden priorizar las cuestiones financieras, pero otras pueden priorizar las exigencias regulatorias, como el gasto en energía limpia o cambios en toda la industria, como las redes inteligentes. Las dificultades de cada empresa son únicas, pero el software moderno puede señalar el camino hacia un sistema de gestión de inventario más eficaz que minimice el exceso de inventario y coloque los componentes correctos en los lugares correctos y en el momento adecuado.

    En general, las iniciativas de optimización de la cadena de suministro son esenciales para las empresas de servicios públicos que buscan maximizar su eficiencia y reducir sus costos. La tecnología nos permite hacer que el proceso de integración sea perfecto y no es necesario que reemplace su sistema ERP o EAM actual para hacerlo. Solo necesita hacer un mejor uso de los datos que ya tiene.

    Por ejemplo, una gran empresa de servicios públicos lanzó una iniciativa estratégica de optimización de la cadena de suministro (SCO) y agregó las mejores capacidades de su clase a través de la selección e integración de aplicaciones comerciales listas para usar. El principal de ellos fue el sistema inteligente de planificación y optimización de inventario (Smart IP&O), que comprende la funcionalidad de previsión de piezas/planificación de demanda y optimización de inventario. En solo 90 días, el sistema de software estaba listo y funcionando, y pronto redujo el inventario en $9,000,000 mientras mantenía la disponibilidad de repuestos a un alto nivel. Puedes leer el caso de estudio aquí La empresa de servicios eléctricos opta por Smart IP&O.

    Las empresas de servicios públicos pueden asegurarse de poder gestionar sus suministros de repuestos de una manera eficiente y rentable, preparándolas mejor para el futuro. Con el tiempo, este equilibrio entre oferta y demanda se traduce en una ventaja significativa. Comprender la curva de compensación del nivel de servicio ayuda a comprender los costos asociados con los diferentes niveles de servicio y los requisitos de inventario necesarios para lograrlos. Esto conduce a costos operativos reducidos, inventario optimizado y garantía de que puede satisfacer las necesidades de sus clientes.

     

     

     

    Soluciones de software para la planificación de repuestos

    El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

    Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

     

     

    Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

     

    Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.