Smart Software anuncia una asociación estratégica con Sage para la optimización del inventario y la previsión de la demanda
Belmont, MA, febrero de 2024 –Smart Software, un proveedor global de soluciones de previsión, planificación de la demanda y optimización de inventario basadas en la nube de próxima generación, anuncia hoy su asociación estratégica con Sage.

Esta colaboración lleva Smart IP&O (planificación y optimización de inventario) a las últimas versiones locales y en la nube de Sage X3, Sage 300 y Sage 100. Al integrar perfectamente la planificación estratégica con la ejecución operativa, los usuarios pueden eliminar la planificación reactiva del inventario y las conjeturas de pronóstico al calibrar con precisión los riesgos, las compensaciones y las consecuencias a escala con Smart IP&O.

Sage es líder en tecnología contable, financiera, de recursos humanos y de nómina para pequeñas y medianas empresas (PYMES). Los clientes confían en el conjunto integral de software de finanzas, recursos humanos y cadena de suministro de Sage para agilizar los procesos y simplificar las tareas operativas. Este enfoque integrado para resolver desafíos comerciales garantiza interacciones fluidas y brinda información valiosa a las PYMES, lo que refuerza la posición de Sage como líder en la industria.

“Smart Software ayuda a nuestros clientes brindándoles análisis de negocios detallados para el modelado y pronóstico de inventario que impulsan los pedidos y el reabastecimiento en la última versión de Sage. Con Smart IP&O, nuestros clientes obtienen un medio para dar forma a la estrategia de inventario para alinearla con los objetivos comerciales y, al mismo tiempo, capacitar a sus equipos de planificación para reducir el inventario y mejorar el servicio”, dice Regina Crowshaw, directora de estrategia, ventas y programas de ISV en Sage.

“Sage impulsa la innovación y fomenta el crecimiento empresarial al ofrecer soluciones interesantes diseñadas para permitir que las organizaciones crezcan y tengan éxito. Al aprovechar las capacidades de las soluciones de planificación de inventario y pronóstico de demanda probadas en el campo de Smart, Sage está preparado para brindar la experiencia necesaria para evaluar las necesidades, establecer objetivos y diseñar las estrategias comerciales subyacentes clave para garantizar una adopción generalizada y obtener el máximo beneficio. Esperamos lo que podemos lograr juntos y esperamos nuestro éxito conjunto”, dice Greg Hartunian, presidente y director ejecutivo de Smart Software.

Acerca de Smart Software, Inc.

Fundada en 1981, Smart Software, Inc. es líder en brindar a las empresas soluciones de optimización de inventario, planificación y previsión de la demanda para toda la empresa. Las soluciones de optimización de inventario y previsión de la demanda de Smart Software han ayudado a miles de usuarios en todo el mundo, incluidos clientes como Disney, Arizona Public Service y Ameren. La plataforma de optimización y planificación de inventario de Smart, Smart IP&O, proporciona a los planificadores de la demanda las herramientas para manejar la estacionalidad de las ventas, promociones, productos nuevos y antiguos, jerarquías multidimensionales y piezas de servicio y bienes de capital con demanda intermitente. También proporciona a los administradores de inventario estimaciones precisas del inventario óptimo y del stock de seguridad necesarios para cumplir con los pedidos futuros y lograr los niveles de servicio deseados. Smart Software tiene su sede en Belmont, Massachusetts, y nuestro sitio web es www.smartcorp.com.

Acerca de la corporación Sage

Sage existe para derribar barreras para que todos puedan prosperar, comenzando por los millones de pequeñas y medianas empresas atendidas por nosotros, nuestros socios y contadores. Los clientes confían en nuestro software de finanzas, recursos humanos y nómina para hacer que el trabajo y el dinero fluyan. Al digitalizar los procesos comerciales y las relaciones con clientes, proveedores, empleados, bancos y gobiernos, nuestra red digital conecta a las PYMES, eliminando fricciones y brindando información valiosa. Derribar barreras también significa que utilizamos nuestro tiempo, tecnología y experiencia para abordar la desigualdad digital, la desigualdad económica y la crisis climática.


Para obtener más información, comuníquese con Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Teléfono: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; Correo electrónico: info@smartcorp.com

 

 

Cara a cara: ¿Qué política de inventario de repuestos es mejor?

Nuestros clientes generalmente se han decidido por una forma de administrar su inventario de repuestos. Al profesor que hay en mí le gustaría pensar que la política de inventario elegida fue una elección razonada entre las alternativas consideradas, pero lo más probable es que simplemente haya sucedido. Tal vez el jefe de inventario de hace mucho tiempo tenía un favorito y esa elección se mantuvo. Quizás alguien utilizó un sistema EAM o ERP que ofrecía sólo una opción. Quizás se hicieron algunas conjeturas, basándose en las condiciones del momento.

Los competidores

Muy rara vez las empresas toman estas decisiones al azar. Pero el software moderno de planificación de repuestos le permite ser más sistemático en sus elecciones. Esta publicación demuestra esa propuesta al hacer comparaciones objetivas entre tres políticas de inventario populares: Pedido hasta, Punto de reorden/Cantidad de pedido y Mín./Máx. Hablé de cada una de estas políticas en este videoblog.

  • Ordene hasta. Esta es una política de revisión periódica en la que cada T días se cuenta el inventario disponible y se realiza un pedido de tamaño aleatorio para que el nivel de existencias vuelva a subir a S unidades.
  • Q, R o Punto de reorden/Cantidad de pedido. Q, R es una política de revisión continua en la que todos los días se contabiliza el inventario. Si hay Q o menos unidades disponibles, se realiza un pedido de tamaño fijo por R unidades más.
  • Mínimo máximo es otra política de revisión continua en la que todos los días se cuenta el inventario. Si hay unidades mínimas o menos disponibles, se realiza un pedido para que el nivel de existencias vuelva a alcanzar las unidades máximas.

La teoría del inventario dice que estas opciones se enumeran en orden creciente de efectividad. La primera opción, Ordenar hasta, es claramente la más sencilla y barata de implementar, pero hace la vista gorda a lo que sucede durante largos períodos de tiempo. Imponer un intervalo de tiempo específico entre órdenes lo hace, en teoría, menos flexible. Por el contrario, las dos opciones de revisión continua vigilan lo que sucede todo el tiempo, para que puedan reaccionar más rápido ante posibles desabastecimientos. La opción Min/Max es, en teoría, más flexible que la opción que utiliza una cantidad fija de reorden porque el tamaño del pedido cambia dinámicamente para adaptarse a la demanda.

Esa es la teoría. Esta publicación examina la evidencia de comparaciones directas para verificar la teoría y establecer cifras concretas sobre el desempeño relativo de las tres políticas.

El significado de "mejor"

¿Cómo debemos llevar la puntuación en este torneo? Si es un lector habitual de este blog de Smart Forecaster, sabrá que el núcleo de la planificación del inventario es un tira y afloja entre dos objetivos opuestos: mantener el inventario reducido versus mantener las métricas de disponibilidad de los artículos, como el nivel de servicio alto.

Para simplificar las cosas, calcularemos “un número para gobernarlos a todos”: el costo operativo promedio. La póliza ganadora será la que tenga el promedio más bajo.

Este promedio es la suma de tres componentes: el costo de mantener el inventario (“costo de mantener”), el costo de ordenar unidades de reabastecimiento (“costo de ordenar”) y el costo de perder una venta (“costo de escasez”). Para concretar las cosas, utilizamos los siguientes supuestos:

  • Cada pieza de servicio está valorada en $1.000.
  • El costo de tenencia anual es 10% del valor del artículo, o $100 por año por unidad.
  • Procesar cada pedido de reabastecimiento cuesta $20 por pedido.
  • Cada unidad demandada pero no proporcionada cuesta el valor de la pieza, $1.000.

Para simplificar, nos referiremos al costo operativo promedio simplemente como "el costo".

Por supuesto, el costo promedio más bajo se puede lograr saliendo del negocio. Por lo tanto, la competencia requería una limitación de rendimiento en la disponibilidad de los artículos: cada opción tenía que lograr una tasa de cumplimiento de al menos 99%.

Las alternativas se resisten

Un elemento clave del contexto es si los desabastecimientos provocan pérdidas o pedidos atrasados. Suponiendo que la pieza de servicio en cuestión es crítica, asumimos que los pedidos no ejecutados se pierden, lo que significa que un competidor completa el pedido. En un entorno de MRO, esto significará un tiempo de inactividad adicional debido al desabastecimiento.

Para comparar las alternativas, utilizamos nuestro motor de modelado predictivo para ejecutar una gran cantidad de Simulaciones de Montecarlo. Cada simulación implicó especificar los valores de los parámetros de cada póliza (por ejemplo, valores mínimos y máximos), generar un escenario de demanda, introducirlo en la lógica de la póliza y medir el costo resultante promediado durante 365 días de operación. Repetir este proceso 1.000 veces y promediar los 1.000 costos resultantes dio el resultado final para cada póliza.  

Para que la comparación fuera justa, cada alternativa debía diseñarse para obtener el mejor rendimiento. Entonces buscamos en el “espacio de diseño” de cada póliza para encontrar el diseño con el menor costo. Esto requirió repetir el proceso descrito en el párrafo anterior para muchos pares de valores de parámetros e identificar el par que produce el costo operativo anual promedio perdido.

Usando los algoritmos en Optimización del inventario (SÍOMT) realizamos comparaciones directas bajo los siguientes supuestos sobre la oferta y la demanda:

  • Se supuso que la demanda de artículos era intermitente y muy variable, pero relativamente simple en el sentido de que no había tendencia ni estacionalidad, como suele ocurrir con las piezas de repuesto. La demanda media diaria fue de 5 unidades con una desviación estándar grande de 13 unidades. La Figura 1 muestra una muestra de la demanda de un año. Hemos elegido un patrón de demanda muy desafiante, en el que algunos días tienen de 10 a 20 veces la demanda promedio.

Se supuso que la demanda diaria de piezas era intermitente y muy puntiaguda.

Figura 1: Se supuso que la demanda diaria de piezas era intermitente y muy intensa.

​​

  • Los plazos de reabastecimiento de los proveedores fueron de 14 días (75%) en ese momento y de 21 días en el resto. Esto refleja el hecho de que siempre hay incertidumbre en la cadena de suministro.

 

Y el ganador es…

¿Era correcta la teoría? Un poco sorta'.

La Tabla 1 muestra los resultados de los experimentos de simulación. Para cada una de las tres políticas en competencia, muestra el costo operativo anual promedio, el margen de error (técnicamente, un intervalo de confianza aproximado de 95% para el costo medio) y las mejores opciones aparentes para los valores de los parámetros.

Resultados de las comparaciones simuladas.

Tabla 1: Resultados de las comparaciones simuladas

Por ejemplo, el costo promedio de la póliza (T,S) cuando T se fija en 30 días fue de $41,680. Pero el Más/Menos implica que los resultados son compatibles con un costo “real” (es decir, la estimación de un número infinito de simulaciones) de entre $39,890 y $43,650. La razón por la que existe tanta incertidumbre estadística es la naturaleza extremadamente elevada de la demanda en este ejemplo.

El Cuadro 1 dice que, en este ejemplo, las tres políticas están en línea con las expectativas. Sin embargo, conclusiones más útiles serían:

  1. Las tres políticas son notablemente similares en cuanto a costo promedio. Mediante una elección inteligente de los valores de los parámetros, se pueden obtener buenos resultados con cualquiera de las tres políticas.
  2. Lo que no se muestra en el Cuadro 1, pero se desprende claramente de los resultados detallados de la simulación, es que las malas elecciones de valores de parámetros pueden ser desastrosas para cualquier política.
  3. Vale la pena señalar que a la política de revisión periódica (T,S) no se le permitió optimizar sobre posibles valores de T. Fijamos T en 30 para imitar lo que es común en la práctica, pero aquellos que usan la política de revisión periódica deberían considerar otras revisiones. períodos. Un experimento adicional fijó el período de revisión en T = 7 días. El costo promedio en este escenario se minimizó en $36,551 ± $1,668 con S = 343. Este resultado es mejor que el de T = 30 días.
  4. Debemos tener cuidado de no generalizar demasiado estos resultados. Dependen de los valores supuestos de los tres parámetros de costos (mantenimiento, pedidos y escasez) y del carácter del proceso de demanda.
  5. Es posible ejecutar experimentos como los que se muestran aquí automáticamente en Optimización del inventario. Esto significa que usted también podrá explorar opciones de diseño de manera rigurosa.

 

 

 

El proceso de previsión para los responsables de la toma de decisiones

En casi todos los negocios e industrias, quienes toman decisiones necesitan pronósticos confiables de variables críticas, como ventas, ingresos, demanda de productos, niveles de inventario, participación de mercado, gastos y tendencias de la industria.

Hay muchos tipos de personas que hacen estos pronósticos. Algunos son analistas técnicos sofisticados, como economistas de negocios y estadísticos. Muchos otros consideran que los pronósticos son una parte importante de su trabajo general: gerentes generales, planificadores de producción, especialistas en control de inventarios, analistas financieros, planificadores estratégicos, investigadores de mercado y gerentes de productos y ventas. Aún así, otros rara vez se consideran pronosticadores, sino que a menudo tienen que hacer pronósticos sobre una base intuitiva y crítica.

Debido a la forma en que diseñamos Smart Demand Planner, tiene algo que ofrecer a todo tipo de pronosticadores. Este diseño surge de varias observaciones sobre el proceso de pronóstico. Debido a que diseñamos Smart Demand Planner con estas observaciones en mente, creemos que tiene un estilo y contenido especialmente adecuados para convertir su navegador en una herramienta eficaz de previsión y planificación:

La previsión es un arte que requiere una combinación de juicio profesional y análisis estadístico objetivo.

A menudo resulta eficaz comenzar con un pronóstico estadístico objetivo que tenga en cuenta automáticamente las tendencias, la estacionalidad y otros patrones. Luego, aplique ajustes o anulaciones de pronósticos según su criterio comercial. Smart Demand Planner facilita la ejecución de ajustes gráficos y tabulares a los pronósticos estadísticos.

El proceso de pronóstico suele ser iterativo.

Es probable que decida hacer varios ajustes a su pronóstico inicial antes de estar satisfecho. Es posible que desee excluir datos históricos más antiguos que considere que ya no son relevantes. Se podrían aplicar diferentes ponderaciones al modelo de pronóstico que pongan distinto énfasis en los datos más recientes. Podría aplicar atenuación de tendencias para aumentar o disminuir los pronósticos estadísticos de tendencias agresivas. Puede permitir que los modelos de aprendizaje automático ajusten la selección de pronóstico por usted y seleccionen el modelo ganador automáticamente. La velocidad de procesamiento de Smart Demand Planner le brinda suficiente tiempo para realizar varias pasadas y guarda múltiples versiones de los pronósticos como “instantáneas” para que pueda comparar la precisión del pronóstico más adelante.

La previsión requiere soporte gráfico.

Los patrones evidentes en los datos pueden ser vistos por un ojo perspicaz. La credibilidad de sus pronósticos a menudo dependerá en gran medida de las comparaciones gráficas que hacen otras partes interesadas del negocio cuando evalúan los datos históricos y los pronósticos. Smart Demand Planner proporciona visualizaciones gráficas de pronósticos, historial e informes de pronóstico versus datos reales.

Los pronósticos nunca son exactamente correctos.

Debido a que siempre se introduce algún error incluso en el mejor proceso de pronóstico, uno de los complementos más útiles de un pronóstico es una estimación honesta de su margen de error.

Smart Demand Planner presenta resúmenes gráficos y tabulares de la precisión del pronóstico basados en la prueba de fuego de los datos de predicción retenidos en el desarrollo del modelo de pronóstico. 

También son muy útiles los intervalos de previsión o intervalos de confianza. Detallan el rango probable de demanda posible que se espera que ocurra. Por ejemplo, si la demanda real cae fuera del intervalo de confianza de 90% más de 10% del tiempo, entonces hay motivos para investigar más a fondo.  

La previsión requiere una coincidencia del método con los datos.

Una de las principales tareas técnicas en la elaboración de pronósticos es hacer coincidir la elección de la técnica de pronóstico con la naturaleza de los datos. Las características de una serie de datos como la tendencia, la estacionalidad o los cambios abruptos de nivel sugieren ciertas técnicas en lugar de otras.

La función de previsión automática de Smart Demand Planner hace que esta coincidencia sea rápida, precisa y automática.

La previsión suele ser parte de un proceso más amplio de planificación o control.

Por ejemplo, los pronósticos pueden ser un complemento poderoso para el análisis financiero basado en hojas de cálculo, extendiendo filas de cifras hacia el futuro. Además, los pronósticos precisos de ventas y demanda de productos son aportes fundamentales para los procesos de planificación de producción y control de inventario de un fabricante. Un pronóstico estadístico objetivo de las ventas futuras siempre ayudará a identificar cuándo el presupuesto (o el plan de ventas) puede ser demasiado poco realista. El análisis de brechas permite a la empresa tomar medidas correctivas para su demanda y sus planes de marketing para garantizar que no incumplan el plan presupuestado.

Los pronósticos deben integrarse en los sistemas ERP
Smart Demand Planner puede transferir rápida y fácilmente sus resultados a otras aplicaciones, como hojas de cálculo, bases de datos y sistemas de planificación, incluidas aplicaciones ERP. Los usuarios pueden exportar pronósticos en una variedad de formatos de archivo, ya sea mediante descarga o mediante ubicaciones seguras de archivos FTP. Smart Demand Planner incluye integraciones basadas en API para una variedad de sistemas ERP y EAM, incluidos Epicor Kinetic y Epicor Prophet 21, Sage X3 y Sage 300, Oracle NetSuite y cada uno de los sistemas ERP Dynamics 365 de Microsoft. Las integraciones basadas en API permiten a los clientes enviar los resultados de las previsiones directamente al sistema ERP según demanda.

El resultado es una planificación de ventas, elaboración de presupuestos, programación de producción, pedidos y planificación de inventario más eficientes.

 

 

 

 

Procon Pumps utiliza un planificador de demanda inteligente para mantener el flujo de negocios

Introducción:
Procon, un fabricante de bombas líder en la industria, utiliza los módulos de optimización de inventario y planificación de la demanda de Smart IP&O de Smart Software para asegurarse de tener los productos que sus clientes necesitan, cuando los necesitan. Es posible que no haya oído hablar de sus productos, pero si alguna vez comió en McDonalds o tomó un café en Starbucks, Procon lo atendió. La amplia cartera de Procon de más de 7000 SKU se suministra a más de 70 países en todo el mundo a través de su canal de venta directa y una extensa red de distribuidores. Procon opera instalaciones de fabricación en EE. UU., México, Irlanda y a través de un socio de fabricación autorizado en Japón. Hablamos con Shankar Suman, director de ventas de Procon, y Emer Horan, gerente de cadena de suministro global, para obtener más información.

El reto
Si Procon no puede enviar un producto requerido, sus clientes no pueden enviar el suyo. Una previsión precisa es un factor clave para el éxito de la cadena de suministro y la satisfacción del cliente. La planificación mensual de Procon establece el plan de demanda consensuado que impulsa las políticas de adquisición, producción y almacenamiento. Pero descubrieron que tenían una brecha entre las ventas y las adquisiciones, lo que históricamente provocaba entregas perdidas y exceso de inventario. Lo que Procon necesitaba era una herramienta sólida de optimización de inventario y pronóstico de la demanda que fuera fácil de usar, que permitiera la planificación colaborativa con su equipo de ventas y socios, y que estuviera integrada con su sistema ERP para impulsar la planificación de adquisiciones y producción.

La solución:
Lo encontraron en Smart IP&O, una plataforma basada en web para pronósticos estadísticos, planificación de la demanda y optimización de inventario.

  • Shankar Suman citó una amplia combinación de capacidades que los convencieron de utilizar Smart. Los principales entre ellos fueron:
  •   Smart Demand Planner respalda el flujo de información sencillo y orquestado que genera un plan de consenso preciso. Al presentar el historial de desempeño y el pronóstico estadístico por producto, territorio y socio, SDP brinda al equipo de ventas una perspectiva que puede complementar, ajustándose a las oportunidades esperadas o los cambios en la demanda.
  • Precisión de pronóstico. Smart es líder de la industria en análisis estadístico y aprovecha las innovaciones desarrolladas a lo largo de sus más de cuarenta años de historia. Esto, combinado con un análisis sólido de pronósticos versus datos reales, ayuda a Procon a mejorar continuamente la calidad de sus pronósticos.
  • Conectividad transparente con el software empresarial de Procon, Epicor Kinetic. Los datos de ventas y envíos diarios se ingresan automáticamente en la plataforma Smart, lo que alimenta el motor de pronóstico de Smart, y los resultados se envían fácilmente al ERP (MRP) a través de una integración basada en API para impulsar la planificación de pedidos y producción.

Resultados:
Emer Horan explicó cómo se desarrolla esto a lo largo de cada mes. Emer proporciona pronósticos para cada uno de sus cinco gerentes de ventas, se reúnen para comparar pronósticos estadísticos y de ventas y acuerdan un plan de consenso revisado de 12 meses. Los gerentes de ventas tienen un buen sentido de las cuentas principales que representan 80% de ingresos, que a menudo incluyen información directa de los propios clientes, y el pronóstico estadístico llena los vacíos. El mes siguiente utilizan el pronóstico versus el análisis real para ayudar a mejorar la precisión y luego repiten el proceso.

“Nuestro equipo de ventas está incentivado a mantener y mejorar la precisión del pronóstico de ventas”, dijo Emer, “y tenemos las herramientas para ayudarlos a tener éxito. Esto no sólo garantiza niveles óptimos de inventario, sino que también contribuye a mejorar la puntualidad en las entregas y a una mayor satisfacción del cliente”.

"Nuestro viaje con Smart Software ha sido bastante notable", añadió Shankar. “Comenzamos con una idea inicial de la funcionalidad y la interfaz, y a partir de ahí hemos evolucionado continuamente. El equipo de Smart ha demostrado un tremendo apoyo y paciencia con nuestros cambios de alcance, entregando el producto exactamente como lo necesitábamos y queríamos. Llevamos más de tres años utilizando Smart y este viaje continúa. Seguimos recibiendo un excelente apoyo del equipo de Smart y realmente disfrutamos trabajar con ellos”.

 

 

Amplíe Epicor BisTrack con la planificación y pronóstico dinámico de puntos de reorden de Smart IP&O

En este artículo, revisaremos la funcionalidad de “órdenes sugeridas” en Epicor BisTrack, explicaremos sus limitaciones y resumiremos cómo la Planificación y optimización inteligente del inventario (Smart IP&O) puede ayudar a reducir el inventario y minimizar los desabastecimientos al evaluar con precisión las compensaciones entre los riesgos de desabastecimiento. y costos de inventario.

Automatización del reabastecimiento en Epicor BisTrack
Los “Pedidos sugeridos” de Epicor BisTrack pueden gestionar el reabastecimiento sugiriendo qué pedir y cuándo mediante políticas basadas en puntos de reorden, como mínimo-máximo y/o semanas de suministro especificadas manualmente. BisTrack contiene algunas funciones básicas para calcular estos parámetros en función del uso o las ventas promedio, el tiempo de entrega del proveedor y/o los ajustes estacionales definidos por el usuario. Alternativamente, los puntos de reorden se pueden especificar de forma completamente manual. Luego, BisTrack presentará al usuario una lista de pedidos sugeridos conciliando el suministro entrante, el actual disponible, la demanda saliente y las políticas de almacenamiento.

Cómo funciona el “pedido sugerido” de Epicor BisTrack
Para obtener una lista de pedidos sugeridos, los usuarios especifican los métodos detrás de las sugerencias, incluidas las ubicaciones para realizar pedidos y cómo determinar las políticas de inventario que rigen cuándo se hace una sugerencia y en qué cantidad.

Ampliar la planificación y pronóstico de Epicor BisTrack

Primero, el campo "método" se especifica entre las siguientes opciones para determinar qué tipo de sugerencia se genera y para qué ubicación(es):

Compra – Generar recomendaciones de órdenes de compra.

  1. Centralizado para todas las sucursales: genera sugerencias para una única ubicación que compra para todas las demás ubicaciones.
  2. Por sucursal individual: genera sugerencias para múltiples ubicaciones (los proveedores enviarían directamente a cada sucursal).
  3. Por sucursal de origen: genera sugerencias para una sucursal de origen que transferirá material a las sucursales a las que presta servicio (“hub and Spoke”).
  4. Sucursales individuales con transferencias: genera sugerencias para una sucursal individual que transferirá material a las sucursales a las que presta servicios ("centro y radio", donde el "centro" no necesita ser una sucursal de origen).

Fabricar – Generar sugerencias de órdenes de trabajo para productos manufacturados.

  1. Por rama de fabricación.
  2. Por sucursal individual.

Transferir de la rama fuente – Generar sugerencias de transferencia de una sucursal determinada a otras sucursales.

Amplíe la planificación y pronóstico de Epicor BisTrack 2222

A continuación se especifica el “pedido sugerido a” entre las siguientes opciones:

  1. Mínimo: sugiere pedidos "hasta" la cantidad mínima disponible ("min"). Para cualquier artículo cuyo suministro sea inferior al mínimo, BisTrack sugerirá un pedido para reponer hasta esta cantidad.
  2. Máximo cuando es inferior al mínimo: sugiere pedidos “hasta” una cantidad máxima disponible cuando se incumple la cantidad mínima disponible (por ejemplo, una política de inventario mínimo-máximo).
  1. Basado en cobertura (uso): sugiere pedidos basados en la cobertura para un número de semanas de suministro definido por el usuario con respecto a un plazo de entrega específico. Dado interno uso Según la demanda, BisTrack recomendará pedidos donde la oferta sea menor que la cobertura deseada para cubrir la diferencia.
  1. Basado en exceso (ventas): sugiere pedidos basados en la cobertura para un número de semanas de suministro definido por el usuario con respecto a un plazo de entrega específico. Dado ordenes de venta Según la demanda, BisTrack recomendará pedidos donde la oferta sea menor que la cobertura deseada para cubrir la diferencia.
  1. Solo máximo: sugiere pedidos “hasta” una cantidad máxima disponible donde el suministro es menor que este máximo.

Finalmente, si permite que BisTrack determine los umbrales de reorden, los usuarios pueden especificar una cobertura de inventario adicional como stock de reserva, tiempos de entrega, cuántos meses de demanda histórica considerar y también pueden definir manualmente esquemas de ponderación período por período para aproximar la estacionalidad. El usuario recibirá una lista de pedidos sugeridos según los criterios definidos. Luego, un comprador puede generar órdenes de compra para proveedores con solo hacer clic en un botón.

Ampliar la planificación y pronóstico de Epicor BisTrack

Limitaciones

Métodos de regla general

Si bien BisTrack permite a las organizaciones generar puntos de reorden automáticamente, estos métodos se basan en promedios simples que no capturan la estacionalidad, las tendencias o la volatilidad en la demanda de un artículo. Los promedios siempre estarán por detrás de estos patrones y no pueden captar las tendencias. Considere un producto altamente estacional como una pala quitanieves: si tomamos un promedio de la demanda de verano/otoño a medida que nos acercamos a la temporada de invierno en lugar de mirar hacia adelante, entonces las recomendaciones se basarán en los períodos más lentos en lugar de anticipar la demanda futura. Incluso si consideramos un año entero de historia o más, las recomendaciones compensarán en exceso durante los meses más lentos y subestimarán la temporada alta sin intervención manual.

Los métodos de regla general también fallan cuando se utilizan para amortiguar la variabilidad de la oferta y la demanda. Por ejemplo, la demanda promedio durante el plazo de entrega podría ser de 20 unidades. Sin embargo, un planificador a menudo querrá almacenar más de 20 unidades para evitar desabastecerse si los plazos de entrega son más largos de lo esperado o la demanda es mayor que el promedio. BisTrack permite a los usuarios especificar los puntos de reorden en función de múltiplos de los promedios. Sin embargo, debido a que los múltiplos no tienen en cuenta el nivel de previsibilidad y variabilidad de la demanda, siempre tendrá un exceso de existencias de artículos predecibles y una falta de existencias de los impredecibles. Lee esto artículo para obtener más información sobre por qué múltiplos del promedio fallan cuando se trata de desarrollar el punto de reorden correcto.

Entrada manual
Hablando de la estacionalidad mencionada anteriormente, BisTrack permite al usuario aproximarla mediante el uso de "pesos" ingresados manualmente para cada período. Esto obliga al usuario a decidir cómo será ese patrón estacional para cada artículo. Incluso más allá de eso, el usuario debe dictar cuántas semanas adicionales de suministro debe llevar para protegerse contra desabastecimientos. y debe especificar el plazo de entrega para planificar. ¿Es suficiente un suministro adicional de 2 semanas? ¿Es suficiente con 3? ¿O es demasiado? No hay forma de saberlo sin adivinar, y lo que tiene sentido para un elemento puede no ser el enfoque correcto para todos.

Demanda intermitente
Muchos clientes de BisTrack pueden considerar ciertos elementos "impredecibles" debido a la intermitente o “grumosos” de su demanda. En otras palabras, artículos que se caracterizan por una demanda esporádica, grandes picos de demanda y períodos de poca o ninguna demanda. Los métodos tradicionales, y especialmente los enfoques empíricos, no funcionarán para este tipo de artículos. Por ejemplo, 2 semanas adicionales de suministro para un artículo estable y altamente predecible podría ser demasiado; para un artículo con una demanda muy volátil, esta misma regla podría no ser suficiente. Sin una forma confiable de evaluar objetivamente esta volatilidad para cada artículo, los compradores se quedan sin saber cuándo comprar y cuánto.

Volver a hojas de cálculo
La realidad es que la mayoría de los usuarios de BisTrack tienden a realizar la mayor parte de su planificación fuera de línea, en Excel. Las hojas de cálculo no están diseñadas específicamente para realizar pronósticos y optimizar el inventario. Los usuarios a menudo utilizan métodos definidos por el usuario. regla de oro inventadas por el usuario, métodos que a menudo hacen más daño que bien. Una vez calculado, los usuarios deben ingresar la información nuevamente en BisTrack manualmente. La naturaleza lenta del proceso lleva a las empresas a calcular sus políticas de inventario con poca frecuencia. Pasan muchos meses y, en ocasiones, años entre actualizaciones masivas, lo que lleva a un enfoque reactivo de "configúrelo y olvídese", donde el único momento en que un comprador/planificador revisa la política de inventario es en el momento de realizar el pedido. Cuando las políticas se revisan después de que ya se haya incumplido el punto de orden, ya es demasiado tarde. Cuando el punto de orden se considera demasiado alto, se requiere una interrogación manual para revisar el historial, calcular pronósticos, evaluar las posiciones del buffer y recalibrar. El gran volumen de pedidos significa que los compradores simplemente liberarán los pedidos en lugar de tomarse el minucioso tiempo de revisarlo todo, lo que genera un importante exceso de existencias. Si el punto de reorden es demasiado bajo, ya es demasiado tarde. Ahora puede ser necesaria una aceleración, lo que aumentará los costos, suponiendo que el cliente no se vaya simplemente a otra parte.

Epicor es más inteligente
Epicor se ha asociado con Smart Software y ofrece Smart IP&O como un complemento multiplataforma para sus soluciones ERP, incluido BisTrack, un ERP especializado para la industria de la madera, el hardware y los materiales de construcción. La solución Smart IP&O viene completa con una integración bidireccional con BisTrack. Esto permite a los clientes de Epicor aprovechar las mejores aplicaciones de optimización de inventario diseñadas específicamente para su propósito. Con Epicor Smart IP&O puede generar pronósticos que capturen tendencias y estacionales sin configuraciones manuales. Podrá recalibrar automáticamente las políticas de inventario utilizando modelos estadísticos y probabilísticos de vanguardia probados en el campo que fueron diseñados para planificar con precisión demanda intermitente. Las existencias de seguridad tendrán en cuenta con precisión la variabilidad de la oferta y la demanda, las condiciones comerciales y las prioridades. Puedes aprovechar la planificación impulsada por el nivel de servicio para que tenga suficiente stock o activar métodos de optimización que prescriben las políticas de almacenamiento y niveles de servicio más rentables que consideran el costo real de mantener el inventario. Puede respaldar las compras de materias primas con pronósticos precisos de la demanda en horizontes más largos y ejecutar escenarios hipotéticos para evaluar estrategias alternativas antes de ejecutar el plan.

Los clientes inteligentes de IP&O obtienen habitualmente rendimientos anuales de siete cifras gracias a la reducción de los plazos, el aumento de las ventas y el menor exceso de existencias, al mismo tiempo que obtienen una ventaja competitiva al diferenciarse por un mejor servicio al cliente. Para ver un seminario web grabado organizado por el Grupo de Usuarios de Epicor que describe la plataforma de optimización de inventario y planificación de la demanda de Smart, por favor regístrese aquí.