¿Cómo vamos? KPI y KPP

Lidiar con el día a día de la gestión de inventario puede mantenerle ocupado. Existe el ritmo habitual de realizar pedidos, recibir, pronosticar y planificar, y mover cosas en el almacén. Luego están los tiempos frenéticos: escasez, trámites urgentes, llamadas de último momento para encontrar nuevos proveedores.

Toda esta actividad va en contra de tomarte un momento para ver cómo te va. Pero sabes que tienes que levantar la cabeza de vez en cuando para ver hacia dónde te diriges. Para eso, su software de inventario debe mostrarle métricas (y no solo una, sino un conjunto completo de métricas o KPI): indicadores clave de rendimiento.

Múltiples métricas

Dependiendo de su rol en su organización, diferentes métricas tendrán diferente importancia. Si usted está en el lado financiero de la casa, la inversión en inventario puede ser una prioridad: ¿cuánto efectivo está invertido en el inventario? Si está del lado de las ventas, la disponibilidad del artículo puede ser lo más importante: ¿cuál es la probabilidad de que pueda decir “sí” a un pedido? Si usted es responsable del reabastecimiento, ¿cuántas órdenes de compra tendrá que recortar su gente en el próximo trimestre?

Métricas de disponibilidad

Volvamos a la disponibilidad de artículos. ¿Cómo se le pone un número a eso? Las dos métricas de disponibilidad más utilizadas son el "nivel de servicio" y la "tasa de cumplimiento". ¿Cual es la diferencia? Es la diferencia entre decir “Ayer tuvimos un terremoto” y decir “Ayer tuvimos un terremoto y fue de 6,4 en la escala de Richter”. El nivel de servicio registra la frecuencia de los desabastecimientos sin importar su tamaño; la tasa de cumplimiento refleja su gravedad. Los dos pueden parecer apuntar en direcciones opuestas, lo que causa cierta confusión. Puede tener un buen nivel de servicio, digamos 90%, pero tener una tasa de cumplimiento vergonzosa, digamos 50%. O viceversa. Lo que los diferencia es la distribución del tamaño de la demanda. Por ejemplo, si la distribución está muy sesgada, por lo que la mayoría de las demandas son pequeñas pero algunas son enormes, es posible que obtenga la división 90%/50% mencionada anteriormente. Si su atención se centra en la frecuencia con la que debe realizar pedidos pendientes, el nivel de servicio es más relevante. Si su preocupación es qué tan grande puede llegar a ser un trámite urgente, la tasa de cumplimiento es más relevante.

Un gráfico para gobernarlos a todos

Un gráfico del inventario disponible puede proporcionar la base para calcular múltiples KPI. Considere la Figura 1, que muestra los datos disponibles cada día durante un año. Este gráfico tiene la información necesaria para calcular múltiples métricas: inversión en inventario, nivel de servicio, tasa de cumplimiento, tasa de reorden y otras métricas.

Key performace indicators and paramenters for inventory management

Inversión en inventario: la altura promedio del gráfico cuando es superior a cero, cuando se multiplica por el costo unitario del artículo del inventario, da el valor en dólares trimestral.

Nivel de servicio: la fracción de ciclos de inventario que terminan por encima de cero es el nivel de servicio. Los ciclos de inventario están marcados por los movimientos ascendentes ocasionados por la llegada de pedidos de reabastecimiento.

Tasa de cumplimiento: la cantidad en la que el inventario cae por debajo de cero y cuánto tiempo permanece allí se combinan para determinar la tasa de cumplimiento.

En este caso, el número promedio de unidades disponibles fue 10,74, el nivel de servicio fue 54% y la tasa de cumplimiento fue 91%.

 

KPI y KPP

En los más de cuarenta años transcurridos desde que fundamos Smart Software, nunca he visto a un cliente producir un gráfico como el de la Figura 1. Aquellos que están más avanzados en su desarrollo sí producen y prestan atención a informes que enumeran sus KPI en forma tabular, pero no No mires ese gráfico. Sin embargo, ese gráfico tiene valor para desarrollar información sobre los ritmos aleatorios del inventario a medida que sube y baja.

Donde resulta especialmente útil es en la prospectiva. Dada la volatilidad del mercado, variables clave como los plazos de entrega de los proveedores, la demanda promedio y la variabilidad de la demanda cambian con el tiempo. Esto implica que los parámetros de control clave, como los puntos de reorden y las cantidades de los pedidos, deben ajustarse a estos cambios. Por ejemplo, si un proveedor dice que tendrá que aumentar su tiempo de entrega promedio en 2 días, esto afectará negativamente sus métricas y es posible que deba aumentar su punto de reorden para compensar. ¿Pero aumentarlo en cuánto?

Aquí es donde entra en juego el software de inventario moderno. Le permitirá proponer un ajuste y luego ver cómo se desarrollarán las cosas. Gráficos como el de la Figura 1 permiten ver y tener una idea del nuevo régimen. Y los gráficos se pueden analizar para calcular KPP (predicciones clave de rendimiento).

La ayuda del KPP elimina las conjeturas a la hora de realizar ajustes. Puede simular lo que sucederá con sus KPI si los cambia en respuesta a cambios en su entorno operativo y qué tan mal se pondrán las cosas si no realiza cambios.

 

 

 

 

¿Confundido acerca de la IA y el aprendizaje automático?

¿Está confundido acerca de qué es la IA y qué es el aprendizaje automático? ¿No está seguro de por qué saber más le ayudará con su trabajo de planificación de inventario? No te desesperes. Estarás bien y te mostraremos cómo algo de lo que sea puede ser útil.

¿Qué es y qué no es?

¿Qué es la IA y en qué se diferencia del ML? Bueno, ¿qué hace alguien hoy en día cuando quiere saber algo? Lo buscan en Google. Y cuando lo hacen, comienza la confusión.

Una fuente dice que la metodología de la red neuronal llamada aprendizaje profundo es un subconjunto del aprendizaje automático, que es un subconjunto de la IA. Pero otra fuente dice que el aprendizaje profundo ya es parte de la IA porque en cierto modo imita la forma en que funciona la mente humana, mientras que el aprendizaje automático no intenta hacer eso.

Una fuente dice que hay dos tipos de aprendizaje automático: supervisado y no supervisado. Otro dice que hay cuatro: supervisada, no supervisada, semisupervisada y de refuerzo.

Algunos dicen que el aprendizaje por refuerzo es aprendizaje automático; otros lo llaman IA.

Algunos de nosotros, los tradicionalistas, llamamos a muchas de ellas “estadísticas”, aunque no todas lo son.

Al nombrar los métodos, hay mucho espacio tanto para la emoción como para el arte de vender. Si un proveedor de software cree que usted quiere escuchar la frase "IA", es posible que la diga por usted sólo para hacerlo feliz.

Mejor centrarse en lo que sale al final.

Puede evitar algunas exageraciones confusas si se concentra en el resultado final que obtiene de alguna tecnología analítica, independientemente de su etiqueta. Hay varias tareas analíticas que son relevantes para los planificadores de inventario y los planificadores de demanda. Estos incluyen agrupamiento, detección de anomalías, detección de cambios de régimen y análisis de regresión. Los cuatro métodos suelen, aunque no siempre, clasificarse como métodos de aprendizaje automático. Pero sus algoritmos pueden surgir directamente de la estadística clásica.

Agrupación

Agrupar significa agrupar cosas que son similares y distanciarlas de cosas que son diferentes. A veces, agrupar es fácil: para separar geográficamente a sus clientes, simplemente ordénelos por estado o región de ventas. Cuando el problema no es tan obvio, puede utilizar datos y algoritmos de agrupamiento para realizar el trabajo automáticamente, incluso cuando se trata de conjuntos de datos masivos.

Por ejemplo, la Figura 1 ilustra un grupo de “perfiles de demanda”, que en este caso divide todos los artículos de un cliente en nueve grupos según la forma de sus curvas de demanda acumuladas. El grupo 1.1 en la parte superior izquierda contiene artículos cuya demanda se ha ido agotando, mientras que el grupo 3.1 en la parte inferior izquierda contiene artículos cuya demanda se ha acelerado. La agrupación también se puede realizar con proveedores. La elección del número de clústeres normalmente se deja a criterio del usuario, pero ML puede guiar esa elección. Por ejemplo, un usuario puede indicarle al software que "divida mis partes en 4 grupos", pero el uso de ML puede revelar que en realidad hay 6 grupos distintos que el usuario debe analizar. 

 

Confused about AI and Machine Learning Inventory Planning

Figura 1: Agrupación de artículos según las formas de su demanda acumulada

Detección de anomalías

La previsión de la demanda se realiza tradicionalmente mediante la extrapolación de series temporales. Por ejemplo, el suavizado exponencial simple funciona para encontrar el “medio” de la distribución de la demanda en cualquier momento y proyectar ese nivel hacia adelante. Sin embargo, si ha habido un aumento o disminución repentino y único en la demanda en el pasado reciente, ese valor anómalo puede tener un efecto significativo pero no deseado en el pronóstico a corto plazo. Igual de grave para la planificación de inventarios, la anomalía puede tener un efecto enorme en la estimación de la variabilidad de la demanda, que va directamente al cálculo de los requisitos de existencias de seguridad.

Es posible que los planificadores prefieran encontrar y eliminar dichas anomalías (y tal vez hacer un seguimiento fuera de línea para descubrir el motivo de la rareza). Pero nadie que tenga un gran trabajo que hacer querrá escanear visualmente miles de gráficos de demanda para detectar valores atípicos, eliminarlos del historial de demanda y luego volver a calcular todo. La inteligencia humana podría hacer eso, pero la paciencia humana pronto fallaría. Los algoritmos de detección de anomalías podrían hacer el trabajo automáticamente utilizando métodos estadísticos relativamente sencillos. Podrías llamar a esto “inteligencia artificial” si lo deseas.

Detección de cambio de régimen

La detección de cambios de régimen es como el hermano mayor de la detección de anomalías. El cambio de régimen es un cambio sostenido, más que temporal, en uno o más aspectos del carácter de una serie temporal. Si bien la detección de anomalías suele centrarse en cambios repentinos de la demanda media, el cambio de régimen podría implicar cambios en otras características de la demanda, como su volatilidad o su forma distributiva.  

La Figura 2 ilustra un ejemplo extremo de cambio de régimen. La demanda de este artículo tocó fondo alrededor del día 120. Las políticas de control de inventario y los pronósticos de demanda basados en datos más antiguos estarían tremendamente fuera de lugar al final del historial de demanda.

Confused about AI and Machine Learning Demand Planning

Figura 2: Un ejemplo de cambio de régimen extremo en un artículo con demanda intermitente

También en este caso se pueden desarrollar algoritmos estadísticos para resolver este problema, y sería justo llamarlos “aprendizaje automático” o “inteligencia artificial” si así estuviera motivado. El uso de ML o AI para identificar cambios de régimen en el historial de la demanda permite que el software de planificación de la demanda utilice automáticamente solo el historial relevante al realizar pronósticos en lugar de tener que seleccionar manualmente la cantidad de historial para introducirlo en el modelo. 

Análisis de regresión

El análisis de regresión relaciona una variable con otra mediante una ecuación. Por ejemplo, las ventas de marcos de ventanas en un mes pueden predecirse a partir de los permisos de construcción expedidos unos meses antes. El análisis de regresión se ha considerado parte de la estadística durante más de un siglo, pero podemos decir que es "aprendizaje automático", ya que un algoritmo encuentra la manera precisa de convertir el conocimiento de una variable en una predicción del valor de otra.

Resumen

Es razonable estar interesado en lo que sucede en las áreas de aprendizaje automático e inteligencia artificial. Si bien la atención prestada a ChatGPT y sus competidores es interesante, no es relevante para el aspecto numérico de la planificación de la demanda o la gestión de inventario. Los aspectos numéricos del ML y la IA son potencialmente relevantes, pero hay que intentar ver a través de la nube de publicidad que rodea a estos métodos y centrarse en lo que pueden hacer. Si puede hacer el trabajo con métodos estadísticos clásicos, puede hacerlo y luego ejercer su opción de pegar la etiqueta ML a cualquier cosa que se mueva.

 

 

Seis mejores prácticas de planificación de la demanda en las que debería pensar dos veces

Cada campo, incluido el pronóstico, acumula sabiduría popular que eventualmente comienza a disfrazarse de “mejores prácticas”. Estas mejores prácticas suelen ser acertadas, al menos en parte, pero a menudo carecen de contexto y pueden no ser apropiadas para determinados clientes, industrias o situaciones comerciales. A menudo hay un problema, un “Sí, pero”. Esta nota trata sobre seis preceptos de pronóstico generalmente verdaderos que, sin embargo, tienen sus salvedades.

 

  1. Organice su empresa en torno a una previsión de un número. Esto suena sensato: es bueno tener una visión compartida. Pero cada parte de la empresa tendrá su propia idea sobre qué número es el número. Finanzas puede querer ingresos trimestrales, Marketing puede querer visitas al sitio web, Ventas puede querer rotación, Mantenimiento puede querer tiempo medio hasta el fracaso. De hecho, cada unidad probablemente tenga un puñado de métricas clave. No necesitas un eslogan: necesitas hacer tu trabajo.

 

  1. Incorporar el conocimiento empresarial en un proceso de previsión colaborativo. Esta es una buena regla general, pero si su proceso de colaboración tiene fallas, alterar un pronóstico estadístico mediante anulaciones de gestión puede disminuir la precisión. No necesita un eslogan: necesita medir y comparar la precisión de todos y cada uno de los métodos e ir con los ganadores.

 

  1. Previsión mediante modelos causales. Los métodos de pronóstico extrapolativos no tienen en cuenta las fuerzas subyacentes que impulsan sus ventas, simplemente trabajan con los resultados. El modelado causal profundiza en los factores fundamentales y puede mejorar tanto la precisión como el conocimiento. Sin embargo, los modelos causales (implementados mediante análisis de regresión) pueden ser menos precisos, especialmente cuando requieren pronósticos de los factores determinantes (“predicciones de los predictores”) en lugar de simplemente ingresar valores registrados de variables predictoras rezagadas. No necesitas un eslogan: necesitas una comparación directa.

 

  1. Pronosticar la demanda en lugar de los envíos. Lo que realmente se desea es demanda, pero “componer una señal de demanda” puede ser complicado: ¿qué se hace con las transferencias internas? ¿Únicos? ¿Ventas perdidas? Además, los datos de la demanda pueden manipularse. Por ejemplo, si los clientes intencionalmente no realizan pedidos o intentan manipular sus pedidos haciendo pedidos con demasiada anticipación, entonces el historial de pedidos no será mejor que el historial de envíos. al menos con historial de envíos, es exacto: sabes lo que enviaste. Las previsiones de envíos no son previsiones de “demanda”, pero son un sólido punto de partida.

 

  1. Utilice métodos de aprendizaje automático. En primer lugar, el “aprendizaje automático” es un concepto elástico que incluye un conjunto cada vez mayor de alternativas. Debajo del capó de muchos modelos anunciados por ML hay solo una selección automática un método de pronóstico extrapolativo (es decir, mejor ajuste) que, si bien es excelente para pronosticar la demanda normal, existe desde la década de 1980 (Smart Software fue la primera compañía en lanzar un método de selección automática para PC). Los modelos de aprendizaje automático acaparan datos y requieren conjuntos de datos más grandes de los que puede tener disponibles. Elegir adecuadamente y luego entrenar un modelo de ML requiere un nivel de experiencia estadística que es poco común en muchas empresas de fabricación y distribución. Es posible que desees encontrar a alguien que te tome de la mano antes de comenzar a jugar este juego.

 

  1. Eliminar los valores atípicos crea mejores pronósticos. Si bien es cierto que picos o caídas muy inusuales en la demanda enmascararán patrones de demanda subyacentes como la tendencia o la estacionalidad, no siempre es cierto que se deban eliminar los picos. A menudo, estos aumentos repentinos de la demanda reflejan la incertidumbre que puede interferir aleatoriamente con su negocio y, por lo tanto, es necesario tenerlo en cuenta. Eliminar este tipo de datos de su modelo de pronóstico de demanda puede hacer que los datos sean más predecibles en papel, pero lo dejará sorprendido cuando vuelva a suceder. Por lo tanto, tenga cuidado al eliminar los valores atípicos, especialmente en masa.

 

 

 

 

Una introducción suave a dos técnicas avanzadas: Bootstrapping estadístico y simulación de Monte Carlo

Resumen

El análisis avanzado de la cadena de suministro de Smart Software explota múltiples métodos avanzados. Dos de los más importantes son el “bootstrapping estadístico” y la “simulación Monte Carlo”. Dado que ambos involucran muchos números aleatorios que vuelan, la gente a veces se confunde acerca de cuál es cuál y para qué sirven. Por eso, esta nota. En pocas palabras: el arranque estadístico genera escenarios de demanda para la previsión. La simulación de Monte Carlo utiliza los escenarios para la optimización del inventario.

arranque

Bootstrapping, también llamado "remuestreo", es un método de estadísticas computacionales que utilizamos para crear escenarios de demanda para la previsión. La esencia del problema de pronóstico es exponer los posibles futuros que su empresa podría enfrentar para que pueda averiguar cómo administrar los riesgos comerciales. Los métodos de pronóstico tradicionales se enfocan en calcular los futuros "más probables", pero no llegan a presentar el panorama completo del riesgo. Bootstrapping proporciona un número ilimitado de escenarios hipotéticos realistas.

Bootstrapping hace esto sin hacer suposiciones poco realistas sobre la demanda, es decir, que no es intermitente o que tiene una distribución de tamaños en forma de campana. Esas suposiciones son muletas para simplificar las matemáticas, pero el arranque es un procedimiento, no una ecuación, por lo que no necesita tales simplificaciones.

Para el tipo de demanda más simple, que es una aleatoriedad estable sin estacionalidad ni tendencia, el arranque es muy fácil. Para tener una idea razonable de cuál podría ser el valor de una sola demanda futura, elija una de las demandas históricas al azar. Para crear un escenario de demanda, haga múltiples selecciones aleatorias del pasado y únalas. Hecho. Es posible agregar un poco más de realismo "variando" los valores de demanda, es decir, agregando o restando un poco de aleatoriedad adicional a cada uno, pero incluso eso es simple.

La figura 1 muestra un arranque simple. La primera línea es una secuencia corta de la demanda histórica de un SKU. Las siguientes líneas muestran escenarios de demanda futura creados al seleccionar aleatoriamente valores del historial de demanda. Por ejemplo, las siguientes tres demandas pueden ser (0, 14, 6), o (2, 3, 5), etc.

Statistical Bootstrapping and Monte Carlo Simulation 1

Figura 1: Ejemplo de escenarios de demanda generados por un arranque simple

 

Las operaciones de mayor frecuencia, como los pronósticos diarios, traen consigo patrones de demanda más complejos, como la doble estacionalidad (p. ej., día de la semana y mes del año) y/o tendencia. Esto nos desafió a inventar una nueva generación de algoritmos de arranque. Recientemente obtuvimos una patente de EE. UU. para este avance, pero la esencia es la descrita anteriormente.

Simulación del Monte Carlo

Montecarlo es famoso por sus casinos que, al igual que el bootstrapping, invocan la idea de la aleatoriedad. Los métodos de Monte Carlo se remontan a mucho tiempo atrás, pero el ímpetu moderno vino con la necesidad de hacer algunos cálculos peludos sobre dónde volarían los neutrones cuando explota una bomba atómica.

La esencia del análisis de Monte Carlo es esta: “Nuestro problema es demasiado complicado para analizarlo con ecuaciones de papel y lápiz. Entonces, escribamos un programa de computadora que codifique los pasos individuales del proceso, coloque los elementos aleatorios (por ejemplo, en qué dirección se dispara un neutrón), déle cuerda y observe cómo funciona. Dado que hay mucha aleatoriedad, ejecutemos el programa un millón de veces y promediemos los resultados”.

Al aplicar este enfoque a la gestión de inventario, tenemos un conjunto diferente de eventos que ocurren aleatoriamente: por ejemplo, una demanda de un tamaño determinado llega un día aleatorio, un reabastecimiento de un tamaño determinado llega después de un tiempo de espera aleatorio, recortamos un PO de reabastecimiento de un tamaño determinado cuando las existencias caen hasta un punto de pedido determinado o por debajo de él. Codificamos la lógica que relaciona estos eventos en un programa. Lo alimentamos con una secuencia de demanda aleatoria (consulte el arranque anterior), ejecutamos el programa durante un tiempo, digamos un año de operaciones diarias, calculamos métricas de rendimiento como Tasa de llenado y Promedio de inventario disponible, y "tiramos los dados" volviendo a ejecutar el programa muchas veces y promediando los resultados de muchos años simulados. El resultado es una buena estimación de lo que sucede cuando tomamos decisiones gerenciales clave: “Si establecemos el punto de reorden en 10 unidades y la cantidad de la orden en 15 unidades, podemos esperar obtener un nivel de servicio de 89% y un promedio disponible de 21 unidades.” Lo que la simulación está haciendo por nosotros es exponer las consecuencias de las decisiones de gestión basadas en escenarios de demanda realistas y matemáticas sólidas. Las conjeturas se han ido.

La figura 2 muestra parte del funcionamiento interno de una simulación de Monte Carlo de un sistema de inventario en cuatro paneles. El sistema utiliza una política de control de inventario Min/Max con Min=10 y Max=25. No se permiten pedidos atrasados: tienes el bien o pierdes el negocio. Los plazos de entrega del reabastecimiento suelen ser de 7 días, pero a veces de 14. Esta simulación duró un año.

El primer panel muestra un escenario complejo de demanda aleatoria en el que no hay demanda los fines de semana, pero la demanda generalmente aumenta cada día de lunes a viernes. El segundo panel muestra el número aleatorio de unidades disponibles, que sube y baja con cada ciclo de reabastecimiento. El tercer panel muestra los tamaños aleatorios y los tiempos de los pedidos de reposición que llegan del proveedor. El panel final muestra la demanda insatisfecha que pone en peligro las relaciones con los clientes. Este tipo de detalle puede ser muy útil para comprender mejor la dinámica de un sistema de inventario.

Statistical Bootstrapping and Monte Carlo Simulation 2

Figura 2: Detalles de una simulación de Monte Carlo

 

La Figura 2 muestra solo una de las innumerables formas en que podría desarrollarse el año. Generalmente, queremos promediar los resultados de muchos años simulados. Después de todo, nadie lanzaría una moneda al aire una vez para decidir si era una moneda justa. La Figura 3 muestra cómo cuatro métricas de rendimiento clave (KPI) varían de un año a otro para este sistema. Algunas métricas son relativamente estables en todas las simulaciones (tasa de llenado), pero otras muestran una variabilidad más relativa (costo operativo = costo de mantenimiento + costo de pedido + costo de escasez). Observando los gráficos, podemos estimar que las opciones de Min=10, Max=25 conducen a un costo operativo promedio de alrededor de $3,000 por año, una tasa de llenado de alrededor de 90%, un nivel de servicio de alrededor de 75% y un promedio de encendido. mano de unos 10

Statistical Bootstrapping and Monte Carlo Simulation 3

Figura 3: Variación en los KPI calculados durante 1000 años simulados

 

De hecho, ahora es posible responder a una pregunta de gestión de mayor nivel. Podemos ir más allá de "¿Qué pasará si hago tal y tal cosa?" a “¿Cuál es el mejor ¿Qué puedo hacer para lograr una tasa de relleno de al menos 90% para este artículo al costo más bajo posible? El matemágica  detrás de este salto hay otra tecnología clave llamada "optimización estocástica", pero nos detendremos aquí por ahora. Baste decir que el software SIO&P de Smart puede buscar en el "espacio de diseño" de los valores mínimo y máximo para encontrar automáticamente la mejor opción.

 

¿Qué hace un pronóstico probabilístico?

¿Qué es todo el alboroto en torno al término "pronóstico probabilístico"? ¿Es solo un término de marketing más reciente que algunos proveedores de software y consultores han acuñado para fingir innovación? ¿Hay alguna diferencia tangible real en comparación con las técnicas anteriores de "mejor ajuste"? ¿No son todos los pronósticos probabilísticos de todos modos?

Para responder a esta pregunta, es útil pensar en lo que realmente le dice el pronóstico en términos de probabilidades. Un pronóstico "bueno" debe ser imparcial y, por lo tanto, arrojar una probabilidad de 50/50 de ser mayor o menor que el real. Un pronóstico "malo" generará amortiguadores subjetivos (o deprimirá artificialmente el pronóstico) y dará como resultado una demanda sesgada hacia arriba o hacia abajo. Considere a un vendedor que reduce intencionalmente su pronóstico al no informar las ventas que espera cerrar para ser "conservador". Sus pronósticos tendrán un sesgo de pronóstico negativo ya que los datos reales casi siempre serán más altos de lo que predijeron. Por otro lado, considere un cliente que proporciona un pronóstico inflado a su fabricante. Preocupados por los desabastecimientos, sobrestiman la demanda para asegurar su suministro. Su pronóstico tendrá un sesgo positivo ya que los datos reales casi siempre serán más bajos de lo que predijeron. 

Estos tipos de pronósticos de un número descritos anteriormente son problemáticos. Nos referimos a estas predicciones como "pronósticos puntuales", ya que representan un punto (o una serie de puntos a lo largo del tiempo) en un gráfico de lo que podría suceder en el futuro. No brindan una imagen completa porque para tomar decisiones comerciales efectivas, como determinar cuánto inventario almacenar o la cantidad de empleados disponibles para respaldar la demanda, se requiere información detallada sobre cuánto más bajo o más alto será el real. En otras palabras, necesita las probabilidades de cada posible resultado que podría ocurrir. Entonces, por sí mismo, el pronóstico puntual no es probabilístico.   

Para obtener un pronóstico probabilístico, debe conocer la distribución de las posibles demandas en torno a ese pronóstico. Una vez que calcula esto, el pronóstico se convierte en "probabilidad". La forma en que los sistemas de pronóstico y los profesionales, como planificadores de demanda, analistas de inventario, gerentes de materiales y directores financieros, determinan estas probabilidades es el núcleo de la pregunta: "¿qué hace que un pronóstico sea probabilístico?"     

Distribuciones normales
La mayoría de los pronósticos y los sistemas/software que los producen comienzan con una predicción de la demanda. Luego, calculan el rango de posibles demandas en torno a ese pronóstico al hacer suposiciones teóricas incorrectas sobre la distribución. Si alguna vez usó un "intervalo de confianza" en su software de pronóstico, esto se basa en una distribución de probabilidad alrededor del pronóstico. La forma en que se determina este rango de demanda es asumiendo un tipo particular de distribución. La mayoría de las veces esto significa asumir una forma de campana, también conocida como distribución normal. Cuando la demanda es intermitente, algunos sistemas de optimización de inventario y previsión de la demanda pueden suponer que la demanda tiene forma de Poisson. 

Después de crear el pronóstico, la distribución supuesta se aplica alrededor del pronóstico de demanda y luego tiene su estimación de probabilidades para cada demanda posible, es decir, un "pronóstico probabilístico". Estas estimaciones de la demanda y las probabilidades asociadas se pueden usar para determinar valores extremos o cualquier valor intermedio si se desea. Los valores extremos en los percentiles superiores de la distribución (es decir, 92%, 95%, 99%, etc.) se utilizan con mayor frecuencia como entradas para los modelos de control de inventario. Por ejemplo, los puntos de pedido de piezas de repuesto críticas en una empresa de servicios eléctricos pueden planificarse en función de un nivel de servicio de 99,51 TP3T o incluso superior. Mientras que una pieza de servicio no crítica podría planificarse en un nivel de servicio 85% o 90%.

El problema de hacer suposiciones sobre la distribución es que estas probabilidades se equivocarán. Por ejemplo, si la demanda no se distribuye normalmente pero está forzando una curva normal/en forma de campana en el pronóstico, entonces, ¿cómo es posible que las probabilidades sean incorrectas? Específicamente, es posible que desee saber el nivel de inventario necesario para lograr una probabilidad 99% de no quedarse sin existencias y la distribución normal le indicará que almacene 200 unidades. Pero cuando se compara con la demanda real, descubre que 200 unidades solo llenaron la demanda por completo en 40/50 observaciones. Entonces, en lugar de obtener un nivel de servicio 99%, ¡solo logró un nivel de servicio 80%! Esta es una falla gigantesca que resulta de intentar encajar una clavija cuadrada en un agujero redondo. El error lo habría llevado a tomar una reducción de inventario incorrecta.

Las distribuciones estimadas empíricamente son inteligentes
Para producir un pronóstico probabilístico inteligente (lectura precisa), primero debe estimar la distribución de la demanda empíricamente sin suposiciones ingenuas sobre la forma de la distribución. Smart Software hace esto mediante la ejecución de decenas de miles de escenarios simulados de demanda y tiempo de entrega. Nuestra solución aprovecha técnicas patentadas que incorporan simulación Monte Carlo, Bootstrapping estadístico y otros métodos. Los escenarios están diseñados para simular la incertidumbre y la aleatoriedad de la vida real tanto de la demanda como de los plazos de entrega. Las observaciones históricas reales se utilizan como entradas principales, pero la solución también le dará la opción de simular a partir de valores no observados. Por ejemplo, el hecho de que 100 unidades hayan sido la demanda histórica máxima no significa que esté garantizado alcanzar un máximo de 100 en el futuro. Después de terminar los escenarios, sabrá la probabilidad exacta de cada resultado. El pronóstico “puntual” se convierte entonces en el centro de esa distribución. Cada período futuro a lo largo del tiempo se expresa en términos de la distribución de probabilidad asociada con ese período.

Líderes en Pronóstico Probabilístico
Smart Software, Inc. fue la primera empresa en introducir el arranque estadístico como parte de un sistema de software de pronóstico de demanda disponible comercialmente hace veinte años. En ese momento se nos otorgó una patente de EE. UU. y se nos nombró finalista en los Premios a la Excelencia Corporativa APICS para la Innovación Tecnológica. Nuestro Investigación patrocinada por la NSF que condujo a este y otros descubrimientos fueron fundamentales para avanzar en la previsión y la optimización del inventario. Estamos comprometidos con la innovación continua, y usted puede encuentre más información sobre nuestra patente más reciente aquí.