What is Inventory Planning? A Brief Dictionary of Inventory-Related Terms

Control del inventario concerns the management of physical goods, focusing on an accurate and up-to-the-minute count of every item in inventory and where it is located, as well as efficient retrieval of items. Relevant technologies include computer databases, barcoding, Radio Frequency Identification (RFID), and the use of robots for retrieval.

Inventory Management aims to execute the inventory policy defined by the company. Inventory Management is often accomplished using Enterprise Resource Planning (ERP) systems, which generate purchase orders, production orders, and reporting that details current inventory on hand, incoming, and up for order.

Inventory Planning sets operational policy details, such as item-specific reorder points and order quantities, and predicts future demand and supplier lead times. Important components of an inventory planning process include what-if scenarios for netting out on-hand inventory, analyzing how changes to demand, lead times, and stocking policies will impact ordering, as well as managing exceptions and contingencies.

Optimización del Inventario utilizes an analytical process that computes values for inventory planning parameters (e.g., reorder points and order quantities) that optimize a numerical goal or “objective function” without violating a numerical constraint. For instance, an objective function might be to achieve the lowest possible inventory operating cost (defined as the sum of inventory holding costs, ordering costs, and shortage costs), and the constraint might be to achieve a fill rate of at least 90%. Using a mathematical model of the inventory system and probability forecasts of item demand, inventory optimization can quickly and automatically suggest how to best manage thousands of inventory items.

¿Confundido acerca de la IA y el aprendizaje automático?

¿Está confundido acerca de qué es la IA y qué es el aprendizaje automático? ¿No está seguro de por qué saber más le ayudará con su trabajo de planificación de inventario? No te desesperes. Estarás bien y te mostraremos cómo algo de lo que sea puede ser útil.

¿Qué es y qué no es?

¿Qué es la IA y en qué se diferencia del ML? Bueno, ¿qué hace alguien hoy en día cuando quiere saber algo? Lo buscan en Google. Y cuando lo hacen, comienza la confusión.

Una fuente dice que la metodología de la red neuronal llamada aprendizaje profundo es un subconjunto del aprendizaje automático, que es un subconjunto de la IA. Pero otra fuente dice que el aprendizaje profundo ya es parte de la IA porque en cierto modo imita la forma en que funciona la mente humana, mientras que el aprendizaje automático no intenta hacer eso.

Una fuente dice que hay dos tipos de aprendizaje automático: supervisado y no supervisado. Otro dice que hay cuatro: supervisada, no supervisada, semisupervisada y de refuerzo.

Algunos dicen que el aprendizaje por refuerzo es aprendizaje automático; otros lo llaman IA.

Algunos de nosotros, los tradicionalistas, llamamos a muchas de ellas “estadísticas”, aunque no todas lo son.

Al nombrar los métodos, hay mucho espacio tanto para la emoción como para el arte de vender. Si un proveedor de software cree que usted quiere escuchar la frase "IA", es posible que la diga por usted sólo para hacerlo feliz.

Mejor centrarse en lo que sale al final.

Puede evitar algunas exageraciones confusas si se concentra en el resultado final que obtiene de alguna tecnología analítica, independientemente de su etiqueta. Hay varias tareas analíticas que son relevantes para los planificadores de inventario y los planificadores de demanda. Estos incluyen agrupamiento, detección de anomalías, detección de cambios de régimen y análisis de regresión. Los cuatro métodos suelen, aunque no siempre, clasificarse como métodos de aprendizaje automático. Pero sus algoritmos pueden surgir directamente de la estadística clásica.

Agrupación

Agrupar significa agrupar cosas que son similares y distanciarlas de cosas que son diferentes. A veces, agrupar es fácil: para separar geográficamente a sus clientes, simplemente ordénelos por estado o región de ventas. Cuando el problema no es tan obvio, puede utilizar datos y algoritmos de agrupamiento para realizar el trabajo automáticamente, incluso cuando se trata de conjuntos de datos masivos.

Por ejemplo, la Figura 1 ilustra un grupo de “perfiles de demanda”, que en este caso divide todos los artículos de un cliente en nueve grupos según la forma de sus curvas de demanda acumuladas. El grupo 1.1 en la parte superior izquierda contiene artículos cuya demanda se ha ido agotando, mientras que el grupo 3.1 en la parte inferior izquierda contiene artículos cuya demanda se ha acelerado. La agrupación también se puede realizar con proveedores. La elección del número de clústeres normalmente se deja a criterio del usuario, pero ML puede guiar esa elección. Por ejemplo, un usuario puede indicarle al software que "divida mis partes en 4 grupos", pero el uso de ML puede revelar que en realidad hay 6 grupos distintos que el usuario debe analizar. 

 

Confundido acerca de la planificación de inventarios de IA y aprendizaje automático

Figura 1: Agrupación de artículos según las formas de su demanda acumulada

Detección de anomalías

La previsión de la demanda se realiza tradicionalmente mediante la extrapolación de series temporales. Por ejemplo, el suavizado exponencial simple funciona para encontrar el “medio” de la distribución de la demanda en cualquier momento y proyectar ese nivel hacia adelante. Sin embargo, si ha habido un aumento o disminución repentino y único en la demanda en el pasado reciente, ese valor anómalo puede tener un efecto significativo pero no deseado en el pronóstico a corto plazo. Igual de grave para la planificación de inventarios, la anomalía puede tener un efecto enorme en la estimación de la variabilidad de la demanda, que va directamente al cálculo de los requisitos de existencias de seguridad.

Es posible que los planificadores prefieran encontrar y eliminar dichas anomalías (y tal vez hacer un seguimiento fuera de línea para descubrir el motivo de la rareza). Pero nadie que tenga un gran trabajo que hacer querrá escanear visualmente miles de gráficos de demanda para detectar valores atípicos, eliminarlos del historial de demanda y luego volver a calcular todo. La inteligencia humana podría hacer eso, pero la paciencia humana pronto fallaría. Los algoritmos de detección de anomalías podrían hacer el trabajo automáticamente utilizando métodos estadísticos relativamente sencillos. Podrías llamar a esto “inteligencia artificial” si lo deseas.

Detección de cambio de régimen

La detección de cambios de régimen es como el hermano mayor de la detección de anomalías. El cambio de régimen es un cambio sostenido, más que temporal, en uno o más aspectos del carácter de una serie temporal. Si bien la detección de anomalías suele centrarse en cambios repentinos de la demanda media, el cambio de régimen podría implicar cambios en otras características de la demanda, como su volatilidad o su forma distributiva.  

La Figura 2 ilustra un ejemplo extremo de cambio de régimen. La demanda de este artículo tocó fondo alrededor del día 120. Las políticas de control de inventario y los pronósticos de demanda basados en datos más antiguos estarían tremendamente fuera de lugar al final del historial de demanda.

Confundido acerca de la planificación de la demanda de IA y aprendizaje automático

Figura 2: Un ejemplo de cambio de régimen extremo en un artículo con demanda intermitente

También en este caso se pueden desarrollar algoritmos estadísticos para resolver este problema, y sería justo llamarlos “aprendizaje automático” o “inteligencia artificial” si así estuviera motivado. El uso de ML o AI para identificar cambios de régimen en el historial de la demanda permite que el software de planificación de la demanda utilice automáticamente solo el historial relevante al realizar pronósticos en lugar de tener que seleccionar manualmente la cantidad de historial para introducirlo en el modelo. 

Análisis de regresión

El análisis de regresión relaciona una variable con otra mediante una ecuación. Por ejemplo, las ventas de marcos de ventanas en un mes pueden predecirse a partir de los permisos de construcción expedidos unos meses antes. El análisis de regresión se ha considerado parte de la estadística durante más de un siglo, pero podemos decir que es "aprendizaje automático", ya que un algoritmo encuentra la manera precisa de convertir el conocimiento de una variable en una predicción del valor de otra.

Resumen

Es razonable estar interesado en lo que sucede en las áreas de aprendizaje automático e inteligencia artificial. Si bien la atención prestada a ChatGPT y sus competidores es interesante, no es relevante para el aspecto numérico de la planificación de la demanda o la gestión de inventario. Los aspectos numéricos del ML y la IA son potencialmente relevantes, pero hay que intentar ver a través de la nube de publicidad que rodea a estos métodos y centrarse en lo que pueden hacer. Si puede hacer el trabajo con métodos estadísticos clásicos, puede hacerlo y luego ejercer su opción de pegar la etiqueta ML a cualquier cosa que se mueva.

 

 

Explicando qué significa "Nivel de servicio" en su software de optimización de inventario

Los clientes a menudo nos preguntan por qué una recomendación de almacenamiento es "tan alta". Aquí hay una pregunta que recibimos recientemente:

Durante nuestra última reunión de equipo, encontramos algunos elementos con brechas anormales entre nuestro ROP actual y el ROP sugerido por Smart en un nivel de servicio 99%. La preocupación es que el sistema indica que el punto de reorden tendrá que aumentar sustancialmente para lograr un nivel de servicio 99%. ¿Podría por favor ayudarnos a entender el cálculo?

Cuando revisamos los datos, quedó claro para el cliente que la ROP calculada por Smart era realmente correcta. Llegamos a la conclusión de que (1) lo que realmente querían era un objetivo de nivel de servicio mucho más bajo y (2) no habíamos hecho una buena explicación de lo que realmente significaba "nivel de servicio". 

Entonces, ¿qué significa realmente un "nivel de servicio 99%"? 

Cuando se trata del objetivo que ingresa en su software de optimización de inventario, significa que el nivel de existencias para el artículo en cuestión tendrá un 99% de posibilidades de poder satisfacer las necesidades del cliente. de inmediato.  Por ejemplo, si tiene 50 unidades en stock, existe una probabilidad de 99% de que la próxima demanda caiga en algún lugar en el rango de 0 a 50 unidades.

Lo que nuestro cliente quiso decir fue que el 99% del momento en que un cliente hizo un pedido, fue entregado en su totalidad dentro del plazo de entrega indicado por el cliente. En otras palabras, no necesariamente de inmediato, sino cuando se prometió.  

Obviamente, cuanto más tiempo se dé a sí mismo para entregar a un cliente, mayor será su nivel de servicio. Pero esa distinción a menudo no se entiende explícitamente cuando los nuevos usuarios del software de optimización de inventario realizan escenarios hipotéticos en diferentes niveles de servicio. Y eso puede llevar a una confusión considerable. Calcular los niveles de servicio en función de la disponibilidad inmediata de existencias es un estándar superior: más difícil de cumplir pero mucho más competitivo.

Nuestros clientes de fabricación a menudo cotizan los niveles de servicio en función de los plazos de entrega a sus clientes, por lo que no es esencial que entreguen inmediatamente desde el estante. Por el contrario, nuestros clientes en los espacios de distribución, mantenimiento, reparación y operaciones (MRO) y repuestos, normalmente deben enviar el mismo día o dentro de las 24 horas. Para ellos es una necesidad competitiva enviar de inmediato y hacerlo en su totalidad.

Al ingresar los niveles de servicio objetivo utilizando su software de optimización de inventario, tenga en cuenta esta distinción. Elija el nivel de servicio según el porcentaje de tiempo que desea enviar el inventario completo, de inmediato desde el estante.  

No culpe la escasez a los tiempos de entrega problemáticos.

Los retrasos en los plazos de entrega y la variabilidad del suministro son hechos de la vida de la cadena de suministro, sin embargo, las organizaciones que llevan el inventario a menudo se sorprenden cuando un proveedor se retrasa. Un proceso de planificación de inventario efectivo abarca este hecho de la vida y desarrolla políticas que dan cuenta de manera efectiva de esta incertidumbre. Claro, habrá momentos en que los retrasos en el tiempo de entrega surjan de la nada y causen una escasez. Pero la mayoría de las veces, la escasez es el resultado de:

  1. No calcular las políticas de almacenamiento (p. ej., puntos de pedido, existencias de seguridad y niveles mínimos y máximos) con la frecuencia suficiente para detectar cambios en el tiempo de entrega. 
  2. Usar estimaciones deficientes del tiempo de entrega real, como usar solo promedios de recibos históricos o confiar en una cotización del proveedor.

En su lugar, vuelva a calibrar las políticas en cada parte durante cada ciclo de planificación para detectar cambios en la demanda y los plazos de entrega. En lugar de asumir solo un tiempo de entrega promedio, simule los tiempos de entrega utilizando escenarios. De esta forma, las políticas de almacenamiento recomendadas tienen en cuenta las probabilidades de que los plazos de entrega sean elevados y se ajustan en consecuencia. Cuando haga esto, identificará los aumentos de inventario necesarios antes de que sea demasiado tarde. Obtendrá más ventas e impulsará mejoras significativas en la satisfacción del cliente.

Smart Software anuncia patente de próxima generación

Belmont, MA, June 2023 – Smart Software, Inc., provider of industry-leading demand forecasting, planning, and inventory optimization solutions, today announced the award of US Patent 11,656,887, “SYSTEM AND METHOD TO SIMULATE DEMAND AND OPTIMIZE CONTROL PARAMETERS FOR A TECHNOLOGY PLATFORM.”

La patente dirige “soluciones técnicas para analizar datos históricos de demanda de recursos en una plataforma tecnológica para facilitar la gestión de un proceso automatizado en la plataforma”. Una aplicación importante es la optimización de los inventarios de piezas.

Aspects of the invention include: an advanced bootstrap process that converts a single observed time series of item demand into an unlimited number of realistic demand scenarios; a performance prediction process that executes Monte Carlo simulations of a proposed inventory control policy to assess its performance; and a performance improvement process that uses the performance prediction process to automatically explore the space of alternative system designs to identify optimal control parameter values, selecting ones that minimize operating cost while guaranteeing a target level of item availability.

The new analytic technology described in the patent will form the basis for the upcoming release of the next generation (“Gen2”) of Planificador de demanda inteligente™ y Smart IP&O™. Current customers and resellers can preview Gen2 by contacting their Smart Software sales representative.

Research underlying the patent was self-funded by Smart, supplemented by competitive Small Business Innovation Research grants from the US National Science Foundation.

 

Acerca de Smart Software, Inc.
Founded in 1981, Smart Software, Inc. is a leader in providing businesses with enterprise-wide demand forecasting, planning, and inventory optimization solutions.  Smart Software’s demand forecasting and inventory optimization solutions have helped thousands of users worldwide, including customers such as Disney, Otis Elevator, Hitachi, Arizona Public Service, Ameren, and The American Red Cross.  Smart’s Inventory Planning & Optimization Platform, Smart IP&O gives demand planners the tools to handle sales seasonality, promotions, new and aging products, multi-dimensional hierarchies, and intermittently demanded service parts and capital goods items.  It also provides inventory managers with accurate estimates of the optimal inventory and safety stock required to meet future orders and achieve desired service levels.  Smart Software is headquartered in Belmont, Massachusetts, and our website is www.smartcorp.com.