Cómo manejar pronósticos estadísticos de cero

Un pronóstico estadístico de cero puede causar mucha confusión a los pronosticadores, especialmente cuando la demanda histórica no es cero. Claro, es obvio que la demanda tiene una tendencia a la baja, pero ¿debería tener una tendencia a cero? Cuando la demanda anterior es mucho mayor que la demanda más reciente y la demanda más reciente tiene un volumen muy bajo (es decir, 1,2,3 unidades demandadas), la respuesta es, estadísticamente hablando, sí. Sin embargo, esto podría no coincidir con el conocimiento comercial del planificador y el nivel mínimo esperado de demanda. Entonces, ¿qué debe hacer un pronosticador para corregir esto? Aquí hay tres sugerencias:

 

  1. Limite los datos históricos alimentados al modelo. En una situación de tendencia a la baja, los datos más antiguos a menudo se mucho mayor que los datos recientes. Cuando se ignora la demanda de volumen mucho mayor anterior, la tendencia a la baja no será tan significativa. Todavía pronosticará una tendencia a la baja, pero es más probable que los resultados estén en línea con las expectativas comerciales.
  1. Pruebe la amortiguación de tendencias. Smart Demand Planner tiene una función llamada "cobertura de tendencias" que permite a los usuarios definir cómo una tendencia debe desaparecer con el tiempo. Cuanto mayor sea la cobertura de tendencia porcentual (0-100%), más pronunciada será la amortiguación de tendencia. Esto significa que una tendencia pronosticada no continuará durante todo el horizonte de pronóstico. Esto significa que el pronóstico de demanda comenzará a aplanarse antes de que llegue a cero en una tendencia bajista.
  1. Cambiar el modelo de pronóstico. Cambie de un método de tendencia, como Suavizado exponencial doble o Promedio móvil lineal, a un método sin tendencia, como Suavizado exponencial único o Promedio móvil simple. No pronosticará una tendencia a la baja, pero al menos su pronóstico no será cero y, por lo tanto, es más probable que la empresa lo acepte.

 

 

 

Más allá del pronóstico: planificación de colaboración y consenso

5 pasos para la planificación de la demanda por consenso

El objetivo de la previsión de la demanda es establecer la mejor visión posible de la demanda futura. Esto requiere que recurramos a los mejores datos e insumos que podamos obtener, estadísticas de apalancamiento para capturar patrones subyacentes, unir nuestras cabezas para aplicar anulaciones basadas en el conocimiento comercial y acordar un plan de demanda de consenso que sirva como piedra angular para el plan de demanda general de la empresa.

Paso 1: Desarrolle una señal de demanda precisa.   ¿Qué constituye la demanda? Considere cómo su organización define la demanda, por ejemplo, órdenes de venta confirmadas netas de cancelaciones o datos de envío ajustados para eliminar el impacto de los desabastecimientos históricos, y utilícelo de manera consistente. Esta es su medida de lo que el mercado le pide que entregue. No confunda esto con su capacidad de entrega, eso debe reflejarse en el plan de ingresos.

Paso 2: generar un pronóstico estadístico. Planifique para miles de artículos con una aplicación de pronóstico comprobada que extrae automáticamente sus datos y produce pronósticos precisos de manera confiable para todos de tus artículos. Revise la primera pasada de su pronóstico, luego haga los ajustes. Es posible que una huelga o un choque de trenes hayan interrumpido el envío el mes pasado; no deje que eso cambie su pronóstico. Ajuste para estos y vuelva a pronosticar. Haz lo mejor que puedas, luego invita a otros a opinar.

Paso 3: traiga a los expertos. Los gerentes de línea de productos, los líderes de ventas y los socios de distribución clave conocen sus mercados.  Comparte tu pronóstico con ellos. Smart utiliza el concepto de una "instantánea" para compartir un facsímil de su pronóstico, en cualquier nivel, para cualquier línea de productos, con personas que pueden saberlo mejor. Podría haber un pedido enorme que no ha llegado a la tubería, o un socio de canal está a punto de ejecutar su promoción anual. Ofrézcales una manera fácil de tomar su parte del pronóstico y cambiarlo. Arrastre este mes hacia arriba, ese hacia abajo...

Paso 4: Mida la precisión y pronostique el valor agregado. Algunos de sus colaboradores pueden estar en lo correcto, otros tienden a tener un sesgo alto o bajo. Utilice los informes de previsión frente a datos reales y mida el análisis de valor agregado de previsión para medir los errores de previsión y si los cambios en la previsión están perjudicando o ayudando. Al informar el proceso con esta información, su empresa mejorará su capacidad para pronosticar con mayor precisión.

Paso 5: Acordar el Pronóstico de Consenso.  Puede hacer esto una línea de productos o geografía a la vez, o negocio por negocio. Convoque al equipo, agrupe gráficamente sus entradas, revise el rendimiento de precisión anterior, discuta sus razones para aumentar o reducir el pronóstico y acuerde qué entradas usar. Esto se convierte en su plan de consenso. Finalice el plan y envíelo: cargue pronósticos en MRP, envíelos a finanzas y fabricación.  Acaba de iniciar su proceso de Ventas, Inventario y Planificación Operativa.

Puedes hacerlo. Y podemos ayudar.  Si tiene alguna pregunta sobre la planificación colaborativa de la demanda, responda a este blog, haremos un seguimiento.

 

 

 

¡El artículo de Smart Software ganó el primer lugar en la categoría de pronóstico de los premios MVP de la cadena de suministro de 2022!

Belmont, Massachusetts, diciembre de 2022 – Smart Software se complace en anunciar que el artículo del cofundador, el Dr. Thomas R. Willemain, "Gestión del inventario en medio del cambio de régimen" ganó el primer lugar en la categoría Pronóstico de los premios MVP de 2022 Supply Chain Brief.

“Cambio de régimen” es un término estadístico que significa un cambio importante en el carácter de la demanda de un artículo de inventario. El historial de demanda de un artículo es el combustible que alimenta las máquinas de previsión de los planificadores de demanda. En general, cuanto más combustible, mejor, lo que nos brinda una mejor solución en el nivel promedio, la forma de cualquier patrón de estacionalidad y el tamaño y la dirección de cualquier tendencia. Pero hay una gran excepción a la regla de que “más datos son mejores datos”. Si hay un cambio importante en su negocio y la nueva demanda no se parece a la anterior, entonces los datos antiguos se vuelven peligrosos.

Lea el artículo del ganador del premio MVP aquí  https://smartcorp.com/inventory-optimization/managing-inventory-amid-regime-change/

Resumen de la cadena de suministro reúne el mejor contenido de cientos de líderes de opinión de la industria. Este premio MVP reconoce la Publicación más valiosa según lo juzgado por la audiencia, el comité de premios y las redes sociales de Supply Chain Brief. Smart Software ha sido reconocido por brindar el mayor valor a los profesionales de la industria e información útil de naturaleza estratégica. https://www.supplychainbrief.com/mvp-awards/2022-SCB-MVP-AWARDS/forecasting

Dr. Thomas R. Willemain es cofundador y vicepresidente sénior de investigación en Smart Software. Ha sido profesor en el MIT y en la Escuela de Gobierno Kennedy de Harvard y ahora es profesor emérito de Ingeniería Industrial y de Sistemas en el Instituto Politécnico Rensselaer. Tom fue un profesor visitante distinguido en la FAA y apoyó a la comunidad de inteligencia como consultor experto en estadística (GS15) en el Grupo de Investigación de Matemáticas de la NSA y más tarde en el Centro de Ciencias de la Computación de la IDA. Tiene títulos de la Universidad de Princeton (BSE, summa cum laude) y el Instituto Tecnológico de Massachusetts (MS y PhD), todos en Ingeniería Eléctrica.

Acerca de Smart Software, Inc.
Fundada en 1981, Smart Software, Inc. es líder en brindar a las empresas soluciones de optimización de inventario, planificación y previsión de la demanda para toda la empresa. Las soluciones de optimización de inventario y pronóstico de la demanda de Smart Software han ayudado a miles de usuarios en todo el mundo, incluidos clientes de empresas medianas y compañías Fortune 500, como Disney, Arizona Public Service y Ameren. La planificación y optimización inteligente del inventario brinda a los planificadores de la demanda las herramientas para manejar la estacionalidad de las ventas, las promociones, los productos nuevos y antiguos, las jerarquías multidimensionales y las piezas de servicio y bienes de capital con demanda intermitente. También proporciona a los administradores de inventario estimaciones precisas del inventario óptimo y del stock de seguridad necesarios para cumplir con los pedidos futuros y lograr los niveles de servicio deseados. Smart Software tiene su sede en Belmont, Massachusetts, y se puede encontrar en línea en www.smartcorp.com.

 

 

Los objetivos de suministro diarios no funcionan al calcular las existencias de seguridad

Los objetivos de suministro diarios no funcionan al calcular las existencias de seguridad

Los CFO nos dicen que necesitan gastar menos en inventario y sin que afecte a las ventas. Una forma de hacerlo es dejar de usar los objetivos diarios de suministro para determinar los puntos de pedido y las reservas de existencias de seguridad. Así es como funciona un modelo de suministro diario:

  1. Calcule el promedioa de la demanda diaria y multiplique la demanda diaria por el tiempo de entrega del proveedor por días para obtener la demanda de tiempo de entrega
  2. Elija un búfer de suministro por días (es decir, 15, 30, 45 días, etc.). Use búferes más grandes para elementos más importantes y búferes más pequeños para elementos menos importantes.
  3. Agregue los días de reserva deseados del suministro a la demanda durante el tiempo de entrega para obtener el punto de reorden. Pida más cuando el inventario disponible esté por debajo del punto de reorden.

Este enfoque es erroneo por las siguientes razones:

  1. El promedio no tiene en cuenta la estacionalidad ni la tendencia: no verá patrones obvios a menos que pase mucho tiempo ajustándolos manualmente.
  2. El promedio no tiene en cuenta cuán predecible es un artículo: tendrá un exceso de existencias de artículos predecibles y una escasez de artículos menos predecibles. Esto se debe a que los mismos días de suministro para diferentes artículos generan un riesgo de agotamiento de existencias muy diferente.
  3. El promedio no le dice a un planificador cómo el nivel de inventario afecta el riesgo de falta de existencias: no tendrá idea de si tiene existencias insuficientes, excesivas o si tiene suficiente.

Hay muchos otros enfoques de "regla general" que son igualmente problemáticos. Puedes aprender más sobre ellos en este blog

Una mejor manera de planificar la cantidad correcta del inventario de seguridad es aprovechar los modelos de probabilidad que identifican exactamente cuánto inventario se necesita contando el riesgo de desabastecimiento que está dispuesto a aceptar. A continuación se muestra una captura de pantalla de Smart Inventory Optimization que hace exactamente eso. En primer lugar, detalla los niveles de servicio previstos (probabilidad de no agotarse) asociados con la lógica de suministro de los días actuales. El planificador ahora puede ver las partes en las que el nivel de servicio previsto es demasiado bajo o demasiado costoso. Luego pueden hacer correcciones inmediatas enfocándose en los niveles de servicio deseados y el nivel de inversión en inventario. Sin esta información, un planificador no sabrá si los días previstos de existencias de seguridad son demasiado, demasiado poco o simplemente correctos, lo que resulta en excesos y escasez que cuestan participación de mercado e ingresos. 

Informática de existencias de seguridad 2

 

5 consejos para crear pronósticos inteligentes

En los más de cuarenta años que Smart sirve software de predicción, en este tiempo hemos conocido a muchas personas que se han convertido en pronosticadores de demanda. Este blog está dirigido principalmente a aquellas personas afortunadas que están a punto de comenzar esta aventura (aunque los profesionales experimentados pueden disfrutar de la actualización).

¡Bienvenido al sector! Una buena previsión puede marcar una gran diferencia en el rendimiento de su empresa, ya sea que esté pronosticando para respaldar las ventas, el marketing, la producción, el inventario o las finanzas.

Hay muchas matemáticas y estadísticas subyacentes a la demanda y a los métodos de pronóstico, por lo que su tarea sugiere que usted no es una de esas personas con fobia a las matemáticas que prefieren ser poetas. Afortunadamente, si te sientes un poco inestable y aún no te has curado de la clase de geometría de la escuela secundaria, tranquilidad, ya que gran parte de las matemáticas están integradas en el software de pronóstico, por lo que tu primer trabajo obtiener una visión general y dejar las matemáticas para más tarde. De hecho, aunque sean una perspectyiva más generica, aislemos algunas de las ideas que más aportarán al éxito.

 

  1. La previsión de la demanda es un deporte de equipo. Incluso en una empresa pequeña, el planificador de la demanda es parte de un equipo, con algunas personas que aportan los datos, otras que aportan la tecnología y otras que aportan el juicio comercial. En una empresa bien administrada, su trabajo nunca será simplemente ingresar algunos datos en un programa y enviar un informe de pronóstico. Muchas empresas han adoptado un proceso llamado Planificación de ventas y operaciones (S&OP, por sus siglas en inglés) en el que su pronóstico se utilizará para iniciar una reunión para tomar ciertas decisiones (por ejemplo, ¿debemos asumir que esta tendencia continuará? ¿Será peor pronosticar por debajo o ¿sobrepronóstico?) y combinar información adicional en el pronóstico final (p. ej., información del equipo de ventas, inteligencia empresarial sobre los movimientos de los competidores, promociones). La implicación para usted es que sus habilidades para escuchar y comunicarse serán importantes para su éxito.

 

  1. Los motores de pronóstico estadístico necesitan buen combustible. Los datos históricos son el combustible utilizado por los programas de previsión estadística, por lo que los datos incorrectos, faltantes o retrasados pueden degradar el producto final. Su trabajo incluirá implícitamente un aspecto de control de calidad, y debe estar atento a los datos que se le proporcionan. Es una buena idea que en el camino la gente de informática se haga tu amiga.

 

  1. Su nombre aparecerá en los pronósticos. Nos guste o no, si envío pronósticos a la cadena de mando, se etiquetan como "pronósticos de Tom". Debo estar preparado para poseer esos números. Para ganar mi asiento en la mesa, debo ser capaz de explicar en qué datos se basaron mis pronósticos, cómo se calcularon, por qué usé el Método A en lugar del Método B para hacer los cálculos y, especialmente, qué tan firmes o blandos son. Aquí la honestidad es importante. No se puede esperar razonablemente que ningún pronóstico sea perfectamente preciso, pero no se puede esperar que todos los gerentes sean perfectamente razonables. Si no tiene suerte, Dirección pensará que sus informes de incertidumbre del pronóstico sugieren ignorancia o incompetencia. Cuando en realidad, indican profesionalismo. No tengo consejos útiles sobre la mejor manera de administrar a tales gerentes, pero puedo advertirle sobre ellos. Depende de usted educar a aquellos que usan sus pronósticos. Los mejores gerentes lo apreciarán.

 

  1. Deje sus hojas de cálculo de lado. No es raro que alguien sea ascendido a pronosticador porque era excelente con Excel. A menos que esté en una empresa inusualmente pequeña, la escala de los pronósticos corporativos modernos supera lo que puede manejar con las hojas de cálculo. La creciente velocidad de los negocios agrava el problema: el ritmo somnoliento de las reuniones de planificación anuales y trimestrales está dando paso rápidamente a re-pronósticos semanales o incluso diarios a medida que cambian las condiciones. Por lo tanto, prepárese para apoyarse en un proveedor profesional de software de pronóstico estadístico y planificación de la demanda moderno y escalable basado en la nube para capacitación y soporte.

 

  1. Piensa visualmente. Será muy útil, tanto para decidir cómo generar pronósticos de demanda como para presentarlos a la Dirección, así que aproveche las capacidades de visualización integradas en el software de pronóstico. Como señalé anteriormente, en el mundo empresarial actual, los datos con los que trabaja pueden cambiar rápidamente, y lo que hizo el mes pasado puede no ser lo correcto para este mes. Literalmente, vigile sus datos haciendo gráficos simples, como "gráficos de tiempo" que muestran cosas como la tendencia o la estacionalidad o (especialmente) los cambios en la tendencia o la estacionalidad o las anomalías que deben tratarse. Del mismo modo, complementar las tablas de pronósticos con gráficos que comparen los pronósticos actuales con los pronósticos anteriores puede ser muy útil en un proceso de S&OP. Por ejemplo, los gráficos de tiempo que muestran valores pasados, valores pronosticados e "intervalos de pronóstico" que indican la incertidumbre objetiva en los pronósticos brindan una base sólida para que su equipo aprecie completamente el mensaje en sus pronósticos.

 

Con estas recomendaciones es suficiente por ahora. Como una persona que ha enseñado en universidades durante medio siglo, me inclino a comenzar con el lado estadístico de los pronósticos, pero lo dejaré para otro momento. Los cinco consejos anteriores deberían serle útiles a medida que se convierte en una parte clave de su equipo de planificación corporativa. ¡Bienvenido al juego!