5 pasos para mejorar el impacto financiero de la planificación de repuestos

En el competitivo panorama empresarial actual, las empresas buscan constantemente formas de mejorar su eficiencia operativa y generar mayores ingresos. La optimización de la gestión de repuestos es un aspecto que a menudo se pasa por alto y que puede tener un impacto financiero significativo. Las empresas pueden mejorar la eficiencia general y generar importantes rendimientos financieros mediante la gestión eficaz del inventario de piezas de repuesto. Este artículo explorará las implicaciones económicas de la gestión optimizada de repuestos y cómo invertir en software de optimización de inventario y planificación de la demanda puede proporcionar una ventaja competitiva.

La importancia de la planificación optimizada de piezas de servicio:

La gestión optimizada de repuestos juega un papel vital en la mitigación de los riesgos de inventario y asegura la disponibilidad de repuestos críticos. Si bien la planificación subjetiva puede funcionar a pequeña escala, se vuelve insuficiente cuando se gestionan grandes inventarios de piezas de repuesto demandadas intermitentemente. Los enfoques de previsión tradicionales simplemente no logran dar cuenta con precisión de la extrema variabilidad de la demanda y los frecuentes períodos de demanda cero que son tan comunes con las piezas de repuesto. Esto da como resultado grandes asignaciones incorrectas de existencias, costos más altos y niveles de servicio deficientes.

La clave para la gestión optimizada de repuestos radica en comprender el equilibrio entre servicio y costo. El software de optimización de inventario y planificación de la demanda con tecnología de pronóstico probabilístico y algoritmos de aprendizaje automático puede ayudar a las empresas a comprender mejor el costo frente al beneficio de cada decisión de inventario y manejar el inventario como un activo competitivo. Al generar pronósticos de demanda precisos y políticas de almacenamiento óptimas, como Mín./Máx., Niveles de existencias de seguridad y Puntos de pedido en segundos, las empresas pueden saber cuánto es demasiado y cuándo agregar más. Al manejar el inventario como un activo competitivo, las empresas pueden aumentar los niveles de servicio y reducir los costos.

Mejore el resultado financiero de la planificación de piezas de repuesto

  1. La previsión precisa es fundamental para optimizar la planificación del inventario y satisfacer la demanda de los clientes de forma eficaz. El software de planificación de demanda de última generación predice con precisión los requisitos de inventario, incluso para patrones de demanda intermitentes. Al automatizar la previsión, las empresas pueden ahorrar tiempo, dinero y recursos al tiempo que mejoran la precisión.
  2. Satisfacer la demanda de los clientes es un aspecto crítico de la gestión de repuestos. Las empresas pueden mejorar la satisfacción y la lealtad del cliente y aumentar sus posibilidades de ganar contratos futuros para los equipos que venden con un uso intensivo de activos al garantizar la disponibilidad de repuestos cuando sea necesario. A través de una planificación eficaz de la demanda y la optimización del inventario, las organizaciones pueden reducir los plazos de entrega, minimizar los desabastecimientos y mantener los niveles de servicio, mejorando así el impacto financiero de todas las decisiones.
  3. Las ganancias financieras se pueden lograr a través de la planificación optimizada de piezas de servicio, incluida la reducción de costos de inventario y productos. El exceso de almacenamiento y el inventario obsoleto pueden ser cargas de costos significativas para las organizaciones. Al implementar el mejor software de optimización de inventario, las empresas pueden identificar soluciones rentables, aumentar los niveles de servicio y reducir los costos. Esto conduce a una mejor rotación de inventario, reducción de costos de mantenimiento y mayor rentabilidad.
  4. La planificación de adquisiciones es otro aspecto esencial de la gestión de repuestos. Las organizaciones pueden optimizar los niveles de inventario, reducir los plazos de entrega y evitar los desabastecimientos alineando las compras y las cantidades de pedido asociadas con pronósticos de demanda precisos. Por ejemplo, se pueden compartir pronósticos precisos con los proveedores para que se puedan realizar compromisos generales de compra. Esto proporciona al proveedor seguridad en los ingresos y, a cambio, puede mantener más inventario, lo que reduce los plazos de entrega.
  5. La planificación de la demanda intermitente es un desafío particular en la gestión de repuestos. Los enfoques de la regla empírica convencional se quedan cortos en el manejo efectivo de la variabilidad de la demanda. Esto se debe a que los enfoques tradicionales asumen que la demanda se distribuye normalmente cuando en realidad es cualquier cosa menos normal. Las piezas de repuesto demandan ráfagas aleatorias de gran demanda intercaladas con muchos períodos de demanda cero. La solución de Smart Software incorpora modelos estadísticos avanzados y algoritmos de aprendizaje automático para analizar patrones de demanda históricos, lo que permite una planificación precisa para la demanda intermitente. Las empresas pueden reducir significativamente los costos de falta de existencias y mejorar la eficiencia al abordar este desafío.

Evidencia de los clientes de Smart Software:

Invertir en el software de planificación de demanda y optimización de inventario de Smart Software permite a las empresas desbloquear ahorros de costos, elevar los niveles de servicio al cliente y mejorar la eficiencia operativa. A través de una previsión precisa de la demanda, una gestión de inventario optimizada y procesos de adquisición optimizados, las organizaciones pueden lograr ahorros financieros, satisfacer las demandas de los clientes de forma eficaz y mejorar el rendimiento empresarial general.

  • Metro-North Railroad (MNR) experimentó una reducción de 8% en el inventario de piezas, alcanzando un nivel de servicio al cliente récord de 98,7%, y redujo el crecimiento del inventario para nuevos equipos de 10% proyectados a solo 6%. Smart Software desempeñó un papel crucial en la identificación de las necesidades de piezas de servicio de varios años, la reducción de los plazos de entrega administrativos, la formulación de planes de reducción de existencias para las flotas que se retiran y la identificación del inventario inactivo para su eliminación. MNR ahorró costos, maximizó los beneficios de eliminación, mejoró los niveles de servicio y obtuvo información precisa para la toma de decisiones informada, lo que finalmente mejoró sus resultados y la satisfacción del cliente.
  • Seneca Companies, líder de la industria en servicios de petróleo automotriz, adoptó Smart Software para modelar la demanda de los clientes, controlar el rendimiento del inventario e impulsar el reabastecimiento. Los técnicos de servicio de campo aceptaron su uso, y la inversión total en inventario disminuyó en más de 25%, de $11 millones a $8 millones, manteniendo tasas de reparación por primera vez de 90%+.
  • Una compañía eléctrica líder implementó Smart IP&O en solo 3 meses y luego usó el software para optimizar sus puntos de pedido y las cantidades de pedido de más de 250 000 piezas de repuesto. Durante la primera fase de la implementación, la plataforma ayudó a la empresa de servicios públicos a reducir el inventario en $9,000,000 mientras mantenía los niveles de servicio. La implementación fue parte de la iniciativa de optimización de la cadena de suministro estratégica de la empresa.

Optimización de la planificación de piezas de servicio para una ventaja competitiva

La gestión optimizada de repuestos es crucial para las empresas que buscan mejorar la eficiencia, reducir costos y garantizar la disponibilidad de los repuestos necesarios. Las organizaciones pueden desbloquear un valor significativo en este campo invirtiendo en el software de optimización de inventario y planificación de la demanda de Smart Software. Las empresas pueden lograr un mejor desempeño financiero y obtener una ventaja competitiva en sus respectivos mercados a través de un mejor análisis de datos, automatización y planificación de inventario.

Smart Software está diseñado para el mercado moderno, que es volátil y siempre cambiante. Puede manejar la proliferación de SKU, cadenas de suministro más largas, plazos de entrega menos predecibles y patrones de demanda más intermitentes y menos predecibles. También puede integrarse con prácticamente todas las soluciones ERP del mercado, mediante conexiones transparentes comprobadas en el campo o utilizando un proceso simple de importación/exportación respaldado por el modelo de datos y el motor de procesamiento de datos de Smart Software. Mediante el uso de Smart Software, las empresas pueden aprovechar el inventario como un activo competitivo, mejorar la satisfacción del cliente, aumentar los niveles de servicio, reducir los costos y ahorrar una cantidad considerable de dinero.

 

Soluciones de software para la planificación de repuestos

El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

 

 

Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

 

Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

 

    Cara a cara: ¿Qué política de inventario de repuestos es mejor?

    Nuestros clientes generalmente se han decidido por una forma de administrar su inventario de repuestos. Al profesor que hay en mí le gustaría pensar que la política de inventario elegida fue una elección razonada entre las alternativas consideradas, pero lo más probable es que simplemente haya sucedido. Tal vez el jefe de inventario de hace mucho tiempo tenía un favorito y esa elección se mantuvo. Quizás alguien utilizó un sistema EAM o ERP que ofrecía sólo una opción. Quizás se hicieron algunas conjeturas, basándose en las condiciones del momento.

    Los competidores

    Muy rara vez las empresas toman estas decisiones al azar. Pero el software moderno de planificación de repuestos le permite ser más sistemático en sus elecciones. Esta publicación demuestra esa propuesta al hacer comparaciones objetivas entre tres políticas de inventario populares: Pedido hasta, Punto de reorden/Cantidad de pedido y Mín./Máx. Hablé de cada una de estas políticas en este videoblog.

    • Ordene hasta. Esta es una política de revisión periódica en la que cada T días se cuenta el inventario disponible y se realiza un pedido de tamaño aleatorio para que el nivel de existencias vuelva a subir a S unidades.
    • Q, R o Punto de reorden/Cantidad de pedido. Q, R es una política de revisión continua en la que todos los días se contabiliza el inventario. Si hay Q o menos unidades disponibles, se realiza un pedido de tamaño fijo por R unidades más.
    • Mínimo máximo es otra política de revisión continua en la que todos los días se cuenta el inventario. Si hay unidades mínimas o menos disponibles, se realiza un pedido para que el nivel de existencias vuelva a alcanzar las unidades máximas.

    La teoría del inventario dice que estas opciones se enumeran en orden creciente de efectividad. La primera opción, Ordenar hasta, es claramente la más sencilla y barata de implementar, pero hace la vista gorda a lo que sucede durante largos períodos de tiempo. Imponer un intervalo de tiempo específico entre órdenes lo hace, en teoría, menos flexible. Por el contrario, las dos opciones de revisión continua vigilan lo que sucede todo el tiempo, para que puedan reaccionar más rápido ante posibles desabastecimientos. La opción Min/Max es, en teoría, más flexible que la opción que utiliza una cantidad fija de reorden porque el tamaño del pedido cambia dinámicamente para adaptarse a la demanda.

    Esa es la teoría. Esta publicación examina la evidencia de comparaciones directas para verificar la teoría y establecer cifras concretas sobre el desempeño relativo de las tres políticas.

    El significado de "mejor"

    ¿Cómo debemos llevar la puntuación en este torneo? Si es un lector habitual de este blog de Smart Forecaster, sabrá que el núcleo de la planificación del inventario es un tira y afloja entre dos objetivos opuestos: mantener el inventario reducido versus mantener las métricas de disponibilidad de los artículos, como el nivel de servicio alto.

    Para simplificar las cosas, calcularemos “un número para gobernarlos a todos”: el costo operativo promedio. La póliza ganadora será la que tenga el promedio más bajo.

    Este promedio es la suma de tres componentes: el costo de mantener el inventario (“costo de mantener”), el costo de ordenar unidades de reabastecimiento (“costo de ordenar”) y el costo de perder una venta (“costo de escasez”). Para concretar las cosas, utilizamos los siguientes supuestos:

    • Cada pieza de servicio está valorada en $1.000.
    • El costo de tenencia anual es 10% del valor del artículo, o $100 por año por unidad.
    • Procesar cada pedido de reabastecimiento cuesta $20 por pedido.
    • Cada unidad demandada pero no proporcionada cuesta el valor de la pieza, $1.000.

    Para simplificar, nos referiremos al costo operativo promedio simplemente como "el costo".

    Por supuesto, el costo promedio más bajo se puede lograr saliendo del negocio. Por lo tanto, la competencia requería una limitación de rendimiento en la disponibilidad de los artículos: cada opción tenía que lograr una tasa de cumplimiento de al menos 99%.

    Las alternativas se resisten

    Un elemento clave del contexto es si los desabastecimientos provocan pérdidas o pedidos atrasados. Suponiendo que la pieza de servicio en cuestión es crítica, asumimos que los pedidos no ejecutados se pierden, lo que significa que un competidor completa el pedido. En un entorno de MRO, esto significará un tiempo de inactividad adicional debido al desabastecimiento.

    Para comparar las alternativas, utilizamos nuestro motor de modelado predictivo para ejecutar una gran cantidad de Simulaciones de Montecarlo. Cada simulación implicó especificar los valores de los parámetros de cada póliza (por ejemplo, valores mínimos y máximos), generar un escenario de demanda, introducirlo en la lógica de la póliza y medir el costo resultante promediado durante 365 días de operación. Repetir este proceso 1.000 veces y promediar los 1.000 costos resultantes dio el resultado final para cada póliza.  

    Para que la comparación fuera justa, cada alternativa debía diseñarse para obtener el mejor rendimiento. Entonces buscamos en el “espacio de diseño” de cada póliza para encontrar el diseño con el menor costo. Esto requirió repetir el proceso descrito en el párrafo anterior para muchos pares de valores de parámetros e identificar el par que produce el costo operativo anual promedio perdido.

    Usando los algoritmos en Optimización del inventario (SÍOMT) realizamos comparaciones directas bajo los siguientes supuestos sobre la oferta y la demanda:

    • Se supuso que la demanda de artículos era intermitente y muy variable, pero relativamente simple en el sentido de que no había tendencia ni estacionalidad, como suele ocurrir con las piezas de repuesto. La demanda media diaria fue de 5 unidades con una desviación estándar grande de 13 unidades. La Figura 1 muestra una muestra de la demanda de un año. Hemos elegido un patrón de demanda muy desafiante, en el que algunos días tienen de 10 a 20 veces la demanda promedio.

    Se supuso que la demanda diaria de piezas era intermitente y muy puntiaguda.

    Figura 1: Se supuso que la demanda diaria de piezas era intermitente y muy intensa.

    ​​

    • Los plazos de reabastecimiento de los proveedores fueron de 14 días (75%) en ese momento y de 21 días en el resto. Esto refleja el hecho de que siempre hay incertidumbre en la cadena de suministro.

     

    Y el ganador es…

    ¿Era correcta la teoría? Un poco sorta'.

    La Tabla 1 muestra los resultados de los experimentos de simulación. Para cada una de las tres políticas en competencia, muestra el costo operativo anual promedio, el margen de error (técnicamente, un intervalo de confianza aproximado de 95% para el costo medio) y las mejores opciones aparentes para los valores de los parámetros.

    Resultados de las comparaciones simuladas.

    Tabla 1: Resultados de las comparaciones simuladas

    Por ejemplo, el costo promedio de la póliza (T,S) cuando T se fija en 30 días fue de $41,680. Pero el Más/Menos implica que los resultados son compatibles con un costo “real” (es decir, la estimación de un número infinito de simulaciones) de entre $39,890 y $43,650. La razón por la que existe tanta incertidumbre estadística es la naturaleza extremadamente elevada de la demanda en este ejemplo.

    El Cuadro 1 dice que, en este ejemplo, las tres políticas están en línea con las expectativas. Sin embargo, conclusiones más útiles serían:

    1. Las tres políticas son notablemente similares en cuanto a costo promedio. Mediante una elección inteligente de los valores de los parámetros, se pueden obtener buenos resultados con cualquiera de las tres políticas.
    2. Lo que no se muestra en el Cuadro 1, pero se desprende claramente de los resultados detallados de la simulación, es que las malas elecciones de valores de parámetros pueden ser desastrosas para cualquier política.
    3. Vale la pena señalar que a la política de revisión periódica (T,S) no se le permitió optimizar sobre posibles valores de T. Fijamos T en 30 para imitar lo que es común en la práctica, pero aquellos que usan la política de revisión periódica deberían considerar otras revisiones. períodos. Un experimento adicional fijó el período de revisión en T = 7 días. El costo promedio en este escenario se minimizó en $36,551 ± $1,668 con S = 343. Este resultado es mejor que el de T = 30 días.
    4. Debemos tener cuidado de no generalizar demasiado estos resultados. Dependen de los valores supuestos de los tres parámetros de costos (mantenimiento, pedidos y escasez) y del carácter del proceso de demanda.
    5. Es posible ejecutar experimentos como los que se muestran aquí automáticamente en Optimización del inventario. Esto significa que usted también podrá explorar opciones de diseño de manera rigurosa.

     

     

     

    Aprovechar las listas de materiales de planificación de ERP con Smart IP&O para pronosticar lo imprevisible

    ​En un entorno de fabricación altamente configurable, pronosticar productos terminados puede convertirse en una tarea compleja y desalentadora. El número de posibles productos terminados se disparará cuando muchos componentes sean intercambiables. Un MRP tradicional nos obligaría a pronosticar cada producto terminado, lo que puede ser poco realista o incluso imposible. Varias soluciones ERP líderes introducen el concepto de "Planificación BOM", que permite el uso de pronósticos a un nivel superior en el proceso de fabricación. En este artículo, discutiremos esta funcionalidad en ERP y cómo puede aprovecharla con Smart Inventory Planning and Optimization (Smart IP&O) para adelantarse a su demanda ante esta complejidad.

    ¿Por qué necesitaría una lista de materiales de planificación?

    Tradicionalmente, cada producto terminado o SKU tenía una lista de materiales rígidamente definida. Si almacenamos ese producto y queremos planificar en torno a la demanda pronosticada, pronosticaremos la demanda de esos productos y luego alimentaremos MRP para llevar esta demanda pronosticada desde el nivel del producto terminado hasta sus componentes a través de la lista de materiales.

    Sin embargo, muchas empresas ofrecen productos altamente configurables donde los clientes pueden seleccionar opciones sobre el producto que están comprando. Como ejemplo, recuerde la última vez que compró una computadora personal. Elegiste una marca y un modelo, pero a partir de ahí probablemente se te presentaron opciones: ¿qué velocidad de CPU deseas? ¿Cuánta RAM quieres? ¿Qué tipo de disco duro y cuánto espacio? Si esa empresa quiere tener estas computadoras listas y disponibles para enviárselas en un tiempo razonable, de repente ya no solo anticipan la demanda de ese modelo: deben pronosticar ese modelo para cada tipo de CPU, para todas las cantidades de RAM, para ¡Todos los tipos de discos duros y todas las combinaciones posibles de ellos también! Para algunos fabricantes, estas configuraciones pueden dar lugar a cientos o miles de posibles permutaciones de productos terminados.

    Planificación de la lista de materiales enfatizando la gran cantidad de permutaciones Componentes de fábrica de computadoras portátiles

    Puede haber tantas personalizaciones posibles que la demanda a nivel del producto terminado sea completamente impredecible en el sentido tradicional. Es posible que se vendan miles de esas computadoras cada año, pero para cada configuración posible, la demanda puede ser extremadamente baja y esporádica; tal vez ciertas combinaciones se vendan una vez y nunca más.

    Esto a menudo obliga a estas empresas a planificar puntos de reorden y niveles de existencias de seguridad principalmente a nivel de componentes, mientras reaccionan en gran medida a la demanda firme en el nivel de producto terminado a través de MRP. Si bien este es un enfoque válido, carece de una forma sistemática de aprovechar los pronósticos que puedan dar cuenta de la actividad futura anticipada, como promociones, próximos proyectos u oportunidades de ventas. Hacer pronósticos a nivel “configurado” es efectivamente imposible, y tratar de incorporar estos supuestos de pronóstico a nivel de componentes tampoco es factible.

     

    Planificación de la lista de materiales explicada

    Aquí es donde entran las listas de materiales de planificación. Quizás el equipo de ventas esté trabajando en una gran oportunidad b2b para ese modelo, o haya una promoción planificada para el Cyber Monday. Si bien no es realista intentar trabajar con esos supuestos para cada configuración posible, hacerlo a nivel de modelo es totalmente factible y tremendamente valioso.

    La lista de materiales de planificación puede utilizar un pronóstico a un nivel superior y luego reducir la demanda en función de proporciones predefinidas para su posible componentes. Por ejemplo, el fabricante de computadoras puede saber que la mayoría de las personas optan por 16 GB de RAM, y muchas menos optan por las actualizaciones a 32 o 64. La lista de materiales de planificación permite a la organización (por ejemplo) reducir 60% de la demanda a la opción de 16 GB. , 30% para la opción de 32 GB y 10% para la opción de 64 GB. Podrían hacer lo mismo con las CPU, los discos duros o cualquier otra personalización disponible.  

    Planificación de la lista de materiales explicada con la memoria RAM de acceso aleatorio de la computadora cerca de HD

     

    La empresa ahora puede centrar su pronóstico en este nivel de modelo, dejando que la lista de materiales de planificación determine la combinación de componentes. Claramente, definir estas proporciones requiere algo de reflexión, pero las listas de materiales de planificación permiten efectivamente a las empresas pronosticar lo que de otro modo sería impredecible.

     

    La importancia de un buen pronóstico

    Por supuesto, todavía Necesita un buen pronóstico para cargarlo en un sistema ERP.. Como se explica en este artículo, si bien ERP puede importar un pronóstico, a menudo no puede generar uno y, cuando lo hace, tiende a requerir una gran cantidad de configuraciones difíciles de usar que no suelen revisarse, lo que genera pronósticos inexactos. Por lo tanto, corresponde a la empresa elaborar sus propios conjuntos de pronósticos, a menudo elaborados manualmente en Excel. La elaboración de pronósticos manualmente generalmente presenta una serie de desafíos, que incluyen, entre otros:

    • La incapacidad de identificar patrones de demanda como estacionalidad o tendencia.
    • Dependencia excesiva de las previsiones de clientes o de ventas
    • Falta de precisión o seguimiento del rendimiento.

    No importa qué tan bien configurado esté el MRP con sus listas de materiales de planificación cuidadosamente consideradas, un pronóstico deficiente significa una producción deficiente del MRP y desconfianza en el sistema: basura que entra, basura que sale. Siguiendo con el ejemplo de la “empresa de informática”, sin una forma sistemática de capturar patrones de demanda clave y/o conocimiento del dominio en el pronóstico, MRP nunca podrá verlo.

     

    Amplíe su ERP con Smart IP&O

    Smart IP&O está diseñado para ampliar su sistema ERP con una serie de soluciones integradas de planificación de la demanda y optimización del inventario. Por ejemplo, puede generar pronósticos estadísticos automáticamente para una gran cantidad de artículos, permite ajustes de pronóstico intuitivos, realiza un seguimiento de la precisión del pronóstico y, en última instancia, le permite generar verdaderos pronósticos basados en consenso para anticipar mejor las necesidades de sus clientes.

    Gracias a las jerarquías de productos altamente flexibles, Smart IP&O se adapta perfectamente a la previsión en el nivel de planificación de la lista de materiales para que pueda capturar patrones clave e incorporar conocimiento empresarial en los niveles más importantes. Además, puede analizar e implementar niveles óptimos de existencias de seguridad en cualquier nivel de su lista de materiales.

     

     

    El pronóstico importa, pero tal vez no como usted piensa

    Verdadero o falso: El pronóstico no importa para la gestión del inventario de repuestos.

    A primera vista, esta afirmación parece evidentemente falsa. Después de todo, las previsiones son cruciales para planificar los niveles de existencias, ¿verdad?

    Depende de lo que entiendas por “previsión”. Si te refieres a un pronóstico de un solo número de la vieja escuela (“la demanda del artículo CX218b será de 3 unidades la próxima semana y de 6 unidades la semana siguiente”), entonces no. Si se amplía el significado de pronóstico para incluir una distribución de probabilidad que tenga en cuenta las incertidumbres tanto de la demanda como de la oferta, entonces sí.

    La realidad clave es que muchos artículos, especialmente repuestos y repuestos, tienen una demanda impredecible e intermitente. (Los plazos de entrega de los proveedores también pueden ser erráticos, especialmente cuando las piezas provienen de un OEM atrasado). Hemos observado que, si bien los fabricantes y distribuidores generalmente experimentan una demanda intermitente de solo 20% o más de sus artículos, el porcentaje aumenta a 80%+ para las empresas basadas en MRO. Esto significa que los datos históricos a menudo muestran períodos de demanda cero intercalados con períodos aleatorios de demanda distinta de cero. A veces, estas demandas distintas de cero son tan bajas como 1 o 2 unidades, mientras que en otras ocasiones aumentan inesperadamente a cantidades varias veces mayores que su promedio.

    Este no es el tipo de datos que normalmente enfrentan sus pares “planificadores de la demanda” en el comercio minorista, productos de consumo y alimentos y bebidas. Esas personas suelen trabajar con cantidades mayores que tienen proporcionalmente menos aleatoriedad. Y pueden navegar por características que mejoran las predicciones, como tendencias y patrones estacionales estables. En cambio, el uso de repuestos es mucho más aleatorio, lo que supone un obstáculo para el proceso de planificación, incluso en la minoría de casos en los que hay variaciones estacionales detectables.

    En el ámbito de la demanda intermitente, el mejor pronóstico disponible se desviará significativamente de la demanda real. A diferencia de los productos de consumo con volumen y frecuencia de medianos a altos, el pronóstico de una pieza de servicio puede fallar por cientos de puntos porcentuales. Un pronóstico de una o dos unidades, en promedio, siempre fallará cuando la demanda real sea cero. Incluso con inteligencia empresarial avanzada o algoritmos de aprendizaje automático, el error al pronosticar las demandas distintas de cero seguirá siendo sustancial.

    Quizás debido a la dificultad de hacer pronósticos estadísticos en el ámbito del inventario, la planificación del inventario en la práctica a menudo se basa en la intuición y el conocimiento del planificador. Desafortunadamente, este enfoque no abarca decenas de miles de piezas. La intuición simplemente no puede hacer frente a toda la gama de posibilidades de demanda y plazos de entrega, y mucho menos estimar con precisión la probabilidad de cada escenario posible. Incluso si su empresa tiene uno o dos pronosticadores intuitivos excepcionales, las jubilaciones de personal y las reorganizaciones de la línea de productos significan que no se puede confiar en los pronósticos intuitivos en el futuro.

    La solución radica en cambiar el enfoque de los pronósticos tradicionales a predecir probabilidades para cada escenario de demanda potencial y plazo de entrega. Este cambio transforma la conversación de un “plan de un solo número” poco realista a un rango de números con probabilidades asociadas. Al predecir las probabilidades de cada demanda y posibilidad de plazo de entrega, puede alinear mejor los niveles de existencias con la tolerancia al riesgo de cada grupo de piezas.

    El software que genera escenarios de demanda y plazos de entrega, repitiendo este proceso decenas de miles de veces, puede simular con precisión cómo se comportarán las políticas de almacenamiento actuales frente a estas políticas. Si el rendimiento en la simulación no es suficiente y se prevé que se agote con más frecuencia de la que se siente cómodo o que le quede un exceso de inventario, la realización de escenarios hipotéticos permite realizar ajustes en las políticas. Luego puede predecir cómo se comportarán estas políticas revisadas frente a demandas aleatorias y plazos de entrega. Puede llevar a cabo este proceso de forma iterativa y perfeccionarlo con cada nuevo escenario hipotético o apoyarse en políticas prescritas por el sistema que logren un equilibrio óptimo entre riesgo y costos.

    Por lo tanto, si está planificando inventarios de servicios y repuestos, deje de preocuparse por predecir la demanda como lo hacen los planificadores de demanda tradicionales del comercio minorista y de CPG. En cambio, concéntrese en cómo sus políticas de almacenamiento resistirán la aleatoriedad del futuro, ajustándolas en función de su tolerancia al riesgo. Para hacer esto, necesitará el conjunto adecuado de software de soporte a la toma de decisiones, y así es como Smart Software puede ayudar.

     

     

    Soluciones de software para la planificación de repuestos

    El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

    Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

     

     

    Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

     

    Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

     

      Por qué las empresas de MRO deberían preocuparse por el exceso de inventario

      ¿Las empresas de MRO realmente priorizan la reducción del exceso de inventario de repuestos? Desde un punto de vista organizativo, nuestra experiencia sugiere que no necesariamente. Las discusiones en las salas de juntas generalmente giran en torno a la expansión de flotas, la adquisición de nuevos clientes, el cumplimiento de acuerdos de nivel de servicio (SLA), la modernización de la infraestructura y la maximización del tiempo de actividad. En industrias donde los activos respaldados por repuestos cuestan cientos de millones o generan ingresos significativos (por ejemplo, minería o petróleo y gas), el valor del inventario simplemente no sorprende y las organizaciones tienden a pasar por alto cantidades masivas de inventario excesivo.

      Considere una agencia de transporte público. En la mayoría de las ciudades importantes, los presupuestos operativos anuales superarán los $3 mil millones. Los gastos de capital para trenes, vagones de metro e infraestructura pueden alcanzar cientos de millones al año. En consecuencia, un inventario de repuestos valorado en $150 millones podría no captar la atención del director financiero o del director general, ya que representa un pequeño porcentaje del balance. Además, en las industrias basadas en MRO, muchas piezas necesitan soportar flotas de equipos durante una década o más, lo que hace que el stock adicional sea un activo necesario. En algunos sectores, como el de los servicios públicos, incluso se puede incentivar la tenencia de existencias adicionales para garantizar que los equipos se mantengan en buen estado.

      Hemos visto surgir preocupaciones sobre el exceso de existencias cuando el espacio del almacén es limitado. Recuerdo que, al principio de mi carrera, fui testigo del patio ferroviario de una agencia de transporte público lleno de ejes oxidados valorados en más de $100.000 cada uno. Me dijeron que los ejes se vieron obligados a quedar expuestos a los elementos debido a la falta de espacio en el almacén. El costo de oportunidad asociado con el espacio consumido por el stock adicional se convierte en una consideración cuando se agota la capacidad del almacén. La consideración principal que prevalece sobre todas las demás decisiones es cómo el stock garantiza altos niveles de servicio para los clientes internos y externos. Los planificadores de inventarios se preocupan mucho más por las consecuencias de los desabastecimientos que por las compras excesivas. Cuando una pieza faltante provoca un incumplimiento del SLA o una línea de producción caída, lo que genera multas millonarias y una producción irrecuperable, es comprensible.

      A las empresas con uso intensivo de activos se les escapa un punto importante. Eso es el El stock adicional no protege contra el desabastecimiento; les contribuye. Cuanto más exceso tenga, menor será su nivel general de servicio porque el efectivo necesario para comprar piezas es finito y el efectivo gastado en exceso de existencias significa que no hay efectivo disponible para las piezas que lo necesitan.. Incluso las empresas MRO financiadas con fondos públicos, como las agencias de servicios públicos y de tránsito, reconocen la necesidad de optimizar el gasto, ahora más que nunca. Como compartió un gerente de materiales: “Ya no podemos solucionar los problemas con bolsas de dinero en efectivo de Washington”. Por lo tanto, deben hacer más con menos, asegurando una asignación óptima entre las decenas de miles de piezas que gestionan.

      Aquí es donde entra en juego el software de optimización de inventario de última generación, que predice el inventario requerido para niveles de servicio específicos, identifica cuándo los niveles de existencias generan retornos negativos y recomienda reasignaciones para mejorar los niveles de servicio generales. Smart Software ha ayudado a las empresas basadas en MRO con uso intensivo de activos a optimizar los niveles de reorden en cada pieza durante décadas. Llámenos para obtener más información. 

       

       

      Soluciones de software para la planificación de repuestos

      El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

      Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

       

       

      Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

       

      Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.