De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Service level is a key performance indicator for companies that put a premium on satisfying customer demand. Service level is defined as the probability of surviving a replenishment lead time without stocking out.

Inventory management best practice begins with setting service level targets, then calculates reorder points (also called Mins) to achieve those targets. These calculations should account for variability in both demand and replenishment lead time. There are many software systems available for doing these calculations. If everything works out, the achieved service level ends up very close to the target service level. Unfortunately, there is often a painful gap between the two.

One reason for the gap is unrealistic models of demand. In many cases, software for calculating reorder points uses textbook formulas based on mathematical assumptions that make analysis simple at the expense of realism.  Many “Inventory 101” textbooks use formulas that assume demand has a Normal distribution (a.k.a. the “bell-shaped curve”) for finished goods and the Poisson distribution for spare parts. Fortunately, there are now inventory optimization and forecasting systems that process the actual demand histories of the inventory items using probabilistic forecasting.  These solutions calculate an accurate estimate of the distribution – not some idealized version.  To learn more check out this past blog on probabilistic forecasting:

But there is a second source of error in textbooks that operates invisibly in many inventory software package:  “undershoot”.

Calculations of reorder points almost always assume that stockouts arise when the total demand during a replenishment interval exceeds the reorder point. For example, assume that demand averages 1 unit per day. If lead time is 5 days, then on average lead time demand is 5 units. Setting the reorder point at 5 units would yield a laughable service level somewhere in the vicinity of 50%. Adding safety stock to the calculation might result in a reorder point of, say, 11 units, which might correspond to a service level of 95%. Another way to say this is, starting at a reorder point of 11 units, there should be a 95% chance of surviving the 5 day lead time without experiencing cumulative demand of more than 11 units. Theoretically!

What’s missing from this analysis is the undershoot phenomenon. Undershoot means that the lead time begins not at the reorder point but below it. Undershoot happens every time the demand that breached the reorder point took the stock down below (not down to) the reorder point. The figure below shows replenishment cycles with and without undershoot.  Undershoot picks your pocket before you even begin to roll the dice. It deludes the inventory professional into thinking his or her reorder points are sufficient to achieve their targets, whereas actual performance will not make the grade.

There is only one situation in which undershoot is not a worry: when demand is always either zero or one unit. In that case, undershoot is impossible. But in all other cases, undershoot is sure to happen to some extent, and it can seriously undercut the service level actually achieved by a given choice of reorder point. Our analyses show that the conditions most vulnerable to undershoot involve highly intermittent and skewed demand with very short lead times – the very conditions being made most common by market trends.

What can be done to protect yourself from the effect of undershoot on reorder point calculations?  Use inventory optimization and forecasting software that isn’t tied to the old textbook assumptions and instead automatically accounts for undershoot when calculating the service level produced by any choice of reorder point.

To see Smart Software’s Inventory Optimization solution in action, register to see a recorded demo below:

 

    Uw naam *

    Bedrijfsnaam *

    Werk email *

    Werktelefoon


     

     

    Laat een reactie achter

    gerelateerde berichten

    Smart Software leidt een webinar als onderdeel van het WERC Solutions Partner Program

    Smart Software leidt een webinar als onderdeel van het WERC Solutions Partner Program

    Smart Software, zal een webinar van 30 minuten leiden als onderdeel van het WERC Solutions Partner Program. De presentatie zal zich richten op hoe een toonaangevend elektriciteitsbedrijf Smart Inventory Planning and Optimization (Smart IP&O) implementeerde als onderdeel van het strategische supply chain-optimalisatie-initiatief (SCO) van het bedrijf.

    Het Supply Chain Blame-spel: Top 3 excuses voor voorraadtekorten en -overschotten

    Het Supply Chain Blame-spel: Top 3 excuses voor voorraadtekorten en -overschotten

    De toeleveringsketen is de schuld geworden van bijna elk industrieel of kleinhandelsprobleem. Tekorten aan doorlooptijdvariabiliteit, slechte prognoses en problemen met slechte gegevens zijn levensfeiten, maar voorraadhoudende organisaties worden vaak verrast wanneer een van deze problemen zich voordoet. Dus nogmaals, wie is verantwoordelijk voor de chaos in de toeleveringsketen? Blijf deze blog lezen en we zullen proberen u te laten zien hoe u producttekorten en overstocking kunt voorkomen.

    recente berichten

    • Supply Chain Math large-scale decision-making analyticsSupply Chain Math: Don’t Bring a Knife to a Gunfight
      Math and the supply chain go hand and hand. As supply chains grow, increasing complexity will drive companies to look for ways to manage large-scale decision-making. Math is a fact of life for anyone in inventory management and demand forecasting who is hoping to remain competitive in the modern world. Read our article to learn more. […]
    • Rijpe bebaarde monteur in uniform onderzoekt de machine en repareert deze in de fabriekPlanning voor verbruiksgoederen vs. herstelbare onderdelen
      Bij het bepalen van de juiste opslagparameters voor reserve- en vervangingsonderdelen, is het belangrijk om onderscheid te maken tussen verbruiks- en repareerbare onderdelen. Deze verschillen worden vaak over het hoofd gezien door software voor voorraadplanning en kunnen resulteren in onjuiste schattingen van wat er op voorraad moet worden gehouden. Er zijn verschillende benaderingen vereist bij het plannen van verbruiksartikelen versus herstelbare artikelen. […]
    • Vier veelgemaakte fouten bij het plannen van aanvullingsdoelenVier veelgemaakte fouten bij het plannen van aanvullingsdoelen
      Hoe vaak herkalibreert u uw voorraadbeleid? Waarom? Leer hoe u belangrijke fouten kunt vermijden bij het plannen van aanvullingsdoelen door het proces te automatiseren, onderdelen opnieuw te kalibreren, targeting-prognosemethoden te gebruiken en uitzonderingen te bekijken. […]
    • Smart Software introduceert met genoegen onze serie webinars, exclusief aangeboden voor Epicor-gebruikers.Breid de prognoses en min/max-planning van Epicor Kinetic uit met Smart IP&O
      Epicor Kinetic kan de aanvulling beheren door te suggereren wat te bestellen en wanneer via op bestelpunten gebaseerd voorraadbeleid. Het probleem is dat het ERP-systeem vereist dat de gebruiker deze bestelpunten handmatig specificeert, of een rudimentaire "vuistregel"-aanpak gebruikt op basis van dagelijkse gemiddelden. In dit artikel zullen we de functionaliteit voor het bestellen van voorraad in Epicor Kinetic bespreken, de beperkingen ervan uitleggen en samenvatten hoe de voorraad kan worden verminderd en de voorraad kan worden geminimaliseerd door de robuuste voorspellende functionaliteit te bieden die ontbreekt in Epicor. […]
    • Op scenario's gebaseerde prognoses versus vergelijkingenOp scenario's gebaseerde prognoses versus vergelijkingen
      Van oudsher heeft software gediend als een leveringsvehikel voor vergelijkingen. Dit is prima, voor zover het gaat. Maar wij bij Smart Software denken dat u er beter aan doet door uw vergelijkingen in te ruilen voor scenario's. Ontdek waarom op scenario's gebaseerde planning planners helpt om risico's beter te beheren en betere resultaten te behalen. […]

      Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

      • Algemene bestellingen Slimme softwarevraag en voorraadplanning HDAlgemene bestellingen
        Onze klanten zijn geweldige docenten die ons altijd hebben geholpen de kloof tussen leerboektheorie en praktische toepassing te overbruggen. Een goed voorbeeld gebeurde meer dan twintig jaar geleden, toen we kennismaakten met het fenomeen van intermitterende vraag, dat veel voorkomt bij reserveonderdelen, maar zeldzaam is bij de afgewerkte producten die worden beheerd door onze oorspronkelijke klanten die werkzaam zijn in verkoop en marketing. Deze onthulling leidde al snel tot onze vooraanstaande positie als leveranciers van software voor het beheren van voorraden reserveonderdelen. Ons laatste stukje scholing betreft 'algemene bestellingen'. […]
      • Plaats stukken met de hand om een pijl te bouwenProbabilistische prognoses voor intermitterende vraag
        De nieuwe prognosetechnologie is afgeleid van probabilistische prognoses, een statistische methode die zowel de gemiddelde productvraag per periode als de voorraadbehoeften op het niveau van de klantenservice nauwkeurig voorspelt. […]
      • Engineering op bestelling bij Kratos Space - beschikbaarheid van onderdelen een strategisch voordeel maken
        De Kratos Space-groep binnen National Security-technologie-innovator Kratos Defense & Security Solutions, Inc., produceert COTS-software en componentproducten voor ruimtecommunicatie - waardoor de beschikbaarheid van onderdelen een strategisch voordeel wordt […]
      • houten-figuren-van-mensen-en-een-magneet-team-management-magazijninventarisBeheer van de inventaris van gepromote artikelen
        In een eerder bericht besprak ik een van de neteligere problemen waarmee vraagplanners soms worden geconfronteerd: het werken met gegevens over productvraag die worden gekenmerkt door wat statistici scheefheid noemen - een situatie die kostbare voorraadinvesteringen kan vergen. Dit soort problematische gegevens is te vinden in verschillende scenario's. In ten minste één geval, de combinatie van intermitterende vraag en zeer effectieve verkoopacties, leent het probleem zich voor een effectieve oplossing. […]