Todo el mundo pronostica para impulsar la planificación del inventario. Es solo una cuestión de cómo.

Descubra cómo se utilizan los pronósticos con estas 4 preguntas.

A menudo, las empresas insisten en que "no usan pronósticos" para planificar el inventario. A menudo usan métodos de punto de pedido y tienen dificultades para mejorar la entrega a tiempo, la rotación de inventario y otros KPI. Si bien no piensan en lo que están haciendo como un pronóstico explícito, ciertamente usan estimaciones de la demanda futura para desarrollar puntos de reorden como mínimo/máximo.

Independientemente de cómo se llame, todo el mundo trata de estimar la demanda futura de alguna manera y utiliza esta estimación para establecer políticas de almacenamiento e impulsar pedidos. Para mejorar la planificación del inventario y asegurarse de no realizar pedidos excesivos o insuficientes y crear grandes desabastecimientos e hinchazón del inventario, es importante comprender exactamente cómo utiliza su organización las previsiones. Una vez que comprenda esto, puede evaluar si se puede mejorar la calidad de los pronósticos.

Intente obtener respuestas a las siguientes preguntas. Revelará cómo se utilizan las previsiones en su empresa, incluso si cree que no utiliza previsiones.

1. ¿Es su pronóstico una estimación período por período a lo largo del tiempo que se usa para predecir qué inventario disponible habrá en el futuro y desencadena sugerencias de pedidos en su sistema ERP?

2. ¿O se usa su pronóstico para derivar un punto de reorden pero no se usa explícitamente como un controlador por período para generar órdenes? Aquí, puedo predecir que venderemos 10 por semana según el historial, pero no estamos cargando 10, 10, 10, 10, etc., en el ERP. En su lugar, derivo un punto de reorden o Mín. que cubre el tiempo de entrega de dos períodos + cierta cantidad de reserva para ayudar a proteger contra el agotamiento de existencias. En este caso, pediré más cuando llegue a 25.

3. ¿Su pronóstico se usa como una guía para que el planificador ayude a determinar subjetivamente cuándo debe ordenar más? Aquí, predigo 10 por semana y evalúo el inventario disponible periódicamente, reviso el tiempo de entrega esperado y decido, dadas las 40 unidades que tengo disponibles hoy, que tengo "suficiente". Por lo tanto, no hago nada ahora, pero volveré a consultar en una semana.

4. ¿Se utiliza para configurar pedidos abiertos con proveedores? Aquí, predigo 10 por semana y acepto una orden de compra general con el proveedor de 520 por año. Luego, los pedidos se hacen con anticipación para que lleguen en cantidades de 10 una vez por semana hasta que se consuma el pedido general.

Una vez que obtenga las respuestas, puede preguntar cómo se crean las estimaciones de la demanda. ¿Es un promedio? ¿Está derivando la demanda sobre el tiempo de entrega a partir de un pronóstico de ventas? ¿Hay un pronóstico estadístico generado en alguna parte? ¿Qué métodos se consideran? También será importante evaluar cómo se utilizan las existencias de seguridad para protegerse contra la variabilidad de la oferta y la demanda. Más sobre todo esto en un próximo artículo.

 

Problemas de las empresas eléctricas con repuestos

Todas las organizaciones que utilizan equipos necesitan piezas de repuesto. Todos ellos deben hacer frente a cuestiones que son genéricas sin importar cuál sea su negocio. Sin embargo, algunos de los problemas son específicos de la industria. Esta publicación analiza un problema universal que se manifiesta en una planta nuclear y que es especialmente grave para cualquier empresa de servicios eléctricos.

El problema universal de la calidad de los datos

A menudo publicamos sobre los beneficios de convertir los datos de uso de piezas en decisiones inteligentes de gestión de inventario. El modelado de probabilidad avanzado admite la generación de escenarios de demanda realistas que se integran en simulaciones detalladas de Monte Carlo que exponen las consecuencias de decisiones como las elecciones de Min y Max que rigen la reposición de repuestos.

Sin embargo, toda esa tecnología analítica nueva y brillante requiere datos de calidad como combustible para el análisis. Para algunos servicios públicos de todo tipo, el mantenimiento de registros no es un punto fuerte, por lo que la materia prima que se analiza puede corromperse y ser engañosa. Recientemente nos topamos con la documentación de un claro ejemplo de este problema en una planta de energía nuclear (ver Scala, Needy y Rajgopal: Toma de decisiones y compensaciones en la gestión del inventario de piezas de repuesto en las empresas de servicios públicos. Asociación Estadounidense de Gestión de Ingeniería, 30.ª Conferencia Nacional ASEM, Springfield, MO. octubre de 2009). Scala et al. documentó el historial de uso de una pieza crítica cuya ausencia resultaría en una reducción de la potencia de la instalación o en un cierre. El registro de uso de la planta para esa parte abarcó más de ocho años de datos. Durante ese tiempo, el historial de uso oficial reportó nueve eventos en los que se produjo una demanda positiva con tamaños que oscilaban entre una y seis unidades cada uno. También hubo cinco eventos marcados por demandas negativas (es decir, devoluciones a almacén) que oscilaron entre una y tres unidades cada uno. La investigación cuidadosa descubrió que el verdadero uso ocurrió en solo dos eventos, ambos con una demanda de dos unidades. Obviamente, calcular los mejores valores Mín./Máx. para este artículo requiere datos de demanda precisos.

El problema especial de la salud y la seguridad

En el contexto de negocios “normales”, la escasez de piezas de repuesto puede dañar tanto los ingresos actuales como los ingresos futuros (relacionados con la reputación como proveedor confiable). Sin embargo, para una empresa de servicios eléctricos, Scala et al. observó un nivel mucho mayor de consecuencias asociadas a los desabastecimientos de piezas de repuesto. Estos incluyen no solo un mayor riesgo financiero y de reputación, sino también riesgos para la salud y la seguridad: Las ramificaciones de no tener una pieza en stock incluyen la posibilidad de tener que reducir la producción o, muy posiblemente, incluso el cierre de una planta. Desde una perspectiva a más largo plazo, hacerlo podría interrumpir el servicio crítico de energía para los clientes residenciales, comerciales y/o industriales, al tiempo que daña la reputación, la confiabilidad y la rentabilidad de la empresa. Una empresa de servicios eléctricos fabrica y vende un solo producto: electricidad. Perder la capacidad de vender electricidad puede dañar gravemente los resultados de la empresa, así como su viabilidad a largo plazo”.

Razón de más para que las empresas eléctricas sean líderes y no rezagadas en el despliegue de los modelos de probabilidad más avanzados para la previsión de la demanda y la optimización del inventario.

 

Soluciones de software para la planificación de repuestos

El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

 

 

Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

 

Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

 

    Correlación frente a causalidad: ¿es esto relevante para su trabajo?

    Fuera del trabajo, es posible que haya escuchado el famoso dicho "Correlación no es causalidad". Puede sonar como una tontería teórica que, aunque involucrada en un Premio Noble reciente en economía, no es relevante para su trabajo como planificador de la demanda. De ser así, es posible que solo tengas razón en parte.

    Modelos extrapolativos vs causales

    La mayoría de los pronósticos de demanda utilizan modelos extrapolativos. También llamados modelos de series de tiempo, estos pronostican la demanda usando solo los valores pasados de la demanda de un artículo. Los gráficos de valores pasados revelan la tendencia, la estacionalidad y la volatilidad, por lo que son buenos para muchas cosas. Pero existe otro tipo de modelo, los modelos causales, que potencialmente pueden mejorar la precisión de los pronósticos más allá de lo que puede obtener de los modelos extrapolativos.

    Los modelos causales aportan más datos de entrada a la tarea de previsión: información sobre supuestos "impulsores" de previsión externos al historial de demanda de un artículo. Los ejemplos de factores causales potencialmente útiles incluyen variables macroeconómicas como la tasa de inflación, la tasa de crecimiento del PIB y los precios de las materias primas. Los ejemplos que no están vinculados a la economía nacional incluyen las tasas de crecimiento específicas de la industria y el gasto publicitario propio y de la competencia. Estas variables generalmente se utilizan como entradas para los modelos de regresión, que son ecuaciones con la demanda como salida y variables causales como entradas.

    Pronóstico utilizando modelos causales

    Muchas empresas tienen un proceso S&OP que implica una revisión mensual de pronósticos estadísticos (extrapolativos) en los que la gerencia ajusta los pronósticos según su criterio. A menudo, esta es una forma indirecta y subjetiva de trabajar con modelos causales en el proceso sin hacer el modelo de regresión.

    Para hacer realmente un modelo de regresión causal, primero debe designar una lista de variables predictoras causales potencialmente útiles. Estos pueden provenir de su experiencia en la materia. Por ejemplo, suponga que fabrica vidrio para ventanas. Gran parte de su vidrio puede terminar en casas nuevas y edificios de oficinas nuevos. Por lo tanto, la cantidad de casas y oficinas nuevas que se están construyendo son variables predictoras plausibles en una ecuación de regresión.

    Aquí hay una complicación: si está usando la ecuación para predecir algo, primero debe predecir los predictores. Por ejemplo, las ventas de vidrio del próximo trimestre pueden estar fuertemente relacionadas con el número de viviendas nuevas y edificios de oficinas nuevos el próximo trimestre. Pero, ¿cuántas casas nuevas habrá el próximo trimestre? Ese es su propio problema de pronóstico. Entonces, tiene un modelo de pronóstico potencialmente poderoso, pero tiene trabajo adicional que hacer para que sea utilizable.

    Hay una forma de simplificar las cosas: si las variables predictoras son versiones "retrasadas" de sí mismas. Por ejemplo, la cantidad de nuevos permisos de construcción emitidos hace seis meses puede ser un buen predictor de las ventas de vidrio el próximo mes. No tiene que predecir los datos del permiso de construcción, solo tiene que buscarlos.

    ¿Es una relación causal o simplemente una correlación espuria?

    Los modelos causales son el verdadero negocio: hay un mecanismo real que relaciona la variable predictora con la variable predicha. El ejemplo de predecir las ventas de vidrio a partir de los permisos de construcción es un ejemplo.

    Una relación de correlación es más dudosa. Existe una asociación estadística que puede o no proporcionar una base sólida para la previsión. Por ejemplo, suponga que vende un producto que atrae más a los holandeses pero no se da cuenta. Los holandeses son, en promedio, las personas más altas de Europa. Si sus ventas están aumentando y la altura promedio de los europeos está aumentando, puede usar esa relación con buenos resultados. Sin embargo, si la proporción de holandeses en la zona euro está disminuyendo mientras que la estatura promedio está aumentando porque la mezcla de hombres versus mujeres se está desplazando hacia los hombres, ¿qué puede salir mal? Esperará que las ventas aumenten porque la estatura promedio está aumentando. Pero sus ventas son principalmente a los holandeses, y su proporción relativa de la población se está reduciendo, por lo que sus ventas realmente van a disminuir. En este caso, la asociación entre las ventas y la altura del cliente es una correlación espuria.

    ¿Cómo se puede saber la diferencia entre relaciones verdaderas y espurias? El estándar de oro es hacer un experimento científico riguroso. Pero no es probable que esté en condiciones de hacerlo. En cambio, debe confiar en su “modelo mental” personal de cómo funciona su mercado. Si sus corazonadas son correctas, entonces sus modelos causales potenciales se correlacionarán con la demanda y los modelos causales le darán sus frutos, ya sea para complementar los modelos extrapolables o para reemplazarlos.

     

     

     

     

    Tres formas de estimar la precisión del pronóstico

    La precisión del pronóstico es una métrica clave para juzgar la calidad de su proceso de planificación de la demanda. (No es el único. Otros incluyen oportunidad y costo; Ver 5 consejos de planificación de la demanda para calcular la incertidumbre del pronóstico.) Una vez que tenga los pronósticos, hay varias formas de resumir su precisión, generalmente designados por acrónimos oscuros de tres o cuatro letras como MAPE, RMSE y MAE. Ver Cuatro formas útiles de medir el error de pronóstico para más detalles.

    Un tema menos discutido pero más fundamental es cómo se organizan los experimentos computacionales para calcular el error de pronóstico. Esta publicación compara los tres diseños experimentales más importantes. Uno de ellos es de la vieja escuela y esencialmente equivale a hacer trampa. Otro es el patrón oro. Un tercero es un recurso útil que imita el patrón oro y se considera mejor como una predicción de cómo resultará el patrón oro. La figura 1 es una vista esquemática de los tres métodos.

     

    Tres formas de estimar la precisión del pronóstico Software Smart

    Figura 1: Tres formas de evaluar el error de pronóstico

     

    El panel superior de la Figura 1 muestra la forma en que se evaluó el error de pronóstico a principios de la década de 1980 antes de que moviéramos el estado del arte al esquema que se muestra en el panel central. En los viejos tiempos, los pronósticos se evaluaban con los mismos datos que se usaban para calcular los pronósticos. Después de ajustar un modelo a los datos, los errores calculados no eran para los pronósticos del modelo sino para el modelo. encaja. La diferencia es que los pronósticos son para valores futuros, mientras que los ajustes son para valores concurrentes. Por ejemplo, suponga que el modelo de pronóstico es un promedio móvil simple de las tres observaciones más recientes. En el momento 3, el modelo calcula el promedio de las observaciones 1, 2 y 3. Este promedio luego se compararía con el valor observado en el momento 3. Llamamos a esto hacer trampa porque el valor observado en el momento 3 obtuvo un voto sobre el pronóstico. debería ser en el momento 3. Una evaluación de pronóstico real compararía el promedio de las primeras tres observaciones con el valor del próximo, cuarto, observación. De lo contrario, el pronosticador se queda con una evaluación demasiado optimista de la precisión del pronóstico.

    El panel inferior de la Figura 1 muestra la mejor manera de evaluar la precisión del pronóstico. En este esquema, todos los datos históricos de demanda se utilizan para ajustar un modelo, que luego se utiliza para pronosticar valores de demanda futuros desconocidos. Eventualmente, el futuro se desarrolla, los verdaderos valores futuros se revelan y se pueden calcular los errores de pronóstico reales. Este es el estándar de oro. Esta información completa el informe de "pronósticos versus datos reales" en nuestro software.

    El panel central representa una medida intermedia útil. El problema con el patrón oro es que debe esperar para saber qué tan bien funcionan los métodos de pronóstico elegidos. Este retraso no ayuda cuando se requiere elegir, en el momento, qué método de pronóstico usar para cada artículo. Tampoco proporciona una estimación oportuna de la incertidumbre del pronóstico que experimentará, lo cual es importante para la gestión de riesgos, como la cobertura del pronóstico. El camino intermedio se basa en el análisis de exclusión, que excluye (“excluye”) las observaciones más recientes y le pide al método de pronóstico que haga su trabajo sin conocer esas verdades fundamentales. Luego, los pronósticos basados en el historial de demanda abreviado se pueden comparar con los valores reales retenidos para obtener una evaluación honesta del error de pronóstico.

     

     

    Lo que Silicon Valley Bank puede aprender de la planificación de la cadena de suministro

    Si últimamente tenías la cabeza en alto, es posible que hayas notado alguna locura adicional fuera de la cancha de baloncesto: el fracaso del Silicon Valley Bank. Aquellos de nosotros en el mundo de la cadena de suministro tal vez hayamos descartado la quiebra del banco como un problema de otra persona, pero ese lamentable episodio también contiene una gran lección para nosotros: la importancia de hacer bien las pruebas de estrés.

    Él El Correo de Washington Recientemente se publicó un artículo de opinión de Natasha Sarin llamado “Los reguladores se perdieron los problemas de Silicon Valley Bank durante meses. Este es el por qué." Sarin describió las fallas en el régimen de pruebas de estrés impuesto al banco por la Reserva Federal. Un problema es que las pruebas de estrés son demasiado estáticas. El factor de estrés de la Fed para el crecimiento del PIB nominal fue un escenario único que enumeraba valores supuestos durante los próximos 13 trimestres (ver Figura 1). Esas 13 proyecciones trimestrales pueden ser la opinión consensuada de alguien sobre cómo se vería un mal día para el cabello, pero esa no es la única forma en que podrían desarrollarse las cosas. Como sociedad, se nos enseña a apreciar una mejor manera de mostrar las contingencias cada vez que el Servicio Meteorológico Nacional nos muestra las trayectorias proyectadas de los huracanes (consulte la Figura 2). Cada escenario representado por una línea de color diferente muestra una posible trayectoria de tormenta, y las líneas concentradas representan la más probable. Al exponer las rutas de menor probabilidad, se mejora la planificación de riesgos.

    Al realizar pruebas de estrés en la cadena de suministro, necesitamos escenarios realistas de posibles demandas futuras que podrían ocurrir, incluso demandas extremas. Smart proporciona esto en nuestro software (con mejoras considerables en nuestros métodos Gen2). El software genera una gran cantidad de escenarios de demanda creíbles, suficientes para exponer el alcance completo de los riesgos (consulte la Figura 3). Las pruebas de estrés tienen que ver con la generación de cantidades masivas de escenarios de planificación, y los métodos probabilísticos de Smart son una desviación radical de las aplicaciones S&OP deterministas anteriores, ya que se basan completamente en escenarios.

    La otra falla en las pruebas de estrés de la Fed fue que fueron diseñadas con meses de anticipación pero nunca actualizadas para las condiciones cambiantes. Los planificadores de la demanda y los gerentes de inventario aprecian intuitivamente que las variables clave como la demanda de artículos y el tiempo de entrega del proveedor no solo son muy aleatorias, incluso cuando las cosas son estables, sino que también están sujetas a cambios abruptos que deberían requerir una reescritura rápida de los escenarios de planificación (consulte la Figura 4, donde la demanda promedio salta dramáticamente entre las observaciones 19 y 20). Los productos Gen2 de Smart incluyen nueva tecnología para detectar tales "cambios de régimen” y cambiando automáticamente los escenarios en consecuencia.

    Los bancos se ven obligados a someterse a pruebas de estrés, por muy defectuosas que sean, para proteger a sus depositantes. Los profesionales de la cadena de suministro ahora tienen una manera de proteger sus cadenas de suministro mediante el uso de un software moderno para realizar pruebas de estrés de sus planes de demanda y decisiones de gestión de inventario.

    1 Escenarios que utilizó la Fed para hacer pruebas de estrés a los bancos Software

    Figura 1: Escenarios utilizados por la Fed para hacer pruebas de estrés a los bancos.

     

    2 escenarios utilizados por el Servicio Meteorológico Nacional para predecir las trayectorias de los huracanes

    Figura 2: Escenarios utilizados por el Servicio Meteorológico Nacional para predecir las trayectorias de los huracanes

     

    3 Escenarios de demanda del tipo generado por Smart Demand Planner

    Figura 3: Escenarios de demanda del tipo generado por Smart Demand Planner

     

    4 Ejemplo de cambio de régimen en la demanda del producto después de la observación #19

    Figura 4: Ejemplo de cambio de régimen en la demanda del producto después de la observación #19