Una guía práctica para desarrollar un proceso de pronóstico profesional

Muchas empresas que buscan mejorar su proceso de pronóstico no saben por dónde empezar. Puede ser confuso lidiar con el aprendizaje de nuevos métodos estadísticos, asegurarse de que los datos estén correctamente estructurados y actualizados, acordar quién es el "propietario" del pronóstico, definir qué significa propiedad y medir la precisión. Habiendo visto esto durante más de cuarenta años de práctica, escribimos este blog para delinear el enfoque central y alentarlo a mantenerlo simple desde el principio.

1. Objetividad. Primero, comprenda y comunique que el proceso de Planificación y Pronóstico de la Demanda es un ejercicio de objetividad. El enfoque está en obtener aportes de varias fuentes (partes interesadas, clientes, gerentes funcionales, bases de datos, proveedores, etc.) y decidir si esos aportes agregan valor. Por ejemplo, si anula un pronóstico estadístico y agrega 20% a la proyección, no debe simplemente asumir que lo hizo correctamente automáticamente. En su lugar, sea objetivo y verifique si eso anula el aumento o la disminución de la precisión del pronóstico. Si descubre que sus anulaciones empeoraron las cosas, ha ganado algo: esto informa el proceso y sabe cómo analizar mejor las decisiones de anulación en el futuro.

2. Trabajo en equipo. Reconocer que la previsión y la planificación de la demanda son deportes de equipo. Acuerde quién será el capitán del equipo. El capitán es responsable de crear los pronósticos estadísticos de referencia y de supervisar el proceso de planificación de la demanda. Pero los resultados dependen de que todos los miembros del equipo realicen contribuciones positivas, proporcionen datos, sugieran metodologías alternativas, cuestionen las suposiciones y ejecuten las acciones recomendadas. Los resultados finales son propiedad de la empresa y de cada una de las partes interesadas.

3. Medición. No se obsesione con los puntos de referencia de precisión de los pronósticos de la industria. Cada SKU tiene su propio nivel de "previsibilidad", y es posible que esté gestionando cualquier número de elementos difíciles. En su lugar, cree sus propios puntos de referencia basados en una secuencia de métodos de pronóstico cada vez más avanzados. Los pronósticos estadísticos avanzados pueden parecer abrumadoramente complejos al principio, así que comience de manera simple con un método básico, como pronosticar la demanda promedio histórica. Luego, mida qué tan cerca está ese pronóstico simple de la demanda real observada. A partir de ahí, desarrolle técnicas que se ocupen de complicaciones como la tendencia y la estacionalidad. Mida el progreso utilizando métricas de precisión calculadas por su software, como el error porcentual absoluto medio (MAPE). Esto permitirá que su empresa mejore un poco cada ciclo de pronóstico.

4. Tiempo. Luego concentre sus esfuerzos en hacer que la previsión sea un proceso independiente que no se combine con el complejo proceso de optimización del inventario. La gestión de inventario se basa en una sólida previsión de la demanda, pero se centra en otros temas: qué comprar, cuándo comprar, cantidades mínimas de pedido, existencias de seguridad, niveles de inventario, plazos de entrega de los proveedores, etc. Deje que la gestión de inventario pase a más adelante . Primero construya "músculo de pronóstico" creando, revisando y evolucionando el proceso de pronóstico para tener una cadencia regular. Cuando su proceso haya madurado lo suficiente, póngase al día con la velocidad creciente de los negocios aumentando el ritmo de su proceso de previsión a una cadencia mensual como mínimo.

Observaciones

Revisar el proceso de previsión de una empresa puede ser un paso importante. A veces sucede cuando hay rotación de ejecutivos, a veces cuando hay un nuevo sistema ERP, a veces cuando hay un nuevo software de pronóstico. Cualquiera que sea el evento precipitante, este cambio es una oportunidad para repensar y refinar cualquier proceso que haya tenido antes. Pero tratar de comerse todo el elefante de una sola vez es un error. En este blog, describimos algunos pasos discretos que puede seguir para lograr una evolución exitosa hacia un mejor proceso de pronóstico.

 

 

 

 

Por qué las curvas de compensación de piezas de repuesto son de misión crítica para la planificación de piezas

Apuesto a que sus equipos de mantenimiento y reparación estarían de acuerdo con incurrir en mayores riesgos de falta de existencias uno alguno piezas de repuesto si supieran que los ahorros de reducción de inventario se utilizarían para distribuir la inversión en inventario de manera más efectiva para otro repuestos y aumentar los niveles generales de servicio.

Duplicaré que su equipo de finanzas, a pesar de que siempre se enfrenta al desafío de reducir los costos, respaldaría un aumento saludable del inventario si pudiera ver claramente que los ingresos se benefician de un mayor tiempo de actividad, menos agilidades y mejoras en el nivel de servicio claramente superan los costos de inventario adicionales y riesgo

La curva de compensación de piezas de repuesto permitirá a los equipos de planificación de repuestos comunicar adecuadamente los riesgos y costos de cada decisión de inventario. Es una misión crítica para la planificación de piezas y la única forma de ajustar los parámetros de almacenamiento de forma proactiva y precisa para cada pieza. Sin él, los planificadores, para todos los efectos, están "planificando" con los ojos vendados porque no podrán comunicar las verdaderas compensaciones asociadas con las decisiones de almacenamiento.

Por ejemplo, si se recomienda un aumento propuesto a los niveles mínimos/máximos de un importante grupo de productos básicos de repuestos, ¿cómo sabe si el aumento es demasiado alto, demasiado bajo o correcto? ¿Cómo se puede afinar el cambio para miles de repuestos? No lo harás y no puedes. Su toma de decisiones de inventario se basará en decisiones reactivas, viscerales y generales que causan que los niveles de servicio se resientan y los costos de inventario se disparen.

Entonces, ¿qué es exactamente una curva de compensación de repuestos?

Es una predicción numérica basada en hechos que detalla cómo los cambios en los niveles de existencias influirán en el valor del inventario, los costos de mantenimiento y los niveles de servicio. Por cada cambio de unidad en el nivel de inventario hay un costo y un beneficio. La curva de compensación de repuestos identifica estos costos y beneficios a través de diferentes niveles de existencias. Permite a los planificadores descubrir el nivel de existencias que mejor equilibra los costes y los beneficios de cada artículo individual.

Aquí hay dos ejemplos simplificados. En la Figura 1, la curva de compensación de repuestos muestra cómo cambia el nivel de servicio (probabilidad de no agotarse) según el nivel de pedido. Cuanto mayor sea el nivel de reorden, menor será el riesgo de falta de existencias. Es fundamental saber cuánto servicio está ganando dada la inversión en inventario. Aquí puede justificar que un aumento de inventario de un punto de pedido de 35 a 45 bien vale la pena la inversión de 10 unidades adicionales de stock porque los niveles de servicio saltan de poco menos de 70% a 90%, lo que reduce el riesgo de falta de existencias para la pieza de repuesto de 30% a 10%!

 

Cost vs Service Levels for inventory planning

Figura 1: Costo versus nivel de servicio

 

Size of Inventory vs Service Levels for MRO

Figura 2: Nivel de servicio frente al tamaño del inventario

En este ejemplo (Figura 2), la curva de compensación expone un problema común con el inventario de repuestos. A menudo, los niveles de existencias son tan altos que generan rendimientos negativos. Después de una cierta cantidad de existencias, cada unidad adicional de existencias no compra más beneficios en forma de un mayor nivel de servicio. Las disminuciones de inventario pueden justificarse cuando está claro que el nivel de existencias ha superado con creces el punto de rendimientos decrecientes. Una curva de compensación precisa expondrá el punto en el que ya no es ventajoso agregar stock.

Mediante el aprovechamiento #pronóstico probabilístico para impulsar la planificación de piezas, puede comunicar estas compensaciones con precisión, hacerlo a escala en cientos de miles de piezas, evitar malas decisiones de inventario y equilibrar los niveles de servicio y los costos. En Smart Software, nos especializamos en ayudar a los planificadores de repuestos, directores de administración de materiales y ejecutivos financieros que administran MRO, repuestos y repuestos para comprender y explotar estas relaciones.

 

Soluciones de software para la planificación de repuestos

El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

 

 

Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

 

Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

 

    Tipos de problemas de pronóstico que ayudamos a resolver

    Estos son ejemplos de problemas de pronóstico que SmartForecasts puede resolver, junto con los tipos de datos comerciales representativos de cada uno.

    Pronosticar un artículo en función de su patrón

    Dadas las siguientes seis cifras de ventas trimestrales, ¿qué ventas puede esperar para el tercer y cuarto trimestre de 2023?

    Forecasting an item based on its pattern

    Ventas por Trimestre

    SmartForecasts le brinda muchas formas de abordar este problema. Puede hacer sus propios pronósticos estadísticos utilizando cualquiera de los seis Suavizado exponencial y media móvil métodos. O, como la mayoría de los pronosticadores no técnicos, puede usar el comando Automático que ahorra tiempo, que ha sido programado para seleccionar y usar automáticamente el método más preciso para sus datos. Finalmente, para incorporar su juicio comercial en el proceso de pronóstico, puede ajustar gráficamente cualquier resultado de pronóstico estadístico usando SmartForecasts. ajuste de "globo ocular" capacidades.

     

    Pronosticar un artículo en función de su relación con otras variables.

    Dada la siguiente relación histórica entre las ventas de unidades y la cantidad de representantes de ventas, ¿qué niveles de ventas puede esperar cuando se produzca el aumento planificado del personal de ventas durante los dos últimos trimestres de 2023?

    Forecasting an item based on its relationship to other variables.

    Ventas y Representantes de Ventas por Trimestre

    Puede responder una pregunta como esta usando el poderoso SmartForecasts Regresión comando, diseñado específicamente para facilitar las aplicaciones de pronóstico que requieren soluciones de análisis de regresión. Los modelos de regresión con un número esencialmente ilimitado de variables predictoras/independientes son posibles, aunque la mayoría de los modelos de regresión útiles usan solo un puñado de predictores.

     

    Pronosticar simultáneamente una cantidad de artículos de productos y su total

    Dadas las siguientes ventas totales de todas las camisas de vestir y la distribución de las ventas por color, ¿cuáles serán las ventas individuales y totales durante los próximos seis meses?

    Forecasting an item based on its relationship to other variables.

    Ventas mensuales de camisas de vestir por color

    Las funciones exclusivas de pronóstico de grupo de SmartForecasts pronostican automática y simultáneamente series de tiempo estrechamente relacionadas, como estos artículos en el mismo grupo de productos. Esto ahorra un tiempo considerable y proporciona resultados de pronóstico no solo para los artículos individuales sino también para su total. Los ajustes de "ojo" tanto a nivel de elemento como de grupo son fáciles de realizar. Puede crear rápidamente pronósticos para grupos de productos con cientos o incluso miles de artículos.

     

    Pronóstico de miles de artículos automáticamente

    Dado el siguiente registro de demanda de productos a nivel de SKU, ¿cuál puede esperar que sea la demanda durante los próximos seis meses para cada uno de los 5000 SKU?

    Forecasting thousands of items automatically

    Demanda Mensual de Producto por SKU (Unidad de Mantenimiento de Stock)

    En solo unos minutos, la poderosa selección automática de SmartForecasts puede realizar un trabajo de pronóstico de este tamaño, leer los datos de demanda del producto, crear automáticamente pronósticos estadísticos para cada SKU y guardar el resultado. Los resultados están listos para exportarlos a su sistema ERP aprovechando cualquiera de nuestros conectores basados en API o mediante la exportación de archivos. Una vez configurados, los pronósticos se producirán automáticamente en cada ciclo de planificación sin la intervención del usuario.

     

    Pronosticar la demanda que en la mayoría de los casos es cero

    Un tipo de datos distinto y especialmente desafiante para pronosticar es intermitente demanda, que suele ser cero, pero salta a valores aleatorios distintos de cero en momentos aleatorios. Este patrón es típico de la demanda de lento Moviente artículos, tales como repuestos o grande boleto bienes de equipo.

    Por ejemplo, considere la siguiente muestra de demanda de repuestos para aeronaves. Tenga en cuenta la preponderancia de valores cero mezclados con valores distintos de cero, a menudo en ráfagas.

    Forecasting demand that is most often zero

    SmartForecasts tiene un método único diseñado especialmente para este tipo de datos: la función de pronóstico de Demanda Intermitente. Dado que la demanda intermitente surge con mayor frecuencia en el contexto del control de inventario, esta función se enfoca en pronosticar el rango de valores probables para la demanda total durante un tiempo de anticipación, por ejemplo, la demanda acumulada durante el período del 23 de junio al 23 de agosto en el ejemplo anterior. .

     

    Pronóstico de requisitos de inventario

    La previsión de necesidades de inventario es una variante especializada de la previsión que se centra en el extremo superior del rango de valores futuros posibles.

    Para simplificar, considere el problema de pronosticar los requisitos de inventario para solo un período por delante, digamos un día por delante. Por lo general, el trabajo de pronóstico consiste en estimar el nivel promedio o más probable de demanda del producto. Sin embargo, si el inventario disponible es igual a la demanda promedio, existe una probabilidad de 50% de que la demanda supere el inventario, lo que resultará en pérdida de ventas y/o pérdida de buena voluntad. Establecer el nivel de inventario en, digamos, diez veces la demanda promedio probablemente eliminará el problema de los desabastecimientos, pero seguramente resultará en costos de inventario inflados.

    El truco de la optimización del inventario es encontrar un equilibrio satisfactorio entre tener suficiente inventario para satisfacer la mayor parte de la demanda sin comprometer demasiados recursos en el proceso. Por lo general, la solución es una combinación de criterio empresarial y estadísticas. La parte crítica es definir un nivel de servicio de inventario aceptable, como satisfacer 95% de demanda inmediatamente desde el stock. La parte estadística es estimar el percentil 95 de la demanda.

    Cuando no se trata de demanda intermitente, SmartForecasts estima el nivel de inventario requerido asumiendo una curva de demanda en forma de campana (Normal), estimando tanto el centro como el ancho de la curva de campana y luego usando una fórmula estadística estándar para estimar el percentil deseado. La diferencia entre el nivel de inventario deseado y el nivel promedio de demanda se denomina stock de seguridad porque protege contra la posibilidad de desabastecimiento.

    Cuando se trata de demanda intermitente, la curva en forma de campana es una mala aproximación a la distribución estadística de la demanda. En este caso especial, SmartForecasts utiliza tecnología patentada de pronóstico de demanda intermitente para estimar el nivel de servicio de inventario requerido.

     

     

    Cómo Pronosticar Repuestos con Bajo Uso

    ¿Qué hace cuando pronostica un artículo con demanda intermitente, como una pieza de repuesto, con una demanda promedio de menos de una unidad por mes? La mayor parte del tiempo la demanda es cero, pero la parte es significativa en un sentido comercial; no se puede ignorar y se debe pronosticar para asegurarse de tener el stock adecuado.

    Tus elecciones tienden a centrarse en algunas opciones:

    Opción 1: Redondea a 1 cada mes, por lo que tu pronóstico anual es 12.

    Opción 2: Redondee a 0 cada mes, de modo que su pronóstico anual sea 0.

    Opción 3: método de pronóstico "igual que el mismo mes del año pasado" para que el pronóstico coincida con el real del año pasado.

    Hay desventajas obvias para cada opción y no mucha ventaja para ninguna de ellas. La opción 1 a menudo resulta en un sobre pronóstico significativo. La opción 2 a menudo da como resultado una previsión significativamente inferior a la esperada. La opción 3 da como resultado un pronóstico que casi garantiza que perderá significativamente el real, ya que no es probable que la demanda aumente exactamente en el mismo período. Si DEBE pronosticar el artículo, normalmente recomendaríamos la opción 3, ya que es la respuesta más probable que el resto de la empresa entendería. 

    Pero una mejor manera es no pronosticarlo en absoluto en el sentido habitual y, en su lugar, utilizar un "punto de reorden predictivo" relacionado con el nivel de servicio deseado. Para calcular un punto de reorden predictivo, puede usar el algoritmo de arranque de Markov patentado de Smart Software para simular todas las demandas posibles que podrían ocurrir durante el tiempo de entrega, luego identifique el punto de reorden que producirá su nivel de servicio objetivo.

    Luego, puede configurar su sistema ERP para pedir más cuando el inventario disponible supere el punto de reorden en lugar de cuando se pronostique que llegará a cero (o cualquier reserva de existencias de seguridad que se ingrese). 

    Esto hace que los pedidos tengan más sentido común sin las suposiciones innecesarias que se requieren para pronosticar una pieza de bajo volumen demandada intermitentemente.

     

    Soluciones de software para la planificación de repuestos

    El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

    Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

     

     

    Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

     

    Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

     

      Elefantes y canguros ERP frente a la mejor planificación de demanda de su clase

      “A pesar de lo que has visto en tus caricaturas de los sábados por la mañana, los elefantes no pueden saltar, y hay una razón simple: no tienen que hacerlo. La mayoría de los animales nerviosos (canguros, monos y ranas) lo hacen principalmente para alejarse de los depredadores”. — Patrick Monahan, Science.org, 27 de enero de 2016.

      Ahora sabe por qué las empresas de ERP más grandes no pueden desarrollar las mejores soluciones de alta calidad. Nunca tuvieron que hacerlo, por lo que nunca evolucionaron para innovar fuera de su enfoque principal. 

      Sin embargo, a medida que los sistemas ERP se convirtieron en productos básicos, las brechas en su funcionalidad se volvieron imposibles de ignorar. Los jugadores más grandes buscaron proteger su parte de la cartera de los clientes prometiendo desarrollar aplicaciones complementarias innovadoras para llenar todos los espacios en blanco. Pero sin ese “músculo de la innovación”, muchos proyectos fracasaron y se acumularon montañas de deuda técnica.

      Las mejores empresas de su clase evolucionaron para innovar y tener una profunda experiencia funcional en verticales específicos. El resultado es que los mejores complementos de ERP son más fáciles de usar, tienen más funciones y ofrecen más valor que los módulos de ERP nativos que reemplazan. 

      Si su proveedor de ERP ya se ha asociado con un innovador proveedor de complementos*, ¡ya está listo! Pero si solo puede obtener lo básico de su ERP, opte por un complemento de primera clase que tenga una integración personalizada con el ERP. 

      Un excelente lugar para comenzar su búsqueda es buscar complementos de planificación de la demanda de ERP que agreguen inteligencia a la fuerza del ERP, es decir, aquellos que respaldan la optimización del inventario y la previsión de la demanda. Aproveche las herramientas complementarias como las aplicaciones de pronóstico estadístico, planificación de la demanda y optimización de inventario de Smart para desarrollar pronósticos y políticas de almacenamiento que se retroalimentan al sistema ERP para impulsar los pedidos diarios. 

      *Las tiendas de aplicaciones son una licencia para que lo mejor de su clase venda en la base de empresas de ERP, siendo sociedades cotizadas.