Superar la incertidumbre con tecnología de optimización de servicio e inventario

En este blog, analizaremos el mercado impredecible y de ritmo rápido de hoy y los constantes desafíos que enfrentan las empresas para administrar su inventario y niveles de servicio de manera eficiente. El tema principal de esta discusión, arraigado en el concepto de “Optimización probabilística del inventario”, se centra en cómo se puede aprovechar la tecnología moderna para lograr objetivos óptimos de servicio e inventario en medio de la incertidumbre. Este enfoque no sólo aborda los problemas tradicionales de gestión de inventarios, sino que también ofrece una ventaja estratégica para afrontar las complejidades de las fluctuaciones de la demanda y las interrupciones de la cadena de suministro.

Comprender e implementar la tecnología de optimización de inventario es importante por varias razones. En primer lugar, afecta directamente la capacidad de una empresa para satisfacer las demandas de los clientes con prontitud, afectando así la satisfacción y la lealtad del cliente. En segundo lugar, una gestión eficaz del inventario controla los costos operativos, reduciendo la retención innecesaria de existencias y minimizando el riesgo de desabastecimiento o exceso de existencias. En una era donde las condiciones del mercado cambian rápidamente, tener un sistema sólido para gestionar estos aspectos puede marcar la diferencia entre prosperar y simplemente sobrevivir.

En el corazón de la gestión de inventarios se encuentra una paradoja: la necesidad de estar preparado para la demanda fluctuante sin sucumbir a los peligros del exceso de existencias, que puede conducir a mayores costos de mantenimiento, obsolescencia y desperdicio de recursos. Por el contrario, la falta de existencias puede provocar desabastecimientos, pérdida de ventas y disminución de la satisfacción del cliente, lo que en última instancia afecta la reputación y los resultados de una empresa. La naturaleza impredecible de las demandas del mercado, agravada por posibles interrupciones en la cadena de suministro y cambios en el comportamiento de los consumidores, añade complejidad a este acto de equilibrio.

La tecnología juega un papel fundamental aquí. El software moderno de optimización de inventario integra modelos probabilísticos, algoritmos de pronóstico sofisticados y capacidades de simulación. Estos sistemas ayudan a las empresas a responder rápidamente a las condiciones cambiantes del mercado. Además, la adopción de dicha tecnología fomenta una cultura de toma de decisiones basada en datos, lo que garantiza que las empresas no simplemente reaccionen a las incertidumbres sino que elaboren estrategias de manera proactiva para mitigar sus impactos.

Aquí hay breves discusiones sobre las tecnologías algorítmicas relevantes.

Optimización probabilística del inventario: Los enfoques tradicionales de gestión de inventarios se basan en modelos deterministas que suponen un mundo estático y predecible. Estos modelos fallan ante la variabilidad y la incertidumbre. Ingrese a la optimización probabilística del inventario, un paradigma que abarca la aleatoriedad inherente a los procesos de la cadena de suministro. Este enfoque emplea modelos estadísticos para representar las incertidumbres en la oferta y la demanda, lo que permite a las empresas dar cuenta de una gama completa de resultados posibles.

Previsión avanzada:  Una piedra angular de la optimización eficaz del inventario es la capacidad de anticipar con precisión la demanda futura. Las técnicas de pronóstico avanzadas, como [no vendemos esto fuera de SmartForecasts o tal vez ya no esté allí, así que no lo menciones], el análisis de series de tiempo y el aprendizaje automático, extraen patrones explotables de datos históricos.

Cálculo del stock de seguridad: un escudo contra la incertidumbre:

Los pronósticos que incluyen estimaciones de su propia incertidumbre permiten calcular las existencias de seguridad. El stock de seguridad actúa como amortiguador contra la imprevisibilidad de la demanda y los plazos de entrega. Determinar el nivel óptimo de existencias de seguridad es un desafío crítico que los modelos probabilísticos abordan hábilmente. Con los niveles de stock de seguridad adecuados, las empresas pueden mantener altos niveles de servicio, asegurando la disponibilidad del producto sin la carga de un inventario excesivo.

Planificación de escenarios: preparación para múltiples futuros:

El futuro es intrínsecamente incierto y un único pronóstico nunca puede abarcar todos los escenarios posibles. Los métodos avanzados que crean una variedad de escenarios de demanda realistas son la forma esencial de optimización probabilística del inventario. Estas técnicas permiten a las empresas explorar las implicaciones de múltiples futuros, desde el mejor hasta el peor de los casos. Al planificar en función de estos escenarios, las empresas pueden mejorar su resiliencia frente a la volatilidad del mercado.

Navegando el futuro con confianza

El panorama incierto del entorno empresarial actual requiere un cambio de las prácticas tradicionales de gestión de inventarios a enfoques probabilísticos más sofisticados. Al adoptar los principios de optimización probabilística del inventario, las empresas pueden lograr un equilibrio duradero entre la excelencia del servicio y la eficiencia de costos. La integración de técnicas de pronóstico avanzadas, cálculos estratégicos de existencias de seguridad y planificación de escenarios, respaldados por Smart Inventory Planning and Optimization (Smart IP&O), equipa a las empresas para transformar la incertidumbre de un desafío a una oportunidad. Las empresas que adoptan este enfoque informan mejoras significativas en los niveles de servicio, reducciones en los costos de inventario y una mayor agilidad de la cadena de suministro.

Por ejemplo, los artículos menos críticos que se prevé alcanzarán los niveles de servicio 99%+ representan oportunidades para reducir el inventario. Al apuntar a niveles de servicio más bajos en artículos menos críticos, el inventario tendrá “el tamaño adecuado” con el tiempo para alcanzar el nuevo equilibrio, lo que disminuirá los costos de mantenimiento y el valor del inventario disponible. Un importante sistema de transporte público redujo el inventario en más de $4,000,000 y mejoró los niveles de servicio.

La optimización de los niveles de inventario también significa que los ahorros obtenidos en un subconjunto de artículos se pueden reasignar para mantener una cartera más amplia de artículos "en stock", lo que permite capturar ingresos que de otro modo se perderían en ventas. Un distribuidor líder pudo almacenar una cartera más amplia de piezas con ahorros gracias a la reducción de inventario y una mayor disponibilidad de piezas en 18%.

 

 

 

Operaciones irregulares

FONDO

La mayoría de los blogs, seminarios web y documentos técnicos de Smart Software describen el uso de nuestro software en "operaciones normales". Este trata sobre “operaciones irregulares”. Smart Software está en el proceso de adaptar nuestros productos para ayudarle a afrontar sus propias operaciones irregulares. Esto es una vista previa.

Escuché por primera vez el término “operaciones irregulares” cuando cumplía un período sabático en la Administración Federal de Aviación de Estados Unidos en Washington, DC. La FAA abrevia el término "IROPS" y lo utiliza para describir situaciones en las que el clima, problemas mecánicos u otros problemas interrumpen el flujo normal de la aeronave.

Smart Inventory Optimization® (“SIO”) currently works to provide what are known as “steady state” policies for managing inventory items. That means, for instance, that SIO automatically calculates values for reorder points (ROP’s) and order quantities (OQ’s) that are meant to last for the foreseeable future. It computes these values based on simulations of daily operations that extend years into the future. If and when the unforeseeable happens, our Cambio de regimén detection method reacts by removing obsolete data and allowing recalculation of the ROP’s and OQ’s.

A menudo observamos la creciente velocidad de los negocios, lo que acorta la duración del “futuro previsible”. Algunos de nuestros clientes ahora están adoptando horizontes de planificación más cortos, como pasar de planes trimestrales a mensuales. Un efecto secundario de este cambio es que las IROPS se han vuelto más importantes. Si un plan se basa en tres años simulados de demanda diaria, un evento extraño, como un gran pedido sorpresa, no importa mucho en el gran esquema de las cosas. Pero si el horizonte de planificación es muy corto, una gran demanda sorpresa puede tener un efecto importante en los indicadores clave de desempeño (KPI) calculados en un intervalo más corto: no hay tiempo para “promediar”. El planificador puede verse obligado a realizar una orden de reabastecimiento de emergencia para hacer frente a la interrupción. ¿Cuándo se debe realizar el pedido para hacer el mayor bien? ¿Qué tan grande debería ser?

 

ESCENARIO: OPS NORMALES

Para concretar esto, considere el siguiente escenario. Tom's Spares, Inc. proporciona piezas de servicio críticas a sus clientes, incluido SKU723, una placa de circuito de repuesto vendida con el nombre comercial WIDGET. La demanda de WIDGET es intermitente, con menos de una unidad por día. Tom's Spares realiza pedidos de WIDGET a Acme Products, quienes tardan entre 7 y 10 días en cumplir con los pedidos de reabastecimiento.

Tom’s Spares operates with a short inventory planning horizon of 28 days. The company operates in a competitive environment with impatient customers who only grudgingly accept backorders. Tom’s policy is to set ROP’s and OQ’s to keep inventory lean while maintaining a fill rate of at least 90%. Management monitors KPI’s on a monthly basis. In the case of WIDGETS, these KPI targets are currently met using an ROP=3 and an OQ=4, resulting in an average on hand of about 4 units and average fill rate of 96%.  Tom’s Spares has a pretty good thing going for WIDGETS.

La Figura 1 muestra dos meses de información WIDGET. El panel superior izquierdo muestra la demanda unitaria diaria. La parte superior derecha muestra las unidades diarias disponibles. El panel inferior izquierdo muestra el momento y el tamaño de los pedidos de reabastecimiento a Acme Products. La parte inferior derecha muestra las unidades pendientes de pedido debido a desabastecimientos. En esta simulación, la demanda diaria era 0 o 1, con una demanda de 2 unidades. Las unidades disponibles comenzaron el mes en 7 y nunca cayeron por debajo de 1, aunque en el mes siguiente hubo un desabastecimiento que resultó en una sola unidad en espera. Durante los dos meses, se enviaron a Acme 4 pedidos de reabastecimiento de 4 unidades cada uno, y todos llegaron durante el período de simulación de dos meses.

Operaciones irregulares en planificación de inventarios y previsión de demanda 01

 

UN BUEN PROBLEMA INTERRUMPE LAS OPERACIONES NORMALES

Ahora agregamos algunos “buenos problemas” al escenario: surge un pedido inusualmente grande a mitad del período de planificación. Es “bueno” porque más demanda implica más ingresos. Pero es un “problema” porque los parámetros normales de control de inventario de operaciones (ROP=3, OQ=4) no fueron elegidos para hacer frente a esta situación. El aumento de la demanda podría ser tan grande, y en un momento tan desventajoso, como para abrumar el sistema de inventario, creando desabastecimientos y los consiguientes pedidos pendientes. El informe de KPI a la gerencia para un mes así no sería agradable.

La Figura 2 muestra un escenario en el que se produce un pico de demanda de 10 unidades en el tercer día del período de planificación. En este caso, el pico pone el inventario bajo agua durante el resto del mes y crea una cascada de pedidos pendientes que se extiende hasta el mes siguiente. Con un promedio de más de 1000 simulaciones, los KPI del mes 1 muestran un promedio disponible de 0,6 unidades y una miserable tasa de llenado de 44%.

Operaciones irregulares en planificación de inventarios y previsión de demanda 02

 

LUCHA CONTRA CON OPERACIONES IRREGULARES

Tom's Spares puede responder a una situación irregular con un movimiento irregular creando una orden de reabastecimiento de emergencia. Para hacerlo bien, tienen que pensar en (a) cuándo realizar el pedido (b) qué tan grande debe ser el pedido y (c) si deben acelerar el pedido.

La cuestión del momento parece obvia: reaccionar tan pronto como llegue la orden. Sin embargo, si el cliente avisara con antelación, Tom's Spares podría realizar el pedido con antelación y estar en mejor posición para limitar las interrupciones provocadas por el pico. Sin embargo, si la comunicación entre Tom's y el cliente que realiza el pedido grande es irregular, entonces el cliente podría avisar a Tom's más tarde o no avisarle en absoluto.

El tamaño del pedido especial también parece obvio: haga un pedido anticipado del número de unidades requerido. Pero eso funciona mejor si Tom's Spares sabe cuándo se producirá el pico de demanda. De lo contrario, podría ser una buena idea realizar pedidos adicionales para limitar la duración de los pedidos pendientes. En general, cuanto menos alerta temprana se proporcione, mayor será el pedido que Tom's deberá realizar. Por supuesto, esta relación podría explorarse mediante simulación.

La llegada del pedido de reposición podría dejarse a la operación habitual de Acme Products. En las simulaciones anteriores, Acme tenía las mismas probabilidades de responder en 7 o 14 días. Para un horizonte de planificación de 28 días, correr el riesgo de obtener una respuesta de 14 días podría generar problemas, por lo que puede ser especialmente valioso para Tom's pagarle a Acme por el envío acelerado. Quizás de la noche a la mañana, pero posiblemente algo más barato pero relativamente rápido.

Exploramos algunos escenarios más mediante simulación. La tabla 1 muestra los resultados. Los escenarios 1 a 4 suponen que llega una demanda adicional sorpresa de 10 unidades el día 3, lo que desencadena un pedido inmediato de reabastecimiento adicional. El tamaño y el plazo de entrega del pedido de reabastecimiento varían.

El escenario 0 muestra que no hacer nada en respuesta a la demanda sorpresa conduce a una tasa de llenado abismal de 41% para ese mes; Lo que no se muestra es que este resultado establece que el próximo mes continuará con un desempeño deficiente. Las operaciones regulares no funcionarán bien. El planificador debe hacer algo para responder a la demanda anómala.

Hacer algo en respuesta implica realizar un pedido de reabastecimiento de emergencia por única vez. El planificador debe elegir el tamaño y el momento de ese pedido. Los escenarios 1 y 3 representan reposiciones “de tamaño medio”. Los escenarios 1 y 2 representan reabastecimientos al día siguiente, mientras que los escenarios 3 y 4 representan una respuesta garantizada en una semana.

Los resultados dejan claro que la respuesta inmediata es más importante que el tamaño de la orden de reabastecimiento para restaurar la tasa de cumplimiento. El reabastecimiento nocturno produce tasas de llenado en el rango 70%, mientras que el tiempo de reabastecimiento de una semana reduce la tasa de llenado al rango medio de 50% a medio 60%.

 

Operaciones irregulares en planificación de inventarios y previsión de demanda 03

CONCLUSIONES

El software de gestión de inventario se está expandiendo desde su enfoque tradicional en operaciones normales a un enfoque adicional en operaciones irregulares (IROPS). Esta evolución ha sido posible gracias al desarrollo de nuevos métodos estadísticos para generar escenarios de demanda a nivel diario.

Consideramos una situación IROPS: la llegada sorpresa de una demanda anormalmente grande. Las simulaciones diarias proporcionaron orientación sobre el momento y el tamaño de una orden de reabastecimiento de emergencia. Los resultados de dicho análisis brindan a los planificadores de inventarios un respaldo crítico al estimar los resultados de intervenciones alternativas que les sugiere su experiencia.

 

 

Encontrar su lugar en la curva de compensación del inventario

Este videoblog contiene información esencial para quienes trabajan con las complejidades de la gestión de inventario. La sesión se centra en lograr el equilibrio adecuado dentro de la curva de compensación de acciones, invitando a los espectadores a comprender la importancia profundamente arraigada de este equilibrio. Si alguna vez ha tenido que administrar acciones, sabrá que se siente como un tira y afloja. Por un lado, está optando por tener menos inventario, lo cual es fantástico para ahorrar dinero, pero puede dejar a sus clientes en la miseria. Por otro lado, está considerando aumentar el inventario, lo que mantiene contentos a sus clientes pero puede resultar complicado para su presupuesto. Para tomar una decisión inteligente en este tira y afloja en curso, debe comprender dónde lo ubican sus decisiones actuales de inventario en esta curva de compensación. ¿Se encuentra en un punto en el que puede soportar la presión o necesita avanzar hasta un lugar más cómodo?

Si no puede responder a esta pregunta, significa que todavía depende de métodos obsoletos, lo que corre el riesgo de tener un excedente de inventario o necesidades insatisfechas de los clientes. Mire el video para que pueda ver exactamente dónde se encuentra en esta curva y comprender mejor si desea quedarse quieto o moverse a una posición más óptima.

 

Y si decide mudarse, tenemos las herramientas para guiarlo. El análisis avanzado de "qué pasaría si" de Smart IP&O permite a las empresas evaluar con precisión el impacto de diferentes estrategias de inventario, como ajustes a los niveles de existencias de seguridad o cambios en los puntos de reorden, en su equilibrio entre los costos de mantenimiento y los niveles de servicio. Al simular escenarios de demanda y políticas de inventario, Smart IP&O proporciona una visualización clara de los posibles resultados financieros y las implicaciones en el nivel de servicio, lo que permite tomar decisiones estratégicas basadas en datos. Esta poderosa herramienta garantiza que las empresas puedan lograr un equilibrio óptimo, minimizando el exceso de inventario y los costos relacionados, mientras mantienen altos niveles de servicio para satisfacer la demanda de los clientes de manera eficiente.  

 

 

Los tres tipos de análisis de la cadena de suministro

​En este video blog, exploramos las funciones críticas del análisis descriptivo, predictivo y prescriptivo en la gestión de inventario, destacando sus contribuciones esenciales para impulsar la optimización de la cadena de suministro a través de la previsión estratégica y el análisis de datos detallados.

 

Estos análisis fomentan un ecosistema de gestión de inventario dinámico, receptivo y eficiente al permitir a los administradores de inventario monitorear las operaciones actuales, anticipar desarrollos futuros y formular respuestas óptimas. Le explicaremos cómo Descriptive Analytics lo mantiene informado sobre las operaciones actuales, Predictive Analytics lo ayuda a anticipar demandas futuras y Prescriptive Analytics guía sus decisiones estratégicas para lograr la máxima eficiencia y rentabilidad.

By the end of the video, you’ll have a solid understanding of how to leverage these analytics to enhance your inventory management strategies. These are not just tools but a new way of thinking about and approaching inventory optimization with the support of modern software.

 

 

Señales de advertencia de que tiene una brecha en el análisis de la cadena de suministro

“Los negocios son guerra” puede ser una metáfora exagerada, pero no carece de validez. Al igual que la “brecha de los bombarderos” y la “brecha de los misiles”, la preocupación por quedarse atrás de la competencia y la consiguiente amenaza de aniquilación siempre acechan en las mentes de los ejecutivos de negocios. Si no lo hacen, deberían hacerlo, porque no todas las brechas se solucionan. imaginario (se demostró que la brecha de los bombarderos y la brecha de los misiles no existían entre los EE.UU. y la URSS, pero la brecha de los años 1980 entre la productividad japonesa y la estadounidense era demasiado real). La diferencia entre paranoia y preocupación justificada es convertir el miedo en hechos. Esta publicación trata sobre cómo organizar su atención hacia posibles brechas en el análisis de la cadena de suministro de su empresa.

Brechas de vigilancia

El ejército estadounidense tiene un dicho: "El tiempo dedicado al reconocimiento nunca se desperdicia". De vez en cuando, nuestro Pronosticador inteligente El blog tiene una publicación que te ayuda a girar la cabeza para ver qué sucede a tu alrededor. Un ejemplo es nuestra publicación sobre gemelos digitales, que es un tema candente en todo el mundo de la ingeniería. En resumen: utilizar simulaciones de oferta y demanda para detectar debilidades en su plan de inventario es una forma de reconocimiento de la cadena de suministro. Cerrar esta brecha de vigilancia permite a las empresas tomar medidas correctivas antes de que surja un problema real.

Brechas de conciencia situacional

Un comandante militar necesita realizar un seguimiento de lo que está disponible para su uso y de qué tan bien se está utilizando. Los informes disponibles en Analítica operativa inteligente mantenerlo actualizado sobre sus recuentos de inventario, la precisión de sus pronósticos, la capacidad de respuesta de sus proveedores y las tendencias en estas y otras áreas operativas. Sabrá exactamente cuál es su posición en una variedad de KPI de la cadena de suministro, como el nivel de servicio, las tasas de cumplimiento y la rotación de inventario. Sabrá si el desempeño real está alineado con el desempeño planificado y si el plan de inventario (es decir, qué pedir, cuándo, a quién y por qué) se cumple o se ignora.

Brechas de agilidad

El entorno empresarial puede cambiar rápidamente. Todo lo que se necesita es un camión cisterna atrapado de costado en el Canal de Suez, unos cuantos misiles balísticos antibuque en el Mar Rojo o un fenómeno meteorológico que afecte a toda la región. Estas catástrofes pueden recaer tanto sobre la cabeza de sus competidores como sobre la suya, pero ¿quién de ustedes es lo suficientemente ágil como para reaccionar primero? Informe de excepciones en Planificador de la demanda y análisis operativo inteligente puede detectar cambios importantes en el carácter de la demanda para que pueda filtrar rápidamente datos de demanda obsoletos antes de que contaminen todos sus cálculos para pronósticos de demanda u optimización de inventario. Planificador de la demanda puede avisar con antelación de un aumento o disminución pendiente de la demanda. Optimización del inventario puede ayudarle a ajustar sus tácticas de reabastecimiento de inventario para reflejar estos cambios en la demanda.

 

Brechas de innovación

Ya sea que te refieras a tu competencia como "Los otros chicos" o "Todos los demás" o algo que no se pueda imprimir, aquellos de los que debes preocuparte son los que siempre buscan una ventaja. Cuando elige a Smart como su socio, le brindaremos esa ventaja con soluciones predictivas innovadoras pero probadas en el campo. Smart Software ha estado innovando en modelos predictivos desde su nacimiento hace más de 40 años.

  • Nuestros primeros productos introdujeron múltiples innovaciones técnicas: evaluación de la calidad del pronóstico mirando hacia el futuro, no hacia el pasado; selección automática de las mejores entre un conjunto de metodologías competitivas, aprovechando los gráficos de los primeros PC para permitir una fácil gestión de las anulaciones de las previsiones estadísticas.
  • Más tarde inventamos y patentamos un enfoque radicalmente diferente para pronosticar la demanda intermitente que es característica tanto de repuestos como de bienes duraderos costosos. Nuestra tecnología fue patentada y recibió múltiples premios por mejorar drásticamente la gestión del inventario. La solución es ahora un enfoque probado en el campo utilizado por muchas empresas líderes en repuestos, MRO, repuestos de posventa y servicio de campo.
  • Más recientemente, la plataforma en la nube de Smart para pronóstico de demanda, modelado predictivo, optimización de inventario y análisis, toma todos los datos relevantes que de otro modo estarían bloqueados en sus sistemas ERP o EAM, archivos externos y otras fuentes de datos dispares, y los organiza en el canalización de datos inteligente, lo estructura en nuestro modelo de datos comúny lo procesa en nuestro nube de AWS. Inteligente utiliza el poder de nuestro patentado simulaciones probabilísticas de demanda en Smart Inventory Optimization para realizar pruebas de estrés y optimizar las reglas que utiliza para administrar cada uno de los artículos de su inventario.

Es mi trabajo, junto con mi cofundador, el Dr. Nelson Hartunian, nuestro equipo de ciencia de datos y consultores académicos, continuar ampliando los límites del análisis de la cadena de suministro y brindarle los beneficios mediante la implementación continua de nuevas versiones de nuestros productos para que usted no se quede atrapado en una brecha de innovación, ni en ninguna de las otras.