Qué datos se necesitan para respaldar las implementaciones del software de planificación de la demanda

Recientemente nos reunimos con el equipo de TI de uno de nuestros clientes para analizar los requisitos de datos y la instalación de nuestra integración basada en API que extraería datos de la instalación local de su sistema ERP. Tanto el gerente de TI como el analista expresaron una gran preocupación por proporcionar estos datos y cuestionaron seriamente por qué era necesario proporcionarlos. Incluso expresaron su preocupación de que sus datos pudieran ser revendidos a su competencia. Su reacción fue una gran sorpresa para nosotros. Escribimos este blog pensando en ellos y para que sea más fácil para otros comunicar por qué ciertos datos son necesarios para respaldar un proceso de planificación de la demanda eficaz. 

Tenga en cuenta que si es analista de pronósticos, planificador de demanda o profesional de la cadena de suministro, la mayor parte de lo que leerá a continuación será obvio. Pero lo que esta reunión me enseñó es que lo que es obvio para un grupo de especialistas no será obvio para otro grupo de especialistas en un campo completamente diferente. 

Los cuatro tipos principales de datos que se necesitan son:  

  1. Transacciones históricas, como órdenes de venta y envíos.
  2. transacciones de uso de trabajo, como qué componentes se necesitan para producir productos terminados
  3. Transacciones de transferencia de inventario, como qué inventario se envió de un lugar a otro.
  4. Precios, costos y atributos, como el costo unitario pagado al proveedor, el precio unitario pagado por el cliente y varios metadatos como la familia de productos, la clase, etc.  

A continuación, se incluye una breve explicación de por qué se necesitan estos datos para respaldar la implementación del software de planificación de la demanda de una empresa.

Registros transaccionales de ventas históricas y envíos por cliente
Piense en lo que se extrajo del inventario como la "materia prima" requerida por el software de planificación de la demanda. Esto puede ser lo que se vendió a quién y cuándo o lo que envió a quién y cuándo. O qué materias primas o subensamblajes se consumieron en las órdenes de trabajo y cuándo. O qué se suministra a un almacén satélite desde un centro de distribución y cuándo.

El software analiza el historial de estas transacciones y lo utiliza para producir pronósticos estadísticos que extrapolan los patrones observados. Los datos se evalúan para descubrir patrones como tendencia, estacionalidad, patrones cíclicos e identificar posibles valores atípicos que requieren atención comercial. Si estos datos no son generalmente accesibles o no se actualizan en intervalos irregulares, entonces es casi imposible crear una buena predicción de la demanda futura. Sí, podría usar el conocimiento comercial o la intuición, pero eso no escala y casi siempre introduce un sesgo en el pronóstico (es decir, pronostica constantemente demasiado alto o demasiado bajo). 

Se necesitan datos a nivel transaccional para respaldar pronósticos más detallados a nivel semanal o incluso diario. Por ejemplo, cuando una empresa entra en su temporada alta, es posible que desee comenzar a realizar pronósticos semanales para alinear mejor la producción con la demanda. No puede hacerlo fácilmente sin tener los datos transaccionales en un almacén de datos bien estructurado. 

También podría darse el caso de que ciertos tipos de transacciones no deban incluirse en los datos de demanda. Esto puede suceder cuando la demanda resulta de un gran descuento o alguna otra circunstancia que el equipo de la cadena de suministro sabe que sesgará los resultados. Si los datos se proporcionan en conjunto, es mucho más difícil segregar estas excepciones. En Smart Software, llamamos al proceso de averiguar qué transacciones (y los atributos transaccionales asociados) deben contarse en la señal de demanda como "composición de la señal de demanda". Tener acceso a todas las transacciones permite a una empresa modificar su señal de demanda según sea necesario a lo largo del tiempo dentro del software. Solo proporcionar algunos de los datos da como resultado una composición de demanda mucho más rígida que solo puede remediarse con trabajo de implementación adicional.

Precios y Costos
El precio por el que vendió sus productos y el costo que pagó para adquirirlos (o materias primas) es fundamental para poder pronosticar los ingresos o los costos. Una parte importante del proceso de planificación de la demanda es obtener conocimiento comercial de los clientes y los equipos de ventas. Los equipos de ventas tienden a pensar en la demanda por categoría de producto o cliente y hablan el lenguaje de los dólares. Por lo tanto, es importante expresar un pronóstico en dólares. El sistema de planificación de la demanda no puede hacer eso si el pronóstico se muestra solo en unidades. 

A menudo, la previsión de la demanda se utiliza para impulsar o al menos influir en un proceso de planificación y elaboración de presupuestos más amplio y la entrada clave para un presupuesto es una previsión de ingresos. Cuando se utilizan pronósticos de demanda para respaldar el proceso de ventas y operaciones, el software de planificación de la demanda debe promediar el precio de todas las transacciones o aplicar conversiones "por fases" que consideren el precio vendido en ese momento. Sin los datos sin procesar sobre precios y costos, el proceso de planificación de la demanda aún puede funcionar, pero se verá gravemente afectado. 

Atributos del producto, detalles del cliente y ubicaciones
Los atributos del producto son necesarios para que los pronosticadores puedan agregar pronósticos a través de diferentes familias de productos, grupos, códigos de productos básicos, etc. Es útil saber cuántas unidades y la demanda dolarizada total proyectada para las diferentes categorías. A menudo, el conocimiento comercial sobre cuál podría ser la demanda en el futuro no se conoce a nivel de producto, pero se conoce a nivel de familia de productos, nivel de cliente o nivel regional. Con la adición de atributos de producto a su feed de datos de planificación de la demanda, puede "resumir" fácilmente los pronósticos desde el nivel de artículo hasta el nivel de familia. Puede convertir pronósticos en estos niveles a dólares y colaborar mejor sobre cómo se debe modificar el pronóstico.  

Una vez que se aplica el conocimiento en forma de anulación de pronóstico, el software conciliará automáticamente el cambio con todos los elementos individuales que componen el grupo. De esta forma, un analista de pronósticos no tiene que ajustar individualmente cada parte. Pueden hacer un cambio a nivel agregado y dejar que el software de planificación de la demanda haga la reconciliación por ellos. 

La agrupación para facilitar el análisis también se aplica a los atributos del cliente, como el vendedor asignado o la ubicación de envío preferida del cliente. Y los atributos de ubicación pueden ser útiles, como la región asignada. A veces, los atributos se relacionan con una combinación de producto y ubicación, como proveedor preferido o planificador asignado, que pueden diferir para el mismo producto según el almacén.

 

Una nota final sobre la confidencialidad

Recuerde que nuestro cliente expresó su preocupación de que pudiéramos vender sus datos a un competidor. Nunca haríamos eso. Durante décadas, hemos utilizado los datos de los clientes con fines formativos y para mejorar nuestros productos. Somos escrupulosos a la hora de salvaguardar los datos de los clientes y anonimizar cualquier cosa que pueda usarse, por ejemplo, para ilustrar un punto en una publicación de blog.

 

 

 

Elefantes y canguros ERP frente a la mejor planificación de demanda de su clase

“A pesar de lo que has visto en tus caricaturas de los sábados por la mañana, los elefantes no pueden saltar, y hay una razón simple: no tienen que hacerlo. La mayoría de los animales nerviosos (canguros, monos y ranas) lo hacen principalmente para alejarse de los depredadores”. — Patrick Monahan, Science.org, 27 de enero de 2016.

Ahora sabe por qué las empresas de ERP más grandes no pueden desarrollar las mejores soluciones de alta calidad. Nunca tuvieron que hacerlo, por lo que nunca evolucionaron para innovar fuera de su enfoque principal. 

Sin embargo, a medida que los sistemas ERP se convirtieron en productos básicos, las brechas en su funcionalidad se volvieron imposibles de ignorar. Los jugadores más grandes buscaron proteger su parte de la cartera de los clientes prometiendo desarrollar aplicaciones complementarias innovadoras para llenar todos los espacios en blanco. Pero sin ese “músculo de la innovación”, muchos proyectos fracasaron y se acumularon montañas de deuda técnica.

Las mejores empresas de su clase evolucionaron para innovar y tener una profunda experiencia funcional en verticales específicos. El resultado es que los mejores complementos de ERP son más fáciles de usar, tienen más funciones y ofrecen más valor que los módulos de ERP nativos que reemplazan. 

Si su proveedor de ERP ya se ha asociado con un innovador proveedor de complementos*, ¡ya está listo! Pero si solo puede obtener lo básico de su ERP, opte por un complemento de primera clase que tenga una integración personalizada con el ERP. 

Un excelente lugar para comenzar su búsqueda es buscar complementos de planificación de la demanda de ERP que agreguen inteligencia a la fuerza del ERP, es decir, aquellos que respaldan la optimización del inventario y la previsión de la demanda. Aproveche las herramientas complementarias como las aplicaciones de pronóstico estadístico, planificación de la demanda y optimización de inventario de Smart para desarrollar pronósticos y políticas de almacenamiento que se retroalimentan al sistema ERP para impulsar los pedidos diarios. 

*Las tiendas de aplicaciones son una licencia para que lo mejor de su clase venda en la base de empresas de ERP, siendo sociedades cotizadas.

 

 

 

 

¿Es su proceso de planificación y previsión de la demanda una caja negra?

Hay una cosa que recuerdo casi todos los días en Smart Software que me desconcierta: la mayoría de las empresas no entienden cómo se crean los pronósticos y cómo se determinan las políticas de almacenamiento. Es una caja negra organizativa. Aquí hay un ejemplo de una llamada de ventas reciente:

¿Cómo pronosticas?
Usamos la historia.

¿Cómo usas la historia?
¿Qué quieres decir?

Bueno, puede tomar un promedio del último año, los últimos dos años, promediar los períodos más recientes o usar algún otro tipo de fórmula para generar el pronóstico.
Estoy bastante seguro de que usamos un promedio de los últimos 12 meses.

¿Por qué 12 meses en lugar de una cantidad diferente de historia?
12 meses es una buena cantidad de tiempo porque no se distorsiona con datos más antiguos, pero es lo suficientemente reciente.

¿Cómo sabes que es más preciso que usar 18 meses o alguna otra longitud de la historia?
no lo sabemos Ajustamos las previsiones en función de los comentarios de las ventas.  

¿Sabes si los ajustes hacen que las cosas sean más precisas o menos que si solo usaras el promedio?
No lo sabemos, pero confiamos en que las previsiones están infladas.

¿Qué hacen entonces los compradores de inventario si creen que los números están inflados?
Tienen mucho conocimiento comercial y ajustan sus compras en consecuencia.

Entonces, ¿es justo decir que ignorarían los pronósticos al menos parte del tiempo?
Sí, algunas veces.

¿Cómo deciden los compradores cuándo pedir más? ¿Tiene un punto de pedido o stock de seguridad especificado en su sistema ERP que ayuda a guiar estas decisiones?
Sí, utilizamos un campo de stock de seguridad.

¿Cómo se calcula el stock de seguridad?
Los compradores determinan esto en función de la importancia del artículo, los plazos de entrega y otras consideraciones, como cuántos clientes compran el artículo, la velocidad del artículo, su costo. Llevarán diferentes cantidades de existencias de seguridad dependiendo de esto.

La discusión continuó. La conclusión principal aquí es que cuando rascas justo debajo de la superficie, se revelan muchas más preguntas que respuestas. Esto a menudo significa que el proceso de planificación de inventario y previsión de la demanda es muy subjetivo, varía de planificador a planificador, el resto de la organización no lo entiende bien y es probable que sea reactivo. Como ha descrito Tom Willemain, es “un caos enmascarado por la improvisación”. El proceso “tal como está” debe estar completamente identificado y documentado. Solo entonces se pueden exponer las brechas y se pueden realizar mejoras.   Aquí hay una lista de 10 preguntas que puede hacer que revelará el verdadero proceso de previsión, planificación de la demanda y planificación del inventario de su organización.

 

 

 

 

 

Qué hacer cuando un pronóstico estadístico no tiene sentido

A veces, un pronóstico estadístico simplemente no tiene sentido. Todos los pronosticadores han estado allí. Pueden volver a verificar que los datos se ingresaron correctamente o revisar la configuración del modelo, pero todavía se quedan pensando por qué el pronóstico se ve muy diferente al historial de demanda. Cuando el pronóstico ocasional no tiene sentido, puede erosionar la confianza en todo el proceso de pronóstico estadístico.

Este blog ayudará a un profano a comprender qué son los modelos estadísticos inteligentes y cómo se eligen automáticamente. Abordará cómo esa elección a veces falla, cómo puede saber si lo hizo y qué puede hacer para garantizar que los pronósticos siempre puedan justificarse. Es importante saber esperar y cómo detectar las excepciones para que pueda confiar en su sistema de pronóstico.

 

Cómo se eligen los métodos automáticamente

El criterio para elegir automáticamente un método estadístico de un conjunto se basa en qué método estuvo más cerca de predecir correctamente el historial retenido. El historial anterior se pasa a cada método y el resultado se compara con los datos reales para encontrar el que más se acercó en general. Ese método elegido automáticamente se alimenta de todo el historial para producir el pronóstico. Consulte este blog para obtener más información sobre la selección de modelos. https://smartcorp.com/uncategorized/statistical-forecasting-how-automatic-method-selection-works/

Para la mayoría de las series temporales, este proceso puede capturar tendencias, estacionalidad y volumen promedio con precisión. Pero a veces, un método elegido se acerca matemáticamente a la predicción del historial retenido, pero no lo proyecta hacia adelante de una manera que tenga sentido. Eso significa que el método seleccionado por el sistema no es el mejor y, para algunos, es "difícil de pronosticar".

 

Artículos difíciles de pronosticar

Los artículos difíciles de pronosticar pueden tener picos grandes e impredecibles en la demanda, o por lo general no hay demanda pero hay irregularidades aleatorias o actividad reciente inusual. El ruido en los datos a veces se desplaza aleatoriamente hacia arriba o hacia abajo, y el método automatizado de mejor selección podría pronosticar una tendencia desbocada o una reducción a cero. Lo hará peor que el sentido común y en un pequeño porcentaje de cualquier grupo razonablemente variado de elementos. Por lo tanto, deberá identificar estos casos y responder anulando el pronóstico o cambiando las entradas del pronóstico.

 

Cómo encontrar las excepciones

La mejor práctica es filtrar u ordenar los elementos pronosticados para identificar aquellos en los que la suma del pronóstico durante el próximo año es significativamente diferente al historial correspondiente del año pasado. La suma del pronóstico puede ser mucho más baja que el historial o viceversa. Utilice las métricas proporcionadas para identificar estos elementos; luego puede optar por aplicar anulaciones al pronóstico o modificar la configuración del pronóstico.

 

Cómo arreglar las excepciones

A menudo, cuando el pronóstico parece extraño, un método de promediación, como el suavizado exponencial único o incluso un promedio simple con estilo libre, producirá un pronóstico más razonable. Si la tendencia es posiblemente válida, puede eliminar solo los métodos estacionales para evitar un resultado falsamente estacional. O haga lo contrario y use solo métodos estacionales si se espera estacionalidad pero no se proyectó en el pronóstico predeterminado. Puede usar las funciones hipotéticas para crear cualquier cantidad de pronósticos, evaluar y comparar, y continuar ajustando la configuración hasta que se sienta cómodo con el pronóstico.

Limpiar el historial, con o sin cambiar la selección automática del método, también es efectivo para producir pronósticos razonables. Puede incrustar parámetros de previsión para reducir la cantidad de historial utilizado para pronosticar esos elementos o la cantidad de períodos pasados en el algoritmo, de modo que ya no se tenga en cuenta el historial anterior y desactualizado. Puede editar picos o caídas en el historial de demanda que son anomalías conocidas para que no influyan en el resultado. También puede trabajar con el equipo de Smart para implementar la detección y eliminación automática de valores atípicos para que los datos antes de ser pronosticados ya estén limpios de estas anomalías.

Si la demanda es realmente intermitente, será casi imposible pronosticar "con precisión" por período. Si un promedio de nivel de carga no es aceptable, el manejo del artículo mediante el establecimiento de una política de inventario con un pronóstico de tiempo de entrega puede ser efectivo. Alternativamente, puede optar por utilizar modelos "igual que el año pasado" que, si bien no son propensos a la precisión, serán generalmente aceptados por la empresa dadas las previsiones alternativas.

Finalmente, si el elemento se introdujo tan recientemente que los algoritmos no tienen suficiente entrada para pronosticar con precisión, lo mejor puede ser un promedio simple o un pronóstico manual. Puede identificar elementos nuevos filtrando por el número de períodos históricos.

 

Selección manual de métodos.

Una vez que haya identificado las filas en las que el pronóstico no tiene sentido para el ojo humano, puede elegir un subconjunto más pequeño de todos los métodos para permitir la ejecución del pronóstico y compararlo con el historial. Smart le permitirá usar un conjunto restringido de métodos solo para una ejecución de pronóstico o incrustar el conjunto restringido para usarlo en todas las ejecuciones de pronóstico en el futuro. Diferentes métodos proyectarán la historia hacia el futuro de diferentes maneras. Tener una idea de cómo funciona cada uno lo ayudará a elegir cuál permitir.

 

Confíe en su herramienta de previsión

Cuanto más utilice Smart period over period para incorporar sus decisiones sobre cómo pronosticar y qué datos históricos considerar, menos a menudo se enfrentará a las excepciones que se describen en este blog. Ingresar parámetros de pronóstico es una tarea manejable cuando se comienza con artículos críticos o de alto impacto. Incluso si no integra ninguna decisión manual en los métodos de pronóstico, el pronóstico se vuelve a ejecutar cada período con nuevos datos. Por lo tanto, un artículo con un resultado extraño hoy puede volverse fácilmente predecible en el tiempo.

 

 

Pronóstico estadístico: cómo funciona la selección automática de métodos en Smart IP&O

Smart IP&O ofrece pronósticos estadísticos automatizados que seleccionan el método de pronóstico correcto que mejor pronostica los datos. Hace esto para cada serie de tiempo en el conjunto de datos. Este blog ayudará a los legos a comprender cómo se eligen automáticamente los métodos de pronóstico.

Smart pone a disposición muchos métodos, incluidos el suavizado exponencial simple y doble, el promedio móvil lineal y simple y los modelos de Winters. Cada modelo está diseñado para capturar un tipo diferente de patrón. El criterio para elegir automáticamente un método estadístico de un conjunto de opciones se basa en qué método estuvo más cerca de predecir correctamente el historial retenido.

El historial de demanda anterior se pasa a cada método y el resultado se compara con los datos reales para encontrar el que más se acerca en general. Ese método "ganador" elegido automáticamente se alimenta de todo el historial de ese artículo para producir el pronóstico.

La naturaleza general del patrón de demanda del artículo se captura manteniendo diferentes partes de la historia para que un valor atípico ocasional no influya indebidamente en la elección del método. Puede visualizarlo usando el siguiente diagrama donde cada fila representa un pronóstico de 3 períodos en el historial retenido, basado en diferentes cantidades del historial anterior en rojo. Las variaciones de cada pase se promedian juntas para determinar la clasificación general del método frente a todos los demás métodos.

Aplicación de pronóstico automático y pronóstico estadístico

Para la mayoría de las series temporales, este proceso puede capturar con precisión las tendencias, la estacionalidad y el volumen promedio. Pero a veces, un método elegido se acerca matemáticamente a la predicción del historial retenido, pero no lo proyecta hacia adelante de una manera que tenga sentido.

Los usuarios pueden corregir esto utilizando los informes de excepción del sistema y las funciones de filtrado para identificar los elementos que merecen revisión. Luego pueden configurar los métodos de pronóstico automático que desean que se consideren para ese artículo.