Los 4 movimientos principales cuando sospecha que el software está inflando el inventario

A menudo nos preguntan: "¿Por qué el software aumenta el inventario?" La respuesta es que Smart no lo está impulsando en ninguna dirección: las entradas lo están impulsando y esas entradas están controladas por los usuarios (o administradores). Aquí hay cuatro cosas que puede hacer para obtener los resultados que espera.

1. Confirme que sus objetivos de nivel de servicio se correspondan con lo que desea para ese artículo o grupo de artículos. Establecer objetivos muy altos (95% o más) probablemente aumentará el inventario si ha estado navegando a un nivel más bajo y está de acuerdo con estar allí. Es posible que nunca haya alcanzado el nuevo nivel de servicio superior, pero los clientes no se han quejado. Averigüe qué nivel de servicio ha funcionado mediante la evaluación de informes históricos sobre el rendimiento y establezca sus objetivos en consecuencia. Pero tenga en cuenta que los competidores pueden ganarle en la disponibilidad de artículos si sigue utilizando los objetivos de nivel de servicio de su padre.

2. Asegúrese de que su comprensión del "nivel de servicio" coincida con la definición del sistema de software. Es posible que esté midiendo el rendimiento en función de la frecuencia con la que realiza envíos en el plazo de una semana desde la recepción del pedido del cliente, mientras que el software apunta a los puntos de pedido en función de su capacidad para realizar envíos de inmediato, no en el plazo de una semana. Claramente, este último requerirá más inventario para alcanzar el mismo "nivel de servicio". Por ejemplo, un nivel de servicio del mismo día 75% puede corresponder a un nivel de servicio de la misma semana 90%. En este caso, en realidad estás comparando manzanas con naranjas. Si este es el motivo del exceso de existencias, determine qué nivel de servicio "mismo día" se necesita para llegar al nivel de servicio deseado "misma semana" e ingréselo en el software. El uso del objetivo del mismo día menos estricto reducirá el inventario, a veces de manera muy significativa.

3. Evaluar las entradas de tiempo de entrega. Hemos visto casos en los que los plazos de entrega se han inflado para engañar al software antiguo para que produzca los resultados deseados. El software moderno realiza un seguimiento del rendimiento de los proveedores mediante el registro de sus tiempos de entrega reales en varios pedidos, luego tiene en cuenta la variabilidad del tiempo de entrega en sus simulaciones de operaciones diarias. Tenga cuidado si sus plazos de entrega se fijan en un valor que se decidió en el pasado lejano y no es actual.

4. Verifique su señal de demanda. Tiene muchas transacciones históricas en su sistema ERP que se pueden usar de muchas maneras para determinar el historial de demanda. Si utiliza señales como transferencias o no excluye devoluciones, es posible que esté exagerando la demanda. Dedique un poco de tiempo a definir la "demanda" de la manera que tenga más sentido para su situación.

Descubra hechos de datos y mejore el rendimiento del inventario

Los mejores procesos de planificación de inventario se basan en el análisis estadístico para descubrir hechos relevantes sobre los datos. Por ejemplo:

  1. El rango de valores de demanda y los plazos de entrega del proveedor esperados.
  2. Los valores más probables de la demanda de artículos y el tiempo de entrega del proveedor.
  3. Las distribuciones de probabilidad completas de la demanda de artículos y el tiempo de entrega del proveedor.

Si llega al tercer nivel, tiene los datos necesarios para responder preguntas operativas importantes, preguntas adicionales como:

  1. ¿Exactamente cuánto stock adicional se necesita para mejorar los niveles de servicio en 5%?
  2. ¿Qué sucederá con la entrega a tiempo si el inventario se reduce en 5%?
  3. ¿Alguno de los cambios anteriores generará un rendimiento financiero positivo?
  4. En términos más generales, ¿qué objetivo de nivel de servicio y nivel de inventario asociado es más rentable?

Cuando tenga los hechos y agregue su conocimiento comercial, puede tomar decisiones de almacenamiento más informadas que generarán ganancias significativas. También establecerá expectativas adecuadas con las partes interesadas internas y externas, asegurándose de que haya menos sorpresas desagradables.

Amplíe Epicor Prophet 21 con el pronóstico de Smart IP&O y la planificación dinámica de los puntos de pedido

En este artículo, revisaremos la funcionalidad de pedidos de inventario en Epicor P21, explicaremos sus limitaciones y resumiremos cómo Smart Inventory Planning & Optimization (Smart IP&O) puede ayudar a reducir el inventario, minimizar los desabastecimientos y restaurar la confianza de su organización en su ERP. También veremos como generar un robusto análisis predictivo, pronóstico basado en consenso y planificación de escenarios hipotéticos.

Funciones de planificación de reabastecimiento dentro de Epicor Prophet 21
Epicor P21 puede administrar el reabastecimiento al sugerir qué ordenar y cuándo a través de políticas de inventario basadas en puntos de reorden o basadas en pronósticos. Los usuarios pueden calcular estas políticas externamente o generarlas dinámicamente dentro de P21. Una vez que se hayan especificado las políticas y los pronósticos, el Generador de requisitos de órdenes de compra (PORG) de P21 creará sugerencias de pedidos automatizadas de qué reponer y cuándo reconciliar el suministro entrante, la demanda actual disponible, las políticas de almacenamiento y los pronósticos de demanda.

Epicor P21 tiene 4 métodos de reposición
En la pantalla de mantenimiento de artículos de Epicor P21, los usuarios pueden elegir uno de los cuatro métodos de reabastecimiento para cada artículo en existencia.

  1. Mínimo máximo
  2. Punto de pedido/Cantidad de pedido
  3. EOQ
  4. ”Hasta” una cantidad

Hay ajustes y configuraciones adicionales para determinar los plazos de entrega y contabilizar los modificadores de pedidos, como las cantidades mínimas y máximas de pedido impuestas por el proveedor. Mín./Máx. y Punto de pedido/Cantidad de pedido se consideran políticas "estáticas". EOQ y ”Hasta” se consideran políticas "dinámicas" y se calculan dentro de P21.

Mínimo máximo
El punto de reorden es igual al Min. Cada vez que el inventario disponible cae por debajo del mínimo (punto de pedido), el informe PORG creará una sugerencia de pedido hasta el máximo (por ejemplo, si el inventario disponible después de la infracción es de 20 unidades y el máximo es 100, entonces la cantidad del pedido será 80) . Min/Max se considera una política estática y una vez ingresada en P21 permanecerá sin cambios a menos que el usuario la anule. Los usuarios suelen ejecutar hojas de cálculo para calcular los valores mínimos y máximos y actualizarlos de vez en cuando.

Punto de pedido/Cantidad de pedido
Esto es lo mismo que la política Mín./Máx. excepto que en lugar de pedir hasta el Máx., se sugerirá un pedido para una cantidad fija definida por el usuario (por ejemplo, pida siempre 100 unidades cuando se incumpla el punto de pedido). OP/OQ se considera una política estática y permanecerá sin cambios a menos que el usuario la anule. Los usuarios a menudo ejecutan hojas de cálculo para calcular los valores OP/OQ y actualizarlos de vez en cuando.

EOQ
La política de EOQ es un método basado en puntos de reorden. El punto de pedido se genera dinámicamente en función del pronóstico de demanda de P21 durante el tiempo de entrega + la demanda durante el período de revisión + el stock de seguridad. La cantidad de la orden se basa en un cálculo de la Cantidad económica de la orden que considera los costos de mantenimiento y los costos de la orden e intenta recomendar un tamaño de orden que minimice el costo total. Cuando el inventario disponible supera el punto de pedido, el informe PORG generará un pedido igual al EOQ calculado.

”Hasta” una cantidad
El método Up To es otra política dinámica que se basa en un punto de pedido. Se calcula de la misma manera que el método EOQ utilizando la demanda pronosticada de P21 durante el tiempo de entrega + la demanda durante el período de revisión + el inventario de seguridad. La sugerencia de cantidad de pedido se basa en lo que sea necesario para reabastecer el stock "hasta" el punto de pedido. Esto tiende a equivaler a una cantidad de pedido que es consistente con la demanda del tiempo de entrega porque a medida que la demanda impulsa el stock por debajo del punto de reorden, se sugerirán pedidos "hasta" el punto de reorden.

Epicor Prophet 21 con previsión de planificación de inventario P21

Pantalla de mantenimiento de artículos de P21, donde los usuarios pueden especificar la política de inventario deseada y configurar otros ajustes, como stock de seguridad y modificadores de pedidos.

Limitaciones

Métodos de pronóstico
Hay dos modos de pronóstico en P21: Básico y Avanzado. Cada uno usa una serie de métodos de promedio y requiere configuraciones manuales y reglas de clasificación determinadas por el usuario para generar un pronóstico de demanda. Ninguno de los modos está diseñado con un sistema experto listo para usar que genera automáticamente pronósticos que dan cuenta de los patrones subyacentes, como la tendencia o la estacionalidad. Se requiere mucha configuración que tiende a inhibir la adopción por parte del usuario y la modificación de las reglas de pronóstico asumidas definidas en la implementación inicial que pueden ya no ser relevantes. No existe una manera de comparar fácilmente la precisión del pronóstico de diferentes configuraciones. Por ejemplo, ¿es mejor usar 24 meses de historial o 18 meses? ¿Es más exacto suponer que se debe aplicar una tendencia cuando un artículo crece 2% por mes o debería ser 10%? ¿Es mejor asumir que el artículo es estacional si 80% o más de su demanda ocurre en 6 meses del año o 4 meses del año? Como resultado, es común que las reglas de clasificación sean demasiado amplias o específicas, lo que genera problemas como la aplicación de un modelo de pronóstico incorrecto, el uso de demasiado o muy poco historial, o la sobreestimación o subestimación de la tendencia y la estacionalidad. Para obtener más información sobre cómo funciona esto, consulte esta publicación de blog (próximamente)

Gestión de pronósticos y planificación por consenso
P21 carece de funciones de gestión de pronósticos que permitan a las organizaciones planificar en múltiples niveles de jerarquía, como familia de productos, región o por cliente. Los pronósticos deben crearse en el nivel más bajo de granularidad (producto por ubicación) donde la demanda suele ser demasiado intermitente para obtener un buen pronóstico. No hay forma de compartir pronósticos, colaborar, revisar o crear pronósticos en niveles agregados y acordar el plan de consenso. Es difícil incorporar conocimiento comercial, evaluar pronósticos en niveles más altos de agregación y rastrear si las anulaciones mejoran o perjudican la precisión del pronóstico. Esto hace que la previsión sea demasiado unidimensional y dependa de las configuraciones matemáticas iniciales.  

Demanda intermitente
Muchos clientes de P21 confían en métodos estáticos (mín./máx. y OP/OQ) debido al predominio de la demanda intermitente. También conocida como "érratica", la demanda intermitente se caracteriza por ventas esporádicas, grandes picos en la demanda y muchos períodos sin demanda. Cuando la demanda es intermitente, los métodos tradicionales de previsión y existencias de seguridad simplemente no funcionan. Dado que los distribuidores no pueden darse el lujo de abastecerse únicamente de productos de alta rotación con una demanda constante, necesitan soluciones especializadas que estén diseñadas para planificar de manera eficaz los artículos con demanda intermitente. 80% o más de las piezas de un distribuidor tendrán una demanda intermitente. Las políticas de almacenamiento que se generan utilizando métodos tradicionales, como los disponibles en P21 y otras aplicaciones de planificación, darán como resultado estimaciones incorrectas de qué almacenar para lograr el nivel de servicio objetivo. Como se ilustra en el gráfico a continuación, no es posible pronosticar los picos de manera constante. Está atascado con un pronóstico que es efectivamente un promedio de los períodos anteriores.

Epicor Prophet 21 con pronóstico de gestión de inventario

Los pronósticos de demanda intermitente no pueden predecir los picos y requieren reservas de existencias de seguridad para protegerse contra los desabastecimientos.

 

En segundo lugar, los métodos de inventario de seguridad de P21 le permiten establecer un nivel de servicio objetivo, pero la lógica subyacente supone erróneamente que la demanda esta Normalmente distribuida. Con la demanda intermitente, la demanda no es “normal” y por lo tanto la estimación del stock de seguridad será incorrecta. Esto es lo que significa incorrecto: al establecer un nivel de servicio de, por ejemplo, 98%, la expectativa es que 98% del tiempo que el stock disponible llene 100% de lo que el cliente necesita del estante. El uso de una distribución normal para calcular las existencias de seguridad dará como resultado grandes desviaciones entre el nivel de servicio objetivo y el nivel de servicio real logrado. No es raro ver situaciones en las que el nivel de servicio real no alcance el objetivo por 10% o más (es decir, se apuntó a 95% pero solo alcanzó 85%).

 

Epicor Prophet 21 con pronóstico de análisis de inventario

En esta figura puede ver el historial de demanda de una pieza demandada intermitentemente y dos distribuciones basadas en este historial de demanda. La primera distribución se generó utilizando la misma “distribución normal: lógica empleada por P21. La segunda es una distribución simulada basada en el pronóstico probabilístico de Smart Software. La distribución P21 "normal" recomienda que se necesitan 46 unidades para alcanzar el nivel de servicio 99%, pero en comparación con los valores reales, se necesitaba mucho más inventario. Smart predijo con precisión que se requerían 63 unidades para alcanzar el nivel de servicio.

Este Blog explica cómo puede probar la precisión del nivel de servicio de su sistema.

Confianza en hojas de cálculo y planificación reactiva
Los clientes de P21 nos dicen que dependen en gran medida del uso de hojas de cálculo para gestionar las políticas de almacenamiento y las previsiones. Las hojas de cálculo no están diseñadas específicamente para la previsión y la optimización del inventario. Los usuarios a menudo seguirán sus propias regla de oro inventadas por el usuario, métodos que a menudo hacen más daño que bien. Una vez calculado, los usuarios deben ingresar la información nuevamente en P21 a través de la importación manual de archivos o incluso la entrada manual. La naturaleza lenta del proceso lleva a las empresas a calcular sus políticas de inventario con poca frecuencia. Pasan muchos meses y, en ocasiones, años entre actualizaciones masivas que conducen a un enfoque reactivo de "configúrelo y olvídese", y el momento del pedidoe se convierte en el único momento en que un comprador/planificador revisa la política de inventario. Cuando las políticas se revisan después de que el punto de pedido ya se ha incumplido, es demasiado tarde. Cuando el punto de pedido se considera demasiado alto, se requiere una modificación manual para revisar el historial, calcular pronósticos, evaluar las posiciones del búfer y recalibrar. El gran volumen de pedidos significa que los compradores simplemente liberarán los pedidos en lugar de tomarse el arduo tiempo de revisar todo, lo que generará un exceso significativo de existencias. Si el punto de pedido es demasiado bajo, ya es demasiado tarde. Ahora se requerirá una aceleración que aumente los costos e incluso entonces, aún perderá ventas si el cliente se va a otro lado.

Planificación limitada de What If
Dado que las funciones para modificar los puntos de pedido y las cantidades de pedido están integradas en P21, no es posible realizar cambios generales en grupos de artículos y evaluar los resultados previstos antes de decidir comprometerse. Esto obliga a los usuarios a adoptar un proceso de "esperar y ver" cuando se trata de modificar parámetros. Los planificadores harán un cambio y luego monitorearán los datos reales hasta que estén seguros de que el cambio mejoró las cosas. Administrar esto a escala (muchos planificadores manejan decenas de miles de artículos) consume mucho tiempo y el resultado final es una recalibración poco frecuente de la política de inventario. Esto también contribuye a la planificación reactiva por lo que los planificadores solo revisarán la configuración después de que haya ocurrido un problema.

Epicor es más inteligente
Epicor se asoció con Smart Software y ofrece Smart IP&O como un complemento multiplataforma para Prophet 21 completo con una integración bidireccional basada en API. Esto permite que los clientes de Epicor aprovechen las mejores aplicaciones de pronóstico y optimización de inventario creadas especialmente. Con Epicor Smart IP&O puede generar pronósticos que capturan la tendencia y la estacionalidad sin tener que aplicar configuraciones manuales primero. Podrá volver a calibrar automáticamente las políticas en cada ciclo de planificación utilizando modelos estadísticos y probabilísticos de vanguardia probados en el campo que fueron diseñados para planificar con precisión de la demanda intermitente. Las existencias de seguridad tendrán en cuenta con precisión la variabilidad de la oferta y la demanda, las condiciones comerciales y las prioridades. Puedes aprovechar la planificación impulsada por el nivel de servicio para que tenga suficiente stock o activar métodos de optimización que prescriben las políticas de almacenamiento más rentables y los niveles de servicio que consideran el costo real de mantener el inventario. Puede crear pronósticos de demanda consensuados que combinen el conocimiento comercial con las estadísticas, evaluar mejor los pronósticos de venta y de los clientes, y cargar con confianza pronósticos y políticas de existencias en Epicor con unos pocos clics del mouse.

Los clientes de Smart IP&O generalmente obtienen ganancias anuales de 7 cifras a partir de rápidas reducciones, mayores ventas y menos exceso de existencias, al mismo tiempo que obtienen una ventaja competitiva al diferenciarse en un mejor servicio al cliente. Regístrese aquí para ver un seminario web grabado y organizado por el Grupo de usuarios de Epicor que perfila la plataforma de optimización de inventario y planificación de la demanda de Smart. https://smartcorp.com/epicor-smart-inventory-planning-optimization/

 

 

 

Amplíe el pronóstico y la planificación Mín/Máx de Epicor Kinetic con Smart IP&O

Amplíe el pronóstico y la planificación mínima/máxima de Epicor Kinetic con Smart IP&O  
Epicor Kinetic puede administrar el reabastecimiento al sugerir qué ordenar y cuándo a través de políticas de inventario basadas en puntos de reorden. Los usuarios pueden especificar manualmente estos puntos de pedido o usar un promedio diario de demanda para calcular dinámicamente las políticas. Si las políticas no son correctas, las sugerencias automáticas de pedidos serán inexactas y, a su vez, la organización terminará con un exceso de inventario, escasez innecesaria y una desconfianza general en sus sistemas de software. En este artículo, revisaremos la funcionalidad de pedidos de inventario en Epicor Kinetic, explicaremos sus limitaciones y resumiremos cómo la Planificación y optimización de inventario inteligente (IP&O inteligente) puede ayudar a reducir el inventario, minimizar los desabastecimientos y restaurar la confianza de su organización en su ERP al proporcionar la sólida funcionalidad predictiva que falta en los sistemas ERP.

Políticas de reabastecimiento de Epicor Kinetic (y Epicor ERP 10)
En la pantalla de mantenimiento de artículos de Epicor Kinetic, los usuarios pueden ingresar parámetros de planificación para cada artículo en existencia. Estos incluyen mínimo disponible, máximo disponible, plazos de entrega de existencias de seguridad y modificadores de pedidos, como cantidades mínimas y máximas impuestas por el proveedor y múltiplos de los pedidos. Kinetic conciliará el suministro entrante, la disponibilidad actual, la demanda saliente, las políticas de almacenamiento y los pronósticos de demanda (que deben importarse) para calcular el plan de suministro. La consulta de reabastecimiento en fases de tiempo de Epicor detalla qué está disponible para ordenar y cuándo, mientras que el sistema permite a los usuarios armar órdenes de compra.

La lógica y los pronósticos Mín./Máx./Seguridad de Epicor que se ingresan en la pantalla de "ingreso de pronóstico" impulsan el reabastecimiento. Así es como funciona:

  • El punto de pedido es igual a Min + Safety. Esto significa que cada vez que el inventario disponible cae por debajo del punto de pedido, se creará una sugerencia de pedido. Si los pronósticos de demanda se importan a través de la pantalla de "entrada de pronóstico" de Epicor, el punto de pedido tendrá en cuenta la demanda pronosticada durante el tiempo de entrega y es igual a Mín. + Seguridad + Pronóstico de tiempo de entrega.
  • Si se selecciona "reordenar al máximo", Epicor generará una cantidad de pedido hasta el máximo. Si no se selecciona, Epicor ordenará la "Cantidad mínima de pedido" si el MOQ es menor que la cantidad pronosticada durante el límite de tiempo. De lo contrario, ordenará la demanda prevista durante el período de tiempo especificado. En el banco de trabajo del comprador, el comprador puede modificar la cantidad real del pedido si lo desea.

 

Limitaciones
Min/Max/Seguridad de Epicor se basa en un promedio de la demanda diaria. Es fácil de configurar y entender. También puede ser efectivo cuando no tiene mucho historial de demanda. Sin embargo, tendrá que crear pronósticos y ajustar la estacionalidad, la tendencia y otros patrones de forma externa. Finalmente, los múltiplos de promedios también ignoran el importante papel de variabilidad de la oferta o la demanda y esto puede dar lugar a existencias mal asignadas, como se ilustra en el siguiente gráfico: 

 

Se determina la misma demanda promedio de Epicor y el stock de seguridad

En este ejemplo, dos artículos igualmente importantes tienen la misma demanda promedio (2000 por mes) y el inventario de seguridad se determina duplicando la demanda del tiempo de entrega, lo que resulta en un punto de pedido de 4000. Debido a que el múltiplo ignora el papel de la variabilidad de la demanda, el artículo A da como resultado un exceso de existencias significativo y el artículo B da como resultado desabastecimientos significativos.

Tal como se diseñó, Min debe mantener la demanda esperada durante el tiempo de entrega y Safety debe mantener una reserva. Sin embargo, estos campos a menudo se usan de manera muy diferente en los elementos sin una política uniforme; a veces, los usuarios incluso ingresan un inventario mínimo y de seguridad a pesar de que el artículo está siendo pronosticado, ¡sobreestimando efectivamente la demanda! Esto generará sugerencias de pedidos antes de que se necesiten, lo que resultará en exceso de existencias.  

Planificación de hojas de cálculo
Muchas empresas recurren a las hojas de cálculo cuando enfrentan desafíos al establecer políticas en su sistema ERP. Estas hojas de cálculo a menudo se basan en regla de oro inventadas por el usuario, métodos que a menudo hacen más daño que bien. Una vez calculada, deben ingresar la información nuevamente en Epicor, a través de importaciones de archivos manuales o incluso ingresandolos manualmente. La naturaleza lenta del proceso lleva a las empresas a calcular sus políticas de inventario con poca frecuencia. Pasan muchos meses o incluso años entre actualizaciones masivas que conducen a un enfoque reactivo de "configúrelo y olvídese", en el que el único momento en que un comprador/planificador revisa la política de inventario es en el momento del pedido. Cuando las políticas se revisan después de que ya se ha incumplido el punto de pedido, es demasiado tarde. Cuando el punto de pedido se considera demasiado alto, se requiere una interrogación manual para revisar el historial, calcular pronósticos, evaluar las posiciones del búfer y recalibrar. El gran volumen de pedidos significa que los compradores simplemente liberarán los pedidos en lugar de tomarse la ardua tarea de revisar todo lo que conduce a un exceso significativo de existencias. Si el punto de pedido es demasiado bajo, ya es demasiado tarde. Ahora se requiere una aceleración que aumente los costos e incluso entonces perderá ventas si el cliente se va a otro lado.

Epicor es más inteligente
Epicor se asoció con Smart Software y ofrece Smart IP&O como un complemento multiplataforma para Epicor Kinetic y Prophet 21 con integraciones basadas en API. Esto permite que los clientes de Epicor aprovechen las mejores aplicaciones de pronóstico y optimización de inventario creadas para el propósito. Con Smart IP&O de Epicor, puede recalibrar automáticamente las políticas en cada ciclo de planificación utilizando modelos estadísticos y probabilísticos de vanguardia probados en el campo. Puede calcular pronósticos de demanda que tengan en cuenta la estacionalidad, la tendencia y los patrones cíclicos. Las existencias de seguridad tendrán en cuenta la variabilidad de la oferta y la demanda, las condiciones comerciales y las prioridades. Puedes aprovechar la planificación impulsada por el nivel de servicio para que tenga suficiente stock o activar métodos de optimización que prescriben las políticas de almacenamiento más rentables y los niveles de servicio que consideran el costo real de mantener el inventario. Puede crear pronósticos de demanda consensuados que combinen el conocimiento del negocio con las estadísticas, evaluar mejor los pronósticos de ventas y de clientes, y cargar con confianza pronósticos y políticas de existencias en Epicor con unos pocos clics del mouse.

Los clientes de Smart IP&O generalmente obtienen ganancias anuales de 7 cifras a partir de rápidas reducciones, mayores ventas y menos exceso de existencias, al mismo tiempo que obtienen una ventaja competitiva al diferenciarse en un mejor servicio al cliente. Regístrese aquí para ver un seminario web grabado y organizado por el Grupo de usuarios de Epicor que perfila la plataforma de optimización de inventario y planificación de la demanda de Smart. https://smartcorp.com/epicor-smart-inventory-planning-optimization/

 

 

 

 

Guía de iniciación sobre el tiempo de inactividad en fábricas

Este blog proporciona una descripción general de este tema escrito para no expertos. Eso

  • explica por qué es posible que desee leer este blog.
  • enumera los diversos tipos de "mantenimiento de la máquina".
  • explica qué es el “modelado probabilístico”.
  • describe modelos para predecir el tiempo de inactividad.
  • explica lo que estos modelos pueden hacer por usted.

Importancia del tiempo de inactividad

Si fabrica cosas para la venta, necesita máquinas para hacer esas cosas. Si sus máquinas están en funcionamiento, tiene una gran oportunidad de ganar dinero. Si sus máquinas no funcionan, pierde oportunidades de ganar dinero. Dado que el tiempo de inactividad es tan fundamental, vale la pena invertir dinero y pensar en minimizar el tiempo de inactividad. Por pensamiento me refiero a matemáticas de probabilidad, ya que tiempo de inactividad de la máquina es inherentemente un fenómeno aleatorio. Modelos de probabilidad puede orientar las políticas de mantenimiento.

Políticas de mantenimiento de máquinas

El mantenimiento es su defensa contra el tiempo de inactividad. Existen varios tipos de políticas de mantenimiento, que van desde "No hacer nada y esperar a que falle" hasta enfoques analíticos sofisticados que involucran sensores y modelos de probabilidad de falla.

Una lista útil de políticas de mantenimiento es:

  • Sentarse y esperar problemas, luego sentarse un poco más preguntándose qué hacer cuando los problemas inevitablemente suceden. Esto es tan tonto como suena.
  • Igual que el anterior, excepto que se prepara para el fracaso de minimizar el tiempo de inactividad, por ejemplo, el almacenamiento de piezas de repuesto.
  • Comprobación periódica de problemas inminentes junto con intervenciones como la lubricación de piezas móviles o la sustitución de piezas desgastadas.
  • Basar la programación del mantenimiento en datos sobre el estado de la máquina en lugar de depender de un programa fijo; requiere la recopilación y el análisis continuos de datos. Esto se llama mantenimiento basado en la condición.
  • Usar los datos sobre el estado de la máquina de forma más agresiva al convertirlos en predicciones de tiempo de falla y sugerencias de pasos a seguir para retrasar la falla. Esto se llama mantenimiento predictivo.

Los últimos tres tipos de mantenimiento se basan en matemáticas de probabilidad para establecer un programa de mantenimiento, o determinar cuándo los datos sobre el estado de la máquina requieren intervención, o calcular cuándo podría ocurrir una falla y cuál es la mejor manera de posponerla.

 

Modelos de probabilidad de falla de la máquina

El tiempo que una máquina funcionará antes de que falle es una variable aleatoria. Así es el tiempo que pasará abajo. La teoría de la probabilidad es la parte de las matemáticas que trata con variables aleatorias. Las variables aleatorias se describen por sus distribuciones de probabilidad, por ejemplo, ¿cuál es la probabilidad de que la máquina funcione durante 100 horas antes de que se apague? 200 horas? O, de manera equivalente, ¿cuál es la probabilidad de que la máquina siga funcionando después de 100 o 200 horas?

Un subcampo llamado "teoría de la confiabilidad" responde a este tipo de preguntas y aborda conceptos relacionados como el tiempo medio antes de la falla (MTBF), que es un resumen abreviado de la información codificada en la distribución de probabilidad del tiempo antes de la falla.

La Figura 1 muestra datos sobre el tiempo antes de la falla de las unidades de aire acondicionado. Este tipo de trama representa la distribución de probabilidad acumulada y muestra la posibilidad de que una unidad haya fallado después de que haya transcurrido cierto tiempo. La Figura 2 muestra un función de confiabilidad, trazando el mismo tipo de información en un formato inverso, es decir, representando la posibilidad de que una unidad siga funcionando después de que haya transcurrido cierto tiempo.

En la Figura 1, las marcas azules junto al eje x muestran los momentos en los que se observaron fallas en los acondicionadores de aire individuales; Estos son los datos básicos. La curva negra muestra la proporción acumulada de unidades que fallaron a lo largo del tiempo. La curva roja es una aproximación matemática a la curva negra, en este caso una distribución exponencial. Los gráficos muestran que alrededor del 80 por ciento de las unidades fallarán antes de las 100 horas de funcionamiento.

Figura 1 Función de distribución acumulativa del tiempo de actividad de los aires acondicionados

Figura 1 Función de distribución acumulativa del tiempo de actividad de los aires acondicionados

 

Los modelos de probabilidad se pueden aplicar a una pieza, componente o subsistema individual, a un conjunto de piezas relacionadas (p. ej., "el sistema hidráulico") oa una máquina completa. Cualquiera de estos puede describirse mediante la distribución de probabilidad del tiempo antes de que falle.

La Figura 2 muestra la función de confiabilidad de seis subsistemas en una máquina para excavar túneles. El gráfico muestra que el subsistema más fiable son los brazos de corte y el menos fiable es el subsistema de agua. La confiabilidad de todo el sistema podría aproximarse multiplicando las seis curvas (porque para que el sistema funcione como un todo, todos los subsistemas deben estar funcionando), lo que daría como resultado un intervalo muy corto antes de que algo salga mal.

Figura 2 Ejemplos de distribuciones de probabilidad de subsistemas en una tuneladora

Figura 2 Ejemplos de distribuciones de probabilidad de subsistemas en una tuneladora

 

Varios factores influyen en la distribución del tiempo antes de la falla. Invertir en mejores piezas prolongará la vida útil del sistema. También lo hará la inversión en redundancia. Lo mismo ocurrirá con la sustitución de pars usados por nuevos.

Una vez que se dispone de una distribución de probabilidad, se puede utilizar para responder a cualquier cantidad de preguntas hipotéticas, como se ilustra a continuación en la sección Beneficios de los modelos.

 

Enfoques para modelar la confiabilidad de la máquina

Los modelos de probabilidad pueden describir las unidades más básicas, como componentes individuales del sistema (Figura 2), o conjuntos de unidades básicas, como máquinas completas (Figura 1). De hecho, una máquina completa se puede modelar como una sola unidad o como una colección de componentes. Si se trata una máquina completa como una sola unidad, la distribución de probabilidad de vida útil representa un resumen del efecto combinado de las distribuciones de vida útil de cada componente.

Si tenemos un modelo de una máquina completa, podemos saltar a modelos de colecciones de máquinas. Si, en cambio, comenzamos con modelos de la vida útil de los componentes individuales, de alguna manera debemos combinar esos modelos individuales en un modelo general de la máquina completa.

Aquí es donde las matemáticas pueden ponerse peludas. El modelado siempre requiere un equilibrio sabio entre la simplificación, para que algunos resultados sean posibles, y la complicación, para que cualquier resultado que surja sea realista. El truco habitual es asumir que las fallas de las piezas individuales del sistema ocurren de manera independiente.

Si podemos suponer que las fallas ocurren de manera independiente, generalmente es posible modelar colecciones de máquinas. Por ejemplo, suponga que una línea de producción tiene cuatro máquinas que producen el mismo producto. Tener un modelo de confiabilidad para una sola máquina (como en la Figura 1) nos permite predecir, por ejemplo, la posibilidad de que solo tres de las máquinas sigan funcionando dentro de una semana. Incluso aquí puede haber una complicación: la probabilidad de que una máquina que funciona hoy siga funcionando mañana a menudo depende de cuánto tiempo haya pasado desde su última falla. Si el tiempo entre fallas tiene una distribución exponencial como la de la Figura 1, resulta que el tiempo de la próxima falla no depende de cuánto tiempo ha pasado desde la última falla. Desafortunadamente, muchos o incluso la mayoría de los sistemas no tienen distribuciones exponenciales de tiempo de actividad, por lo que la complicación persiste.

Peor aún, si comenzamos con modelos de confiabilidad de muchos componentes individuales, avanzar hasta predecir los tiempos de falla para toda la máquina compleja puede ser casi imposible si tratamos de trabajar directamente con todas las ecuaciones relevantes. En tales casos, la única forma práctica de obtener resultados es utilizar otro estilo de modelado: la simulación Monte Carlo.

La simulación de Monte Carlo es una forma de sustituir la computación por el análisis cuando es posible crear escenarios aleatorios de operación del sistema. El uso de la simulación para extrapolar la confiabilidad de la máquina a partir de la confiabilidad de los componentes funciona de la siguiente manera.

  1. Comience con las funciones de distribución acumulativa (Figura 1) o funciones de confiabilidad (Figura 2) de cada componente de la máquina.
  2. Cree una muestra aleatoria de la vida útil de cada componente para obtener un conjunto de tiempos de falla de muestra consistentes con su función de confiabilidad.
  3. Utilizando la lógica de cómo se relacionan los componentes entre sí, calcule el tiempo de falla de toda la máquina.
  4. Repita los pasos 1 a 3 muchas veces para ver la gama completa de posibles vidas útiles de la máquina.
  5. Opcionalmente, promedie los resultados del paso 4 para resumir la vida útil de la máquina con métricas como el MTBF o la posibilidad de que la máquina funcione más de 500 horas antes de fallar.

El paso 1 sería un poco complicado si no tenemos un buen modelo de probabilidad para la vida útil de un componente, por ejemplo, algo como la línea roja en la Figura 1.

El paso 2 puede requerir una contabilidad cuidadosa. A medida que avanza el tiempo en la simulación, algunos componentes fallarán y serán reemplazados, mientras que otros seguirán funcionando. A menos que la vida útil de un componente tenga una distribución exponencial, su vida útil restante dependerá de cuánto tiempo el componente haya estado en uso continuo. Así que este paso debe dar cuenta de los fenómenos de marcar a fuego o desgastar.

El paso 3 es diferente de los demás en que requiere algo de matemática básica, aunque de un tipo simple. Si la Máquina A solo funciona cuando los componentes 1 y 2 funcionan, entonces (suponiendo que la falla de un componente no influya en la falla del otro)

Probabilidad [A funciona] = Probabilidad [1 funciona] x Probabilidad [2 funciona].

Si, en cambio, la Máquina A funciona si el componente 1 funciona o el componente 2 funciona o ambos funcionan, entonces

Probabilidad [A falla] = Probabilidad [1 falla] x Probabilidad [2 fallas]

entonces Probabilidad [A funciona] = 1 – Probabilidad [A falla].

El paso 4 puede implicar la creación de miles de escenarios para mostrar la gama completa de resultados aleatorios. La computación es rápida y barata.

El paso 5 puede variar según los objetivos del usuario. Calcular el MTBF es estándar. Elija otros que se adapten al problema. Además de las estadísticas de resumen proporcionadas por el paso 5, se pueden trazar ejecuciones de simulación individuales para desarrollar la intuición sobre la dinámica aleatoria del tiempo de actividad y el tiempo de inactividad de la máquina. La Figura 3 muestra un ejemplo de una sola máquina que muestra ciclos alternos de tiempo de actividad y tiempo de inactividad que dan como resultado el tiempo de actividad del 85%.

Figura 3 Un escenario de muestra para una sola máquina

Figura 3 Un escenario de muestra para una sola máquina

 

Beneficios de los modelos de confiabilidad de la máquina

En la Figura 3, la máquina está funcionando 85% del tiempo. Eso puede no ser lo suficientemente bueno. Es posible que tenga algunas ideas sobre cómo mejorar la confiabilidad de la máquina, por ejemplo, tal vez pueda mejorar la confiabilidad del componente 3 comprando una versión mejor y más nueva de un proveedor diferente. ¿Cuánto ayudaría eso? Eso es difícil de adivinar: el componente 3 puede ser solo uno de varios y quizás no el eslabón más débil, y cuánto vale el cambio depende de qué tan mejor sea el nuevo. Tal vez debería desarrollar una especificación para el componente 3 que luego pueda comprar a proveedores potenciales, pero ¿cuánto tiempo tiene que durar el componente 3 para tener un impacto material en el MTBF de la máquina?

Aquí es donde vale la pena tener un modelo. Sin un modelo, estás confiando en conjeturas. Con un modelo, puede convertir la especulación sobre situaciones hipotéticas en estimaciones precisas. Por ejemplo, podría analizar cómo un aumento de 10% en MTBF para el componente 3 se traduciría en una mejora en MTBF para toda la máquina.

Como otro ejemplo, suponga que tiene siete máquinas que producen un producto importante. Calcula que debe dedicar seis de las siete para cumplir con un pedido importante de su gran cliente, dejando una máquina para manejar la demanda de una cantidad de clientes pequeños misceláneos y para servir como repuesto. Se podría usar un modelo de confiabilidad para cada máquina para estimar las probabilidades de varias contingencias: las siete máquinas funcionan y la vida es buena; seis máquinas funcionan para que al menos puedas mantener contento a tu cliente clave; solo funcionan cinco máquinas, así que tienes que negociar algo con tu cliente clave, etc.

En resumen, los modelos de probabilidad de fallas de máquinas o componentes pueden proporcionar la base para convertir los datos de tiempo de falla en decisiones comerciales inteligentes.

 

Leer más sobre  Maximice el tiempo de actividad de la máquina con el modelado probabilístico

 

Leer más sobre   Pronóstico probabilístico para demanda intermitente

 

 

Deja un comentario
Artículos Relacionados
La importancia de definiciones claras de niveles de servicio en la gestión de inventario

La importancia de definiciones claras de niveles de servicio en la gestión de inventario

El software de optimización de inventario que respalda el análisis hipotético expondrá el equilibrio entre los desabastecimientos y los costos excesivos de los distintos objetivos de nivel de servicio. Pero primero es importante identificar cómo se interpretan, miden y reportan los “niveles de servicio”. Esto evitará la falta de comunicación y la falsa sensación de seguridad que puede desarrollarse cuando se utilizan definiciones menos estrictas. Definir claramente cómo se calcula el nivel de servicio pone a todas las partes interesadas en la misma página. Esto facilita una mejor toma de decisiones.

El costo de la planificación con hojas de cálculo

El costo de la planificación con hojas de cálculo

Las empresas que dependen de hojas de cálculo para la planificación de la demanda, la previsión y la gestión de inventario a menudo se ven limitadas por las limitaciones inherentes de las hojas de cálculo. Esta publicación examina los inconvenientes de los enfoques tradicionales de gestión de inventario causados por las hojas de cálculo y sus costos asociados, comparándolos con los importantes beneficios que se obtienen al adoptar tecnologías de planificación de última generación.

Aprovechando las listas de materiales de Epicor Kinetic Planning con Smart IP&O para pronosticar con precisión

Aprovechando las listas de materiales de Epicor Kinetic Planning con Smart IP&O para pronosticar con precisión

En este blog, exploramos cómo aprovechar las listas de materiales de Epicor Kinetic Planning con Smart IP&O puede transformar su enfoque de pronóstico en un entorno de fabricación altamente configurable. Descubra cómo Smart, una solución de optimización de inventario y planificación de la demanda basada en IA de vanguardia, puede simplificar las complejidades de predecir la demanda de productos terminados, especialmente cuando se trata de componentes intercambiables. Descubra cómo la planificación de listas de materiales y las técnicas avanzadas de previsión permiten a las empresas anticipar las necesidades de los clientes con mayor precisión, garantizando la eficiencia operativa y manteniéndose a la vanguardia en un mercado competitivo.