Por qué las curvas de compensación de piezas de repuesto son de misión crítica para la planificación de piezas

Apuesto a que sus equipos de mantenimiento y reparación estarían de acuerdo con incurrir en mayores riesgos de falta de existencias uno alguno piezas de repuesto si supieran que los ahorros de reducción de inventario se utilizarían para distribuir la inversión en inventario de manera más efectiva para otro repuestos y aumentar los niveles generales de servicio.

Duplicaré que su equipo de finanzas, a pesar de que siempre se enfrenta al desafío de reducir los costos, respaldaría un aumento saludable del inventario si pudiera ver claramente que los ingresos se benefician de un mayor tiempo de actividad, menos agilidades y mejoras en el nivel de servicio claramente superan los costos de inventario adicionales y riesgo

La curva de compensación de piezas de repuesto permitirá a los equipos de planificación de repuestos comunicar adecuadamente los riesgos y costos de cada decisión de inventario. Es una misión crítica para la planificación de piezas y la única forma de ajustar los parámetros de almacenamiento de forma proactiva y precisa para cada pieza. Sin él, los planificadores, para todos los efectos, están "planificando" con los ojos vendados porque no podrán comunicar las verdaderas compensaciones asociadas con las decisiones de almacenamiento.

Por ejemplo, si se recomienda un aumento propuesto a los niveles mínimos/máximos de un importante grupo de productos básicos de repuestos, ¿cómo sabe si el aumento es demasiado alto, demasiado bajo o correcto? ¿Cómo se puede afinar el cambio para miles de repuestos? No lo harás y no puedes. Su toma de decisiones de inventario se basará en decisiones reactivas, viscerales y generales que causan que los niveles de servicio se resientan y los costos de inventario se disparen.

Entonces, ¿qué es exactamente una curva de compensación de repuestos?

Es una predicción numérica basada en hechos que detalla cómo los cambios en los niveles de existencias influirán en el valor del inventario, los costos de mantenimiento y los niveles de servicio. Por cada cambio de unidad en el nivel de inventario hay un costo y un beneficio. La curva de compensación de repuestos identifica estos costos y beneficios a través de diferentes niveles de existencias. Permite a los planificadores descubrir el nivel de existencias que mejor equilibra los costes y los beneficios de cada artículo individual.

Aquí hay dos ejemplos simplificados. En la Figura 1, la curva de compensación de repuestos muestra cómo cambia el nivel de servicio (probabilidad de no agotarse) según el nivel de pedido. Cuanto mayor sea el nivel de reorden, menor será el riesgo de falta de existencias. Es fundamental saber cuánto servicio está ganando dada la inversión en inventario. Aquí puede justificar que un aumento de inventario de un punto de pedido de 35 a 45 bien vale la pena la inversión de 10 unidades adicionales de stock porque los niveles de servicio saltan de poco menos de 70% a 90%, lo que reduce el riesgo de falta de existencias para la pieza de repuesto de 30% a 10%!

 

Costo vs niveles de servicio para la planificación de inventario

Figura 1: Costo versus nivel de servicio

 

Tamaño del inventario frente a niveles de servicio para MRO

Figura 2: Nivel de servicio frente al tamaño del inventario

En este ejemplo (Figura 2), la curva de compensación expone un problema común con el inventario de repuestos. A menudo, los niveles de existencias son tan altos que generan rendimientos negativos. Después de una cierta cantidad de existencias, cada unidad adicional de existencias no compra más beneficios en forma de un mayor nivel de servicio. Las disminuciones de inventario pueden justificarse cuando está claro que el nivel de existencias ha superado con creces el punto de rendimientos decrecientes. Una curva de compensación precisa expondrá el punto en el que ya no es ventajoso agregar stock.

Mediante el aprovechamiento #pronóstico probabilístico para impulsar la planificación de piezas, puede comunicar estas compensaciones con precisión, hacerlo a escala en cientos de miles de piezas, evitar malas decisiones de inventario y equilibrar los niveles de servicio y los costos. En Smart Software, nos especializamos en ayudar a los planificadores de repuestos, directores de administración de materiales y ejecutivos financieros que administran MRO, repuestos y repuestos para comprender y explotar estas relaciones.

 

Soluciones de software para la planificación de repuestos

El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

 

 

Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

 

Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

 

    Problemas de las empresas eléctricas con repuestos

    Todas las organizaciones que utilizan equipos necesitan piezas de repuesto. Todos ellos deben hacer frente a cuestiones que son genéricas sin importar cuál sea su negocio. Sin embargo, algunos de los problemas son específicos de la industria. Esta publicación analiza un problema universal que se manifiesta en una planta nuclear y que es especialmente grave para cualquier empresa de servicios eléctricos.

    El problema universal de la calidad de los datos

    A menudo publicamos sobre los beneficios de convertir los datos de uso de piezas en decisiones inteligentes de gestión de inventario. El modelado de probabilidad avanzado admite la generación de escenarios de demanda realistas que se integran en simulaciones detalladas de Monte Carlo que exponen las consecuencias de decisiones como las elecciones de Min y Max que rigen la reposición de repuestos.

    Sin embargo, toda esa tecnología analítica nueva y brillante requiere datos de calidad como combustible para el análisis. Para algunos servicios públicos de todo tipo, el mantenimiento de registros no es un punto fuerte, por lo que la materia prima que se analiza puede corromperse y ser engañosa. Recientemente nos topamos con la documentación de un claro ejemplo de este problema en una planta de energía nuclear (ver Scala, Needy y Rajgopal: Toma de decisiones y compensaciones en la gestión del inventario de piezas de repuesto en las empresas de servicios públicos. Asociación Estadounidense de Gestión de Ingeniería, 30.ª Conferencia Nacional ASEM, Springfield, MO. octubre de 2009). Scala et al. documentó el historial de uso de una pieza crítica cuya ausencia resultaría en una reducción de la potencia de la instalación o en un cierre. El registro de uso de la planta para esa parte abarcó más de ocho años de datos. Durante ese tiempo, el historial de uso oficial reportó nueve eventos en los que se produjo una demanda positiva con tamaños que oscilaban entre una y seis unidades cada uno. También hubo cinco eventos marcados por demandas negativas (es decir, devoluciones a almacén) que oscilaron entre una y tres unidades cada uno. La investigación cuidadosa descubrió que el verdadero uso ocurrió en solo dos eventos, ambos con una demanda de dos unidades. Obviamente, calcular los mejores valores Mín./Máx. para este artículo requiere datos de demanda precisos.

    El problema especial de la salud y la seguridad

    En el contexto de negocios “normales”, la escasez de piezas de repuesto puede dañar tanto los ingresos actuales como los ingresos futuros (relacionados con la reputación como proveedor confiable). Sin embargo, para una empresa de servicios eléctricos, Scala et al. observó un nivel mucho mayor de consecuencias asociadas a los desabastecimientos de piezas de repuesto. Estos incluyen no solo un mayor riesgo financiero y de reputación, sino también riesgos para la salud y la seguridad: Las ramificaciones de no tener una pieza en stock incluyen la posibilidad de tener que reducir la producción o, muy posiblemente, incluso el cierre de una planta. Desde una perspectiva a más largo plazo, hacerlo podría interrumpir el servicio crítico de energía para los clientes residenciales, comerciales y/o industriales, al tiempo que daña la reputación, la confiabilidad y la rentabilidad de la empresa. Una empresa de servicios eléctricos fabrica y vende un solo producto: electricidad. Perder la capacidad de vender electricidad puede dañar gravemente los resultados de la empresa, así como su viabilidad a largo plazo”.

    Razón de más para que las empresas eléctricas sean líderes y no rezagadas en el despliegue de los modelos de probabilidad más avanzados para la previsión de la demanda y la optimización del inventario.

     

    Soluciones de software para la planificación de repuestos

    El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

    Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

     

     

    Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

     

    Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

     

      Cómo Pronosticar Repuestos con Bajo Uso

      ¿Qué hace cuando pronostica un artículo con demanda intermitente, como una pieza de repuesto, con una demanda promedio de menos de una unidad por mes? La mayor parte del tiempo la demanda es cero, pero la parte es significativa en un sentido comercial; no se puede ignorar y se debe pronosticar para asegurarse de tener el stock adecuado.

      Tus elecciones tienden a centrarse en algunas opciones:

      Opción 1: Redondea a 1 cada mes, por lo que tu pronóstico anual es 12.

      Opción 2: Redondee a 0 cada mes, de modo que su pronóstico anual sea 0.

      Opción 3: método de pronóstico "igual que el mismo mes del año pasado" para que el pronóstico coincida con el real del año pasado.

      Hay desventajas obvias para cada opción y no mucha ventaja para ninguna de ellas. La opción 1 a menudo resulta en un sobre pronóstico significativo. La opción 2 a menudo da como resultado una previsión significativamente inferior a la esperada. La opción 3 da como resultado un pronóstico que casi garantiza que perderá significativamente el real, ya que no es probable que la demanda aumente exactamente en el mismo período. Si DEBE pronosticar el artículo, normalmente recomendaríamos la opción 3, ya que es la respuesta más probable que el resto de la empresa entendería. 

      Pero una mejor manera es no pronosticarlo en absoluto en el sentido habitual y, en su lugar, utilizar un "punto de reorden predictivo" relacionado con el nivel de servicio deseado. Para calcular un punto de reorden predictivo, puede usar el algoritmo de arranque de Markov patentado de Smart Software para simular todas las demandas posibles que podrían ocurrir durante el tiempo de entrega, luego identifique el punto de reorden que producirá su nivel de servicio objetivo.

      Luego, puede configurar su sistema ERP para pedir más cuando el inventario disponible supere el punto de reorden en lugar de cuando se pronostique que llegará a cero (o cualquier reserva de existencias de seguridad que se ingrese). 

      Esto hace que los pedidos tengan más sentido común sin las suposiciones innecesarias que se requieren para pronosticar una pieza de bajo volumen demandada intermitentemente.

       

      Soluciones de software para la planificación de repuestos

      El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

      Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

       

       

      Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

       

      Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

       

        Lo que Silicon Valley Bank puede aprender de la planificación de la cadena de suministro

        Si últimamente tenías la cabeza en alto, es posible que hayas notado alguna locura adicional fuera de la cancha de baloncesto: el fracaso del Silicon Valley Bank. Aquellos de nosotros en el mundo de la cadena de suministro tal vez hayamos descartado la quiebra del banco como un problema de otra persona, pero ese lamentable episodio también contiene una gran lección para nosotros: la importancia de hacer bien las pruebas de estrés.

        Él El Correo de Washington Recientemente se publicó un artículo de opinión de Natasha Sarin llamado “Los reguladores se perdieron los problemas de Silicon Valley Bank durante meses. Este es el por qué." Sarin describió las fallas en el régimen de pruebas de estrés impuesto al banco por la Reserva Federal. Un problema es que las pruebas de estrés son demasiado estáticas. El factor de estrés de la Fed para el crecimiento del PIB nominal fue un escenario único que enumeraba valores supuestos durante los próximos 13 trimestres (ver Figura 1). Esas 13 proyecciones trimestrales pueden ser la opinión consensuada de alguien sobre cómo se vería un mal día para el cabello, pero esa no es la única forma en que podrían desarrollarse las cosas. Como sociedad, se nos enseña a apreciar una mejor manera de mostrar las contingencias cada vez que el Servicio Meteorológico Nacional nos muestra las trayectorias proyectadas de los huracanes (consulte la Figura 2). Cada escenario representado por una línea de color diferente muestra una posible trayectoria de tormenta, y las líneas concentradas representan la más probable. Al exponer las rutas de menor probabilidad, se mejora la planificación de riesgos.

        Al realizar pruebas de estrés en la cadena de suministro, necesitamos escenarios realistas de posibles demandas futuras que podrían ocurrir, incluso demandas extremas. Smart proporciona esto en nuestro software (con mejoras considerables en nuestros métodos Gen2). El software genera una gran cantidad de escenarios de demanda creíbles, suficientes para exponer el alcance completo de los riesgos (consulte la Figura 3). Las pruebas de estrés tienen que ver con la generación de cantidades masivas de escenarios de planificación, y los métodos probabilísticos de Smart son una desviación radical de las aplicaciones S&OP deterministas anteriores, ya que se basan completamente en escenarios.

        La otra falla en las pruebas de estrés de la Fed fue que fueron diseñadas con meses de anticipación pero nunca actualizadas para las condiciones cambiantes. Los planificadores de la demanda y los gerentes de inventario aprecian intuitivamente que las variables clave como la demanda de artículos y el tiempo de entrega del proveedor no solo son muy aleatorias, incluso cuando las cosas son estables, sino que también están sujetas a cambios abruptos que deberían requerir una reescritura rápida de los escenarios de planificación (consulte la Figura 4, donde la demanda promedio salta dramáticamente entre las observaciones 19 y 20). Los productos Gen2 de Smart incluyen nueva tecnología para detectar tales "cambios de régimen” y cambiando automáticamente los escenarios en consecuencia.

        Los bancos se ven obligados a someterse a pruebas de estrés, por muy defectuosas que sean, para proteger a sus depositantes. Los profesionales de la cadena de suministro ahora tienen una manera de proteger sus cadenas de suministro mediante el uso de un software moderno para realizar pruebas de estrés de sus planes de demanda y decisiones de gestión de inventario.

        1 Escenarios que utilizó la Fed para hacer pruebas de estrés a los bancos Software

        Figura 1: Escenarios utilizados por la Fed para hacer pruebas de estrés a los bancos.

         

        2 escenarios utilizados por el Servicio Meteorológico Nacional para predecir las trayectorias de los huracanes

        Figura 2: Escenarios utilizados por el Servicio Meteorológico Nacional para predecir las trayectorias de los huracanes

         

        3 Escenarios de demanda del tipo generado por Smart Demand Planner

        Figura 3: Escenarios de demanda del tipo generado por Smart Demand Planner

         

        4 Ejemplo de cambio de régimen en la demanda del producto después de la observación #19

        Figura 4: Ejemplo de cambio de régimen en la demanda del producto después de la observación #19

         

         

        Repuestos, repuestos OEM, rotables y repuestos inmediatos

        ¿Cuál es la diferencia y por qué es importante para la planificación del inventario?

        Aquellos que son nuevos en el juego de planificación de piezas a menudo se confunden con las muchas variaciones en los nombres de las piezas. Este blog señala distinciones que tienen o no importancia operativa para alguien que administra una flota de piezas de repuesto y cómo esas diferencias afectan la planificación del inventario.

        Por ejemplo, ¿cuál es la diferencia entre piezas de "repuesto" y piezas de "reemplazo"? En este caso, la diferencia es su origen. Se compraría una pieza de repuesto al fabricante del equipo, mientras que una pieza de repuesto se compraría a otra empresa. Para alguien que administra una flota de repuestos, la diferencia sería dos entradas diferentes en su base de datos de piezas: la fuente sería diferente y el precio unitario probablemente sería diferente. Es posible que también haya una diferencia en la vida útil de las piezas de las dos fuentes. Las piezas "OEM" pueden ser más duraderas que las piezas más baratas del "mercado de accesorios". (Ahora tenemos cuatro términos diferentes que describen estas piezas). Estas distinciones serían importantes para optimizar un inventario de repuestos. El software que calcula los puntos de pedido óptimos y las cantidades de los pedidos llegaría a diferentes respuestas para piezas con diferentes costos unitarios y diferentes tasas de reemplazo.

        Quizás la distinción más grande es entre partes "consumibles" y "reparables" o "giratorias". La distinción clave entre ellos es su costo. Es una tontería tratar de reparar un tornillo desgastado; simplemente tíralo y usa otro. Pero también es una tontería tirar un componente de $50,000 si se puede reparar por $5,000. Optimizar la gestión de inventario para flotas de cada tipo de pieza requiere matemáticas muy diferentes. Con los consumibles, las partes pueden considerarse anónimas e intercambiables. Con los “giratorios”, cada parte debe modelarse esencialmente de forma individual. Tratamos a cada uno como un ciclo a través de estados de "operativo", "en reparación" y "en espera/repuesto". Las decisiones sobre piezas reparables a menudo se manejan mediante un proceso de presupuesto de capital, y la pregunta analítica más destacada es "¿cuál debería ser el tamaño de nuestro grupo de repuestos?"

        Hay otras distinciones que se pueden hacer entre las partes. La criticidad es un atributo importante. Las consecuencias de la falla de una pieza pueden variar desde “podemos tomarnos nuestro tiempo para obtener un reemplazo” hasta “esto es una emergencia; que esas máquinas vuelvan a funcionar pronto”. Al determinar cómo administrar las piezas, siempre debemos lograr un equilibrio entre los beneficios de tener un mayor stock de piezas y los costos en dólares. La criticidad cambia el equilibrio hacia ir a lo seguro con inventarios más grandes. A su vez, esto dicta objetivos de planificación más altos para las métricas de disponibilidad de piezas, como los niveles de servicio y las tasas de llenado, lo que conducirá a mayores puntos de pedido y/o cantidades de pedidos.

        Si buscas en Google “tipos de repuestos”, descubrirás otras clasificaciones y distinciones. Desde nuestra perspectiva en Smart Software, las palabras importan menos que los números asociados con las piezas: costos unitarios, tiempo medio antes de la falla, tiempo medio de reparación y otros aportes técnicos a nuestros productos que resuelven cómo administrar las piezas para obtener el máximo beneficio.

         

        Soluciones de software para la planificación de repuestos

        El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

        Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

         

         

        Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

         

        Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.