Een inleiding op probabilistische prognoses

De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Als je op de hoogte blijft van het nieuws over supply chain-analyse, u komt vaker de uitdrukking "probabilistische prognoses" tegen. Als deze zin raadselachtig is, lees dan verder.

U weet waarschijnlijk al wat 'voorspelling' betekent. En je weet waarschijnlijk ook dat er veel verschillende manieren lijken te zijn om het te doen. En je hebt waarschijnlijk scherpe kleine zinnen gehoord als 'elke voorspelling is verkeerd'. Dus je weet dat een soort van wiskundige zou kunnen berekenen dat "de voorspelling is dat u volgende maand 100 eenheden zult verkopen", en dan zou u 110 eenheden kunnen verkopen, in welk geval u een 10%-voorspellingsfout heeft.

Je weet misschien niet dat wat ik zojuist heb beschreven een bepaald soort voorspelling is, een 'puntvoorspelling'. Een puntenvoorspelling wordt zo genoemd omdat deze uit slechts een enkel getal bestaat (dwz één punt op de getallenlijn, als je je de getallenlijn herinnert uit je jeugd).

Punt voorspellingen hebben één deugd: ze zijn eenvoudig. Ze hebben ook een fout: ze geven aanleiding tot snauwende uitspraken als 'elke voorspelling is verkeerd'. Dat wil zeggen, in de meeste realistische gevallen is het onwaarschijnlijk dat de werkelijke waarde exact gelijk zal zijn aan de voorspelling. (Wat niet zo erg is als de voorspelling dichtbij genoeg is.)

Dit brengt ons bij 'probabilistische voorspellingen'. Deze aanpak is een stap verder, want in plaats van een voorspelling met één cijfer (punt) te produceren, levert het een kansverdeling op voor de voorspelling. En in tegenstelling tot traditionele extrapolatieve modellen die puur op historische gegevens vertrouwen, hebben probabilistische voorspellingen de mogelijkheid om toekomstige waarden te simuleren die niet verankerd zijn in het verleden.

"Waarschijnlijkheidsverdeling" is een verbiedende uitdrukking, die wat mysterieuze wiskunde oproept waar je misschien van hebt gehoord maar nooit hebt bestudeerd. Gelukkig hebben de meeste volwassenen genoeg levenservaring om het concept intuïtief te begrijpen. Wanneer afgebroken, is het vrij eenvoudig te begrijpen.

Stel je de simpele handeling voor van het opgooien van twee munten. Je zou dit onschuldig plezier kunnen noemen, maar ik noem het een 'probabilistisch experiment'. Het totale aantal kop dat op de twee munten verschijnt, is nul, één of twee. Het opgooien van twee munten is een 'willekeurig experiment'. Het resulterende aantal koppen is een "willekeurige variabele". Het heeft een "kansverdeling", wat niets meer is dan een tabel van hoe waarschijnlijk het is dat de willekeurige variabele een van zijn mogelijke waarden zal blijken te hebben. De kans om twee kop te krijgen als de munten eerlijk zijn, is ¼, net als de kans op geen kop. De kans op één kop is ½.

Dezelfde benadering kan een interessantere willekeurige variabele beschrijven, zoals de dagelijkse vraag naar een reserveonderdeel. Figuur 2 toont een dergelijke kansverdeling. Het werd berekend door drie jaar dagelijkse vraaggegevens te verzamelen over een bepaald onderdeel dat wordt gebruikt in een wetenschappelijk instrument dat aan ziekenhuizen wordt verkocht.

 

Probabilistic demand forecast 1

Figuur 1: De kansverdeling van de dagelijkse vraag naar een bepaald reserveonderdeel

 

De verdeling in figuur 1 kan worden gezien als een probabilistische voorspelling van de vraag op één dag. Voor dit specifieke onderdeel zien we dat de voorspelling zeer waarschijnlijk nul zal zijn (97% kans), maar soms voor een handvol eenheden, en eens in de drie jaar twintig eenheden. Hoewel de meest waarschijnlijke voorspelling nul is, zou je er een paar bij de hand willen houden als dit onderdeel van cruciaal belang zou zijn ("... bij gebrek aan een spijker ...")

Laten we deze informatie nu gebruiken om een meer gecompliceerde probabilistische voorspelling te maken. Stel dat je drie eenheden bij de hand hebt. Hoeveel dagen duurt het voordat je er geen hebt? Er zijn veel mogelijke antwoorden, variërend van een enkele dag (als u onmiddellijk een vraag krijgt voor drie of meer) tot een zeer groot aantal (aangezien 97% dagen geen vraag ziet). De analyse van deze vraag is een beetje ingewikkeld vanwege de vele manieren waarop deze situatie zich kan voordoen, maar het uiteindelijke antwoord dat het meest informatief is, is een kansverdeling. Het blijkt dat het aantal dagen totdat er geen eenheden meer in voorraad zijn de verdeling heeft zoals weergegeven in figuur 2.

Probabilistic demand forecast 2

Figuur 2: Verdeling van het aantal dagen totdat alle drie de units op zijn

 

Het gemiddelde aantal dagen is 74, wat een puntvoorspelling zou zijn, maar er is veel variatie rond het gemiddelde. Vanuit het perspectief van voorraadbeheer valt op dat er een kans van 25% is dat alle units na 32 dagen op zijn. Dus als u besluit om meer te bestellen terwijl er nog maar drie in het schap liggen, zou het goed zijn als de leverancier ze u bezorgt voordat er een maand is verstreken. Als ze dat niet konden, zou je een kans van 75% hebben om de voorraad op te slaan - niet goed voor een cruciaal onderdeel.

De analyse achter figuur 2 omvatte het maken van enkele aannames die handig waren, maar niet nodig als ze niet waar waren. De resultaten kwamen van een methode genaamd "Monte Carlo-simulatie", waarin we beginnen met drie eenheden, een willekeurige vraag kiezen uit de verdeling in figuur 1, deze aftrekken van de huidige voorraad en doorgaan totdat de voorraad op is, waarbij wordt geregistreerd hoeveel dagen gingen voorbij voordat je op was. Herhaling van dit proces 100.000 keer geproduceerd Figuur 2.

Toepassingen van Monte Carlo-simulatie strekken zich uit tot problemen met een nog grotere reikwijdte dan het bovenstaande voorbeeld "wanneer zijn we op". Vooral belangrijk zijn Monte Carlo-voorspellingen van de toekomstige vraag. Hoewel het gebruikelijke voorspellingsresultaat een reeks puntvoorspellingen is (bijvoorbeeld de verwachte vraag per eenheid in de komende twaalf maanden), weten we dat er een aantal manieren zijn waarop de werkelijke vraag zich zou kunnen voordoen. Simulatie zou kunnen worden gebruikt om bijvoorbeeld duizend mogelijke sets van 365 dagelijkse vraagbehoeften te produceren.

Deze reeks vraagscenario's zou het scala aan mogelijke situaties waarmee een voorraadsysteem het hoofd zou moeten bieden, vollediger blootleggen. Dit gebruik van simulatie wordt "stresstesten" genoemd, omdat het een systeem blootstelt aan een reeks gevarieerde maar realistische scenario's, waaronder enkele vervelende. Die scenario's worden vervolgens ingevoerd in wiskundige modellen van het systeem om te zien hoe goed het zal omgaan, zoals weerspiegeld in key performance indicators (KPI's). Hoeveel stockouts zijn er bijvoorbeeld in die duizend gesimuleerde jaren van werking in het slechtste jaar? het gemiddelde jaar? het beste jaar? Wat is in feite de volledige kansverdeling van het aantal stockouts in een jaar, en wat is de verdeling van hun omvang?

Figuren 3 en 4 illustreren probabilistische modellering van een voorraadbeheersysteem dat stockouts omzet in backorders. Het gesimuleerde systeem gebruikt een Min/Max-regelbeleid met Min = 10 eenheden en Max = 20 eenheden.

Figuur 3 toont een gesimuleerd jaar van dagelijkse operaties in vier plots. De eerste grafiek toont een bepaald patroon van willekeurige dagelijkse vraag waarin de gemiddelde vraag gestaag toeneemt van maandag tot vrijdag, maar in het weekend verdwijnt. De tweede grafiek toont het aantal eenheden dat elke dag voorhanden is. Merk op dat er tijdens dit gesimuleerde jaar een tiental keren is dat de voorraad negatief wordt, wat wijst op stockouts. De derde grafiek toont de omvang en timing van aanvullingsorders. De vierde grafiek toont de omvang en timing van backorders. De informatie in deze plots kan worden vertaald in schattingen van voorraadinvesteringen, gemiddelde eenheden voorhanden, houdkosten, bestelkosten en tekortkosten.

Probabilistic demand forecast 3

Figuur 3: Een gesimuleerd jaar van werking van het voorraadsysteem

 

Figuur 3 toont één van duizend gesimuleerde jaren. Elk jaar zal verschillende dagelijkse eisen hebben, wat resulteert in verschillende waarden van statistieken, zoals beschikbare eenheden en de verschillende componenten van de bedrijfskosten. Figuur 4 geeft de verdeling weer van 1.000 gesimuleerde waarden van vier KPI's. Door 1000 jaar ingebeelde werking te simuleren, wordt het bereik van mogelijke resultaten blootgelegd, zodat planners niet alleen rekening kunnen houden met gemiddelde resultaten, maar ook de best-case en worst-case-waarden kunnen zien.

Probabilistic demand forecast 4

Figuur 4: Verdelingen van vier KPI's op basis van 1.000 simulaties

 

Monte Carlo-simulatie is een benadering met weinig wiskunde en hoge resultaten voor probabilistische prognoses: zeer praktisch en gemakkelijk uit te leggen. Geavanceerde probabilistische voorspellingsmethoden die door Smart Software worden gebruikt, breiden uit op de standaard Monte Carlo-simulatie en leveren uiterst nauwkeurige schattingen van de vereiste voorraadniveaus op.

 

Laat een reactie achter

gerelateerde berichten

Undershoot is Sabotaging your Service Level!

Undershoot saboteert uw serviceniveau!

Undershoot betekent dat de doorlooptijd niet begint op het bestelpunt, maar eronder. Onderschrijding gebeurt elke keer dat de vraag die het bestelpunt overschreed, de voorraad onder (niet tot) het bestelpunt deed dalen. Undershoot pakt uw zak voordat u zelfs maar begint met het gooien van de dobbelstenen. Het misleidt de voorraadprofessional door te denken dat zijn of haar bestelpunten voldoende zijn om hun doelen te bereiken, terwijl de werkelijke prestaties niet voldoende zijn.

How to Choose a Target Service Level

Hoe u een doelserviceniveau kiest

Houd bij het instellen van een doelserviceniveau rekening met factoren zoals huidige serviceniveaus, doorlooptijden voor aanvullingen, kostenbeperkingen, de pijn die wordt veroorzaakt door tekorten voor u en uw klanten, en uw concurrentiepositie.

Reveal Your Real Inventory Planning and Forecasting Policy by Answering These 10 Questions

Onthul uw werkelijke voorraadplanning en prognosebeleid door deze 10 vragen te beantwoorden

In deze blog bespreken we 10 specifieke vragen die u kunt stellen om te ontdekken wat er werkelijk gebeurt met het voorraadplanning- en vraagprognosebeleid in uw bedrijf. We beschrijven de typische antwoorden die worden gegeven wanneer een prognose-/inventarisplanningsbeleid niet echt bestaat, leggen uit hoe deze antwoorden moeten worden geïnterpreteerd en geven duidelijk advies over wat u eraan kunt doen.

recente berichten

  • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
    In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
  • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
    De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
  • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
    Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
  • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
    Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
  • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
    Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
      In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
    • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
      De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
    • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
    • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

      Verbeter de prognosenauwkeurigheid door fouten te beheren

      De slimme voorspeller

       Het nastreven van best practices op het gebied van vraagplanning,

      prognoses en voorraadoptimalisatie

      Verbeter de forecasting nauwkeurigheid, elimineer overtollige voorraad en maximaliseer service levels

      In deze video vertelt Dr. Thomas Willemain, mede-oprichter en SVP Research, over het verbeteren van de nauwkeurigheid van prognoses door fouten te managen. Deze video is de eerste in onze serie over effectieve methoden om de nauwkeurigheid van prognoses te verbeteren. We beginnen met te kijken naar hoe voorspelfouten pijn veroorzaken en de daaruit voortvloeiende kosten. Vervolgens zullen we de drie meest voorkomende fouten uitleggen die we moeten vermijden en die ons kunnen helpen de omzet te verhogen en overtollige voorraad te voorkomen. Tom besluit met een overzicht van de methoden om de nauwkeurigheid van voorspellingen te verbeteren, het belang van het meten van voorspellingsfouten en de technologische mogelijkheden om deze te verbeteren.

       

      Prognosefout kan gevolgen hebben

      Overweeg één item uit vele

      • Product X kost $100 om te maken en levert $50 winst op per eenheid.
      • De verkoop van Product X zal de komende 12 maanden 1.000 per maand blijken te zijn.
      • Overweeg één item uit vele

      Wat zijn de kosten van een prognosefout?

      • Als de voorspelling 10% hoog is, sluit het jaar dan af met $120.000 overtollige voorraad.
      • 100 extra/maand x 12 maanden x $100/eenheid
      • Als de voorspelling 10% laag is, mis dan $60.000 winst.
      • 100 te weinig/maand x 12 maanden x $50/eenheid

       

      Drie fouten om te vermijden

      1. Fout negeren.

      • Onprofessioneel, plichtsverzuim.
      • Wensen zal het niet zo maken.
      • Behandel nauwkeurigheidsbeoordeling als datawetenschap, niet als een verwijt.

      2. Meer fouten tolereren dan nodig is.

      • Statistische prognosemethoden kunnen de nauwkeurigheid op schaal verbeteren.
      • Het verbeteren van gegevensinvoer kan helpen.
      • Het verzamelen en analyseren van prognosefoutstatistieken kan zwakke plekken identificeren.

      3. Tijd en geld verspillen die te ver gaat om fouten te elimineren.

      • Sommige product/marktcombinaties zijn inherent moeilijker te voorspellen. Na een punt, laat ze zijn (maar wees alert op nieuwe gespecialiseerde voorspellingsmethoden).
      • Soms kunnen stappen die bedoeld zijn om fouten te verminderen averechts werken (bijv. aanpassing).
      Laat een reactie achter

      RECENTE BERICHTEN

      Are You Playing the Inventory Guessing Game?

      Speel jij het voorraadraadspel?

      Sommige bedrijven investeren in software om hen te helpen hun voorraad te beheren, of het nu gaat om reserveonderdelen of eindproducten. Maar een verrassend aantal anderen speelt elke dag het Inventory Guessing Game, vertrouwend op een ingebeelde “Golden Gut” of op gewoon geluk om hun inventariscontroleparameters in te stellen. Maar wat voor resultaten verwacht je met die aanpak?

      Finding Your Spot on the Tradeoff Curve

      Vind uw plek op de afwegingscurve

      Bij voorraadbeheer gaat het, net als bij alles, om het balanceren van concurrerende prioriteiten. Wilt u een lean inventaris? Ja! Wil jij kunnen zeggen “Het is op voorraad” als een klant iets wil kopen? Ja!
      Maar kun je het op beide manieren hebben? Slechts tot op zekere hoogte. Als u uw voorraad te agressief aanpast, riskeert u voorraadtekorten. Als je voorraadtekorten uitroeit, creëer je een opgeblazen voorraad. U wordt gedwongen een bevredigend evenwicht te vinden tussen de twee concurrerende doelen: een beperkte voorraad en een hoge beschikbaarheid van artikelen.

      Direct to the Brain of the Boss – Inventory Analytics and Reporting

      Rechtstreeks naar het brein van de baas – voorraadanalyse en rapportage

      In deze blog wordt de software in de schijnwerpers gezet die rapporten voor het management maakt, de stille held die de schoonheid van furieuze berekeningen vertaalt naar bruikbare rapporten. Kijk hoe de berekeningen, op ingewikkelde wijze begeleid door planners die onze software gebruiken, naadloos samenkomen in Smart Operational Analytics (SOA)-rapporten, waarbij vijf belangrijke gebieden worden verdeeld: voorraadanalyse, voorraadprestaties, voorraadtrends, leveranciersprestaties en vraagafwijkingen.

      recente berichten

      • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
        In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
      • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
        De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
      • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
        Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
      • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
        Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
      • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
        Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

        Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

        • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
          In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
        • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
          De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
        • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
          Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
        • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
          In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

          Probabilistische versus deterministische orderplanning

          De slimme voorspeller

          Man with a computer in a warehouse best practices in demand planning, forecasting and inventory optimization

          Denk aan het probleem van het aanvullen van de voorraad. Stel dat het betreffende voorraadartikel een reserveonderdeel is, om precies te zijn. Zowel u als uw leverancier zullen een idee willen hebben van hoeveel u gaat bestellen en wanneer. En uw ERP-systeem dringt er misschien op aan dat u ook het geheim prijsgeeft.

          Deterministisch model van aanvulling

          De eenvoudigste manier om een fatsoenlijk antwoord op deze vraag te krijgen, is aan te nemen dat de wereld, nou ja, eenvoudig is. In dit geval betekent eenvoudig 'niet willekeurig' of, in nerdtaal, 'deterministisch'. In het bijzonder doe je alsof de willekeurige grootte en timing van de vraag in werkelijkheid een continue druppel-druppel-druppel is van een vaste grootte die met een vast interval komt, bijvoorbeeld 2, 2, 2, 2, 2, 2... Als dit onrealistisch lijkt , het is. De echte vraag ziet er misschien meer zo uit: 0, 1, 10, 0, 1, 0, 0, 0 met veel nullen, af en toe maar willekeurige pieken.

          Maar eenvoud heeft zijn deugden. Als je net doet alsof de gemiddelde vraag elke dag op rolletjes loopt, is het gemakkelijk om uit te rekenen wanneer je je volgende bestelling moet plaatsen en hoeveel eenheden je nodig hebt. Stel dat uw voorraadbeleid van het type (Q,R) is, waarbij Q een vaste bestelhoeveelheid is en R een vast bestelpunt. Wanneer de voorraad daalt tot of onder het bestelpunt R, bestelt u Q-eenheden meer. Om de fantasie compleet te maken, gaan we ervan uit dat de doorlooptijd voor aanvulling ook vast is: na L dagen zullen die Q nieuwe eenheden op de plank liggen, klaar om aan de vraag te voldoen.

          Alles wat u nu nodig heeft om uw vragen te beantwoorden, is de gemiddelde vraag per dag D naar het artikel. De logica gaat als volgt:

          1. U begint elke aanvullingscyclus met Q-eenheden bij de hand.
          2. Je put die voorraad uit met D eenheden per dag.
          3. U bereikt dus het bestelpunt R na (QR)/D dagen.
          4. Je bestelt dus elke (QR)/D dagen.
          5. Elke aanvullingscyclus duurt (QR)/D + L dagen, dus u maakt in totaal 365D/(Q-R+LD) bestellingen per jaar.
          6. Zolang de doorlooptijd L < R/D is, zult u nooit een voorraad hebben en zal uw voorraad zo klein mogelijk zijn.

          Afbeelding 1 toont de grafiek van voorhanden voorraad versus tijd voor het deterministische model. Rond Smart Software verwijzen we naar deze plot als de "Deterministische zaagtand". De voorraad begint op het niveau van de laatste bestelhoeveelheid Q. Na gestaag afnemen gedurende de uitvaltijd (QR)/D, bereikt het niveau het bestelpunt R en activeert een bestelling voor nog een Q-eenheden. Gedurende de doorlooptijd L daalt de voorraad tot precies nul, dan komt de nieuwe bestelling op magische wijze aan en begint de volgende cyclus.

          Figure 1 Deterministic model of on-hand inventory

          Afbeelding 1: deterministisch model van voorhanden voorraad

           

          Dit model heeft twee voordelen. Het vereist niet meer dan algebra van de middelbare school en het combineert (bijna) alle relevante factoren om de twee gerelateerde vragen te beantwoorden: wanneer moeten we de volgende bestelling plaatsen? Hoeveel bestellingen plaatsen we in een jaar?

          Probabilistisch model van aanvulling

          Het is niet verrassend dat als we een deel van de fantasie uit het deterministische model halen, we meer bruikbare informatie krijgen. Het probabilistische model omvat alle rommelige willekeur in het echte probleem: de onzekerheid in zowel de timing als de omvang van de vraag, de variatie in de doorlooptijd van de aanvulling en de gevolgen van die twee factoren: de kans dat de beschikbare voorraad de nabestelling onderschrijdt punt, de kans dat er een stockout zal zijn, de variabiliteit in de tijd tot de volgende bestelling, en het variabele aantal uitgevoerde bestellingen in een jaar.

          Het probabilistische model werkt door de gevolgen van onzekere vraag en variabele doorlooptijd te simuleren. Door de historische vraagpatronen van het item te analyseren (en waarnemingen uit te sluiten die zijn geregistreerd in een tijd waarin de vraag mogelijk fundamenteel anders was), creëren geavanceerde statistische methoden een onbeperkt aantal realistische vraagscenario's. Vergelijkbare analyse wordt toegepast op records van doorlooptijden van leveranciers. Door deze vraag- en aanbodscenario's te combineren met de operationele regels van een bepaald voorraadbeheerbeleid, ontstaan scenario's van het aantal beschikbare onderdelen. Uit deze scenario's kunnen we samenvattingen halen van de variërende intervallen tussen bestellingen.

          Figuur 2 toont een voorbeeld van een probabilistisch scenario; de vraag is willekeurig en het artikel wordt beheerd met bestelpunt R = 10 en bestelhoeveelheid Q=20. Voorbij is de deterministische zaagtand; in plaats daarvan is er iets complexer en realistischer (de probabilistische trap). Tijdens de 90 gesimuleerde werkingsdagen werden er 9 bestellingen geplaatst en de tijd tussen de bestellingen varieerde duidelijk.

          Met behulp van het probabilistische model worden de antwoorden op de twee vragen (hoe lang tussen orders en hoeveel in een jaar) uitgedrukt als kansverdelingen die de relatieve waarschijnlijkheid van verschillende scenario's weerspiegelen. Figuur 3 toont de verdeling van het aantal dagen tussen orders na tien jaar gesimuleerde werking. Hoewel het gemiddelde ongeveer 8 dagen is, varieert het werkelijke aantal sterk, van 2 tot 17.

          In plaats van uw leverancier te vertellen dat u volgend jaar X bestellingen zult plaatsen, kunt u nu X ± Y bestellingen projecteren, en uw leverancier kent de opwaartse en neerwaartse risico's beter. Beter nog, u kunt de volledige distributie als het meest uitgebreide antwoord geven.

          Figure 2 A probabilistic scenario of on-hand inventory

          Figuur 2 Een probabilistisch scenario van voorhanden voorraad

           

          Figure 3 Distribution of days between orders

          Figuur 3: Verdeling van dagen tussen bestellingen

           

          De willekeurige trap beklimmen naar grotere efficiëntie

          Door verder te gaan dan het deterministische inventarismodel, ontstaan nieuwe mogelijkheden voor het optimaliseren van de bedrijfsvoering. Ten eerste maakt het probabilistische model een realistische beoordeling van het voorraadrisico mogelijk. Het eenvoudige model in afbeelding 1 houdt in dat er nooit een stockout is, terwijl probabilistische scenario's de mogelijkheid toestaan (hoewel er in afbeelding 2 slechts één close call was rond dag 70). Zodra het risico bekend is, kan software optimaliseren door de "ontwerpruimte" (dwz alle mogelijke waarden van R en Q) te doorzoeken om een ontwerp te vinden dat voldoet aan een doelniveau van voorraadrisico tegen minimale kosten. De waarde van het deterministische model in deze meer realistische analyse is dat het een goed startpunt biedt voor de zoektocht door de ontwerpruimte.

          Overzicht

          Moderne software geeft antwoord op operationele vragen met verschillende gradaties van detail. Aan de hand van het voorbeeld van de tijd tussen aanvullingsorders hebben we laten zien dat het antwoord bij benadering maar snel kan worden berekend met een eenvoudig deterministisch model. Maar het kan ook veel gedetailleerder worden weergegeven, waarbij alle variabiliteit wordt blootgelegd door een probabilistisch model. Wij beschouwen deze alternatieven als complementair. Het deterministische model bundelt alle sleutelvariabelen in een gemakkelijk te begrijpen vorm. Het probabilistische model biedt extra realisme dat professionals verwachten en ondersteunt effectief zoeken naar optimale keuzes van bestelpunt en bestelhoeveelheid.

           

          Laat een reactie achter
          gerelateerde berichten
          Are You Playing the Inventory Guessing Game?

          Speel jij het voorraadraadspel?

          Sommige bedrijven investeren in software om hen te helpen hun voorraad te beheren, of het nu gaat om reserveonderdelen of eindproducten. Maar een verrassend aantal anderen speelt elke dag het Inventory Guessing Game, vertrouwend op een ingebeelde “Golden Gut” of op gewoon geluk om hun inventariscontroleparameters in te stellen. Maar wat voor resultaten verwacht je met die aanpak?

          Finding Your Spot on the Tradeoff Curve

          Vind uw plek op de afwegingscurve

          Bij voorraadbeheer gaat het, net als bij alles, om het balanceren van concurrerende prioriteiten. Wilt u een lean inventaris? Ja! Wil jij kunnen zeggen “Het is op voorraad” als een klant iets wil kopen? Ja!
          Maar kun je het op beide manieren hebben? Slechts tot op zekere hoogte. Als u uw voorraad te agressief aanpast, riskeert u voorraadtekorten. Als je voorraadtekorten uitroeit, creëer je een opgeblazen voorraad. U wordt gedwongen een bevredigend evenwicht te vinden tussen de twee concurrerende doelen: een beperkte voorraad en een hoge beschikbaarheid van artikelen.

          Direct to the Brain of the Boss – Inventory Analytics and Reporting

          Rechtstreeks naar het brein van de baas – voorraadanalyse en rapportage

          In deze blog wordt de software in de schijnwerpers gezet die rapporten voor het management maakt, de stille held die de schoonheid van furieuze berekeningen vertaalt naar bruikbare rapporten. Kijk hoe de berekeningen, op ingewikkelde wijze begeleid door planners die onze software gebruiken, naadloos samenkomen in Smart Operational Analytics (SOA)-rapporten, waarbij vijf belangrijke gebieden worden verdeeld: voorraadanalyse, voorraadprestaties, voorraadtrends, leveranciersprestaties en vraagafwijkingen.

          Vier handige manieren om prognosefouten te meten

          De slimme voorspeller

           Het nastreven van best practices op het gebied van vraagplanning,

          prognoses en voorraadoptimalisatie

          Verbeter de forecasting nauwkeurigheid, elimineer overtollige voorraad en maximaliseer service levels

          In deze video vertelt Dr. Thomas Willemain, mede-oprichter en SVP Research, over het verbeteren van de nauwkeurigheid van prognoses door prognosefouten te meten. We beginnen met een overzicht van de verschillende soorten foutstatistieken: schaalafhankelijke fout, procentuele fout, relatieve fout en schaalvrije foutstatistieken. Hoewel sommige fouten onvermijdelijk zijn, zijn er manieren om deze te verminderen, en prognosestatistieken zijn noodzakelijke hulpmiddelen voor het bewaken en verbeteren van de prognosenauwkeurigheid. Vervolgens zullen we het speciale probleem van de intermitterende vraag en de deel-door-nul-problemen uitleggen. Tom besluit door uit te leggen hoe je prognoses van meerdere items kunt beoordelen en hoe het vaak zinvol is om gewogen gemiddelden te gebruiken, waarbij items verschillend worden gewogen op basis van volume of omzet.

           

          Vier algemene typen foutstatistieken 

          1. Schaalafhankelijke fout
          2. Percentage fout
          3. Relatieve fout
          4. Schaalvrije fout

          Opmerking: Schaalafhankelijke metrieken worden uitgedrukt in de eenheden van de voorspelde variabele. De andere drie worden uitgedrukt als percentages.

           

          1. Schaalafhankelijke foutstatistieken

          • Mean Absolute Error (MAE) ook wel Mean Absolute Deviation (MAD) genoemd
          • Mediane absolute fout (MdAE)
          • Root Mean Square-fout (RMSE)
          • Deze statistieken drukken de fout uit in de oorspronkelijke eenheden van de gegevens.
            • Bijv: eenheden, kisten, vaten, kilogrammen, dollars, liters, enz.
          • Aangezien prognoses te hoog of te laag kunnen zijn, zullen de tekenen van de fouten zowel positief als negatief zijn, waardoor ongewenste annuleringen mogelijk zijn.
            • Bijv.: u wilt niet dat fouten van +50 en -50 worden geannuleerd en "geen fout" weergeven.
          • Om het annuleringsprobleem aan te pakken, nemen deze statistieken negatieve tekens weg door kwadratuur of absolute waarde te gebruiken.

           

          2. Percentage foutmetriek

          • Gemiddelde absolute procentuele fout (MAPE)
          • Deze metriek drukt de grootte van de fout uit als een percentage van de werkelijke waarde van de voorspelde variabele.
          • Het voordeel van deze aanpak is dat het meteen duidelijk maakt of de fout een groot probleem is of niet.
          • Bijv.: stel dat de MAE 100 eenheden is. Is een typische fout van 100 eenheden verschrikkelijk? OK? groot?
          • Het antwoord hangt af van de grootte van de variabele die wordt voorspeld. Als de werkelijke waarde 100 is, dan is een MAE = 100 zo groot als het ding dat wordt voorspeld. Maar als de werkelijke waarde 10.000 is, dan toont een MAE = 100 een grote nauwkeurigheid, aangezien de MAPE slechts 1% is van de werkelijke waarde.

           

          3. Relatieve foutmetriek

          • Mediane relatieve absolute fout (MdRAE)
          • Ten opzichte van wat? Naar een benchmarkprognose.
          • Welke maatstaf? Meestal de "naïeve" voorspelling.
          • Wat is de naïeve voorspelling? Volgende prognosewaarde = laatste werkelijke waarde.
          • Waarom de naïeve voorspelling gebruiken? Want als je daar niet tegen kunt, zit je in een zware vorm.

           

          4. Schaalvrije foutmetriek

          • Mediane relatief geschaalde fout (MdRSE)
          • Deze statistiek drukt de absolute voorspellingsfout uit als een percentage van het natuurlijke niveau van willekeur (volatiliteit) in de gegevens.
          • De volatiliteit wordt gemeten door de gemiddelde grootte van de verandering in de voorspelde variabele van de ene tijdsperiode naar de volgende.
            • (Dit is dezelfde als de fout gemaakt door de naïeve voorspelling.)
          • Hoe verschilt deze statistiek van de bovenstaande MdRAE?
            • Ze gebruiken allebei de naïeve prognose, maar deze statistiek gebruikt fouten bij het voorspellen van de vraaggeschiedenis, terwijl de MdRAE fouten gebruikt bij het voorspellen van toekomstige waarden.
            • Dit is van belang omdat er meestal veel meer historische waarden zijn dan er voorspellingen zijn.
            • Dat is op zijn beurt weer van belang omdat deze statistiek zou "ontploffen" als alle gegevens nul waren, wat minder waarschijnlijk is bij gebruik van de vraaggeschiedenis.

           

          Intermittent Demand Planning and Parts Forecasting

           

          Het speciale probleem van intermitterende vraag

          • "Intermitterende" vraag heeft veel nul-eisen vermengd met willekeurige niet-nul-eisen.
          • MAPE wordt geruïneerd wanneer fouten worden gedeeld door nul.
          • MdRAE kan ook kapot gaan.
          • MdSAE zal minder snel kapot gaan.

           

          Samenvatting en opmerkingen

          • Prognosestatistieken zijn noodzakelijke hulpmiddelen voor het bewaken en verbeteren van de prognosenauwkeurigheid.
          • Er zijn twee hoofdklassen van statistieken: absoluut en relatief.
          • Absolute metingen (MAE, MdAE, RMSE) zijn natuurlijke keuzes bij het beoordelen van prognoses van één item.
          • Relatieve metingen (MAPE, MdRAE, MdSAE) zijn nuttig bij het vergelijken van de nauwkeurigheid tussen items of tussen alternatieve prognoses van hetzelfde item of bij het beoordelen van de nauwkeurigheid ten opzichte van de natuurlijke variabiliteit van een item.
          • Intermitterende vraag levert problemen met delen door nul op die MdSAE verkiezen boven MAPE.
          • Bij het beoordelen van prognoses van meerdere items is het vaak zinvol om gewogen gemiddelden te gebruiken, waarbij items anders worden gewogen op basis van volume of omzet.
          Laat een reactie achter

          RECENTE BERICHTEN

          Are You Playing the Inventory Guessing Game?

          Speel jij het voorraadraadspel?

          Sommige bedrijven investeren in software om hen te helpen hun voorraad te beheren, of het nu gaat om reserveonderdelen of eindproducten. Maar een verrassend aantal anderen speelt elke dag het Inventory Guessing Game, vertrouwend op een ingebeelde “Golden Gut” of op gewoon geluk om hun inventariscontroleparameters in te stellen. Maar wat voor resultaten verwacht je met die aanpak?

          Finding Your Spot on the Tradeoff Curve

          Vind uw plek op de afwegingscurve

          Bij voorraadbeheer gaat het, net als bij alles, om het balanceren van concurrerende prioriteiten. Wilt u een lean inventaris? Ja! Wil jij kunnen zeggen “Het is op voorraad” als een klant iets wil kopen? Ja!
          Maar kun je het op beide manieren hebben? Slechts tot op zekere hoogte. Als u uw voorraad te agressief aanpast, riskeert u voorraadtekorten. Als je voorraadtekorten uitroeit, creëer je een opgeblazen voorraad. U wordt gedwongen een bevredigend evenwicht te vinden tussen de twee concurrerende doelen: een beperkte voorraad en een hoge beschikbaarheid van artikelen.

          Direct to the Brain of the Boss – Inventory Analytics and Reporting

          Rechtstreeks naar het brein van de baas – voorraadanalyse en rapportage

          In deze blog wordt de software in de schijnwerpers gezet die rapporten voor het management maakt, de stille held die de schoonheid van furieuze berekeningen vertaalt naar bruikbare rapporten. Kijk hoe de berekeningen, op ingewikkelde wijze begeleid door planners die onze software gebruiken, naadloos samenkomen in Smart Operational Analytics (SOA)-rapporten, waarbij vijf belangrijke gebieden worden verdeeld: voorraadanalyse, voorraadprestaties, voorraadtrends, leveranciersprestaties en vraagafwijkingen.

          recente berichten

          • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
            In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
          • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
            De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
          • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
            Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
          • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
            Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
          • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
            Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

            Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

            • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
              In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
            • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
              De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
            • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
              Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
            • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
              In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

              Automatische prognoses voor vraagprognoses in tijdreeksen

              De slimme voorspeller

               Het nastreven van best practices op het gebied van vraagplanning,

              prognoses en voorraadoptimalisatie

              Verbeter de forecasting nauwkeurigheid, elimineer overtollige voorraad en maximaliseer service levels

              In deze video-tutorial presenteert Dr. Thomas Willemain, mede-oprichter en SVP Research bij Smart Software, Automatic Forecasting for Time Series Demand Projections, een gespecialiseerd algoritmisch toernooi om een geschikt tijdreeksmodel te bepalen en de parameters te schatten om de beste prognosemethoden te berekenen. Automatische prognoses van grote aantallen tijdreeksen worden vaak gebruikt in het bedrijfsleven, sommige hebben een stijgende of dalende trend en sommige hebben een seizoensgebonden karakter, dus ze zijn cyclisch, en elk van die specifieke patronen vereist een geschikte technische benadering en een geschikte statistische prognosemethode. Tom legt uit hoe het toernooi de beste prognosemethoden berekent en werkt aan een praktisch voorbeeld.

              AUTOMATIC FORECASTING COMPLETE-VIDEO-2
              Laat een reactie achter

              RECENTE BERICHTEN

              Are You Playing the Inventory Guessing Game?

              Speel jij het voorraadraadspel?

              Sommige bedrijven investeren in software om hen te helpen hun voorraad te beheren, of het nu gaat om reserveonderdelen of eindproducten. Maar een verrassend aantal anderen speelt elke dag het Inventory Guessing Game, vertrouwend op een ingebeelde “Golden Gut” of op gewoon geluk om hun inventariscontroleparameters in te stellen. Maar wat voor resultaten verwacht je met die aanpak?

              Finding Your Spot on the Tradeoff Curve

              Vind uw plek op de afwegingscurve

              Bij voorraadbeheer gaat het, net als bij alles, om het balanceren van concurrerende prioriteiten. Wilt u een lean inventaris? Ja! Wil jij kunnen zeggen “Het is op voorraad” als een klant iets wil kopen? Ja!
              Maar kun je het op beide manieren hebben? Slechts tot op zekere hoogte. Als u uw voorraad te agressief aanpast, riskeert u voorraadtekorten. Als je voorraadtekorten uitroeit, creëer je een opgeblazen voorraad. U wordt gedwongen een bevredigend evenwicht te vinden tussen de twee concurrerende doelen: een beperkte voorraad en een hoge beschikbaarheid van artikelen.

              Direct to the Brain of the Boss – Inventory Analytics and Reporting

              Rechtstreeks naar het brein van de baas – voorraadanalyse en rapportage

              In deze blog wordt de software in de schijnwerpers gezet die rapporten voor het management maakt, de stille held die de schoonheid van furieuze berekeningen vertaalt naar bruikbare rapporten. Kijk hoe de berekeningen, op ingewikkelde wijze begeleid door planners die onze software gebruiken, naadloos samenkomen in Smart Operational Analytics (SOA)-rapporten, waarbij vijf belangrijke gebieden worden verdeeld: voorraadanalyse, voorraadprestaties, voorraadtrends, leveranciersprestaties en vraagafwijkingen.

              recente berichten

              • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
                In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
              • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
                De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
              • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
                Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
              • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
                Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
              • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
                Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

                Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

                • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
                  In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
                • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
                  De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
                • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
                  Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
                • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
                  In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

                  Prognose met behulp van leidende indicatoren - Regressieanalyse:

                  De slimme voorspeller

                   Het nastreven van best practices op het gebied van vraagplanning,

                  prognoses en voorraadoptimalisatie

                  Verbeter de forecasting nauwkeurigheid, elimineer overtollige voorraad en maximaliseer service levels

                  In deze video-tutorial presenteert Dr. Thomas Willemain, mede-oprichter en SVP Research bij Smart Software, regressieanalyse, een gespecialiseerde statistische modelleringstechniek om leidende indicatoren te identificeren en te benutten om nauwkeurigere voorspellingen te bereiken. Regressieanalyse is een statistische procedure om de relatie tussen een responsvariabele en een of meer voorspellende variabelen te schatten. Het starten van woningen kan bijvoorbeeld een goede voorlopende indicator zijn van de vraag naar vinylbeplating. Tom legt uit hoe en wanneer je regressieanalyse gebruikt en werkt een praktijkvoorbeeld uit.

                  Forecasting Techniques for a more profitable business
                  Laat een reactie achter

                  RECENTE BERICHTEN

                  Are You Playing the Inventory Guessing Game?

                  Speel jij het voorraadraadspel?

                  Sommige bedrijven investeren in software om hen te helpen hun voorraad te beheren, of het nu gaat om reserveonderdelen of eindproducten. Maar een verrassend aantal anderen speelt elke dag het Inventory Guessing Game, vertrouwend op een ingebeelde “Golden Gut” of op gewoon geluk om hun inventariscontroleparameters in te stellen. Maar wat voor resultaten verwacht je met die aanpak?

                  Finding Your Spot on the Tradeoff Curve

                  Vind uw plek op de afwegingscurve

                  Bij voorraadbeheer gaat het, net als bij alles, om het balanceren van concurrerende prioriteiten. Wilt u een lean inventaris? Ja! Wil jij kunnen zeggen “Het is op voorraad” als een klant iets wil kopen? Ja!
                  Maar kun je het op beide manieren hebben? Slechts tot op zekere hoogte. Als u uw voorraad te agressief aanpast, riskeert u voorraadtekorten. Als je voorraadtekorten uitroeit, creëer je een opgeblazen voorraad. U wordt gedwongen een bevredigend evenwicht te vinden tussen de twee concurrerende doelen: een beperkte voorraad en een hoge beschikbaarheid van artikelen.

                  Direct to the Brain of the Boss – Inventory Analytics and Reporting

                  Rechtstreeks naar het brein van de baas – voorraadanalyse en rapportage

                  In deze blog wordt de software in de schijnwerpers gezet die rapporten voor het management maakt, de stille held die de schoonheid van furieuze berekeningen vertaalt naar bruikbare rapporten. Kijk hoe de berekeningen, op ingewikkelde wijze begeleid door planners die onze software gebruiken, naadloos samenkomen in Smart Operational Analytics (SOA)-rapporten, waarbij vijf belangrijke gebieden worden verdeeld: voorraadanalyse, voorraadprestaties, voorraadtrends, leveranciersprestaties en vraagafwijkingen.

                  recente berichten

                  • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
                    In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
                  • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
                    De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
                  • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
                    Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
                  • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
                    Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
                  • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
                    Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

                    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

                    • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
                      In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
                    • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
                      De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
                    • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
                      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
                    • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
                      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]