Encontrar su lugar en la curva de compensación

Acto de equilibrio

La gestión del inventario, como la gestión de cualquier cosa, implica equilibrar prioridades en competencia. ¿Quieres un inventario ajustado? ¡Sí! ¿Quiere poder decir "Está en stock" cuando un cliente quiere comprar algo? ¡Sí!

¿Pero puedes tener ambas cosas? Sólo hasta cierto punto. Si se inclina por inclinar su inventario de manera demasiado agresiva, corre el riesgo de quedarse sin existencias. Si eliminas los desabastecimientos, creas un exceso de inventario. Se ve obligado a encontrar un equilibrio satisfactorio entre los dos objetivos en competencia: un inventario reducido y una alta disponibilidad de artículos.

Lograr un equilibrio

¿Cómo se logra ese equilibrio? Demasiados planificadores de inventarios “intuyen” el camino hacia algún tipo de respuesta. O encuentran una respuesta inteligente una vez y esperan que tenga una fecha de caducidad lejana y sigan usándola mientras se concentran en otros problemas. Desafortunadamente, los cambios en la demanda y/o los cambios en el desempeño de los proveedores y/o los cambios en las prioridades de su propia empresa dejarán obsoletos los viejos planes de inventario y lo devolverán al punto de partida.

Es inevitable que todo plan tenga una vida útil y deba actualizarse. Sin embargo, definitivamente no es una buena práctica reemplazar una suposición por otra. En cambio, cada ciclo de planificación debería aprovechar el software moderno de la cadena de suministro para reemplazar las conjeturas con análisis basados en hechos utilizando matemáticas de probabilidad.

Conocete a ti mismo

Lo único que el software no puede hacer es calcular la mejor respuesta sin conocer sus prioridades. ¿Cuánto prioriza el inventario eficiente sobre la disponibilidad de artículos? El software predecirá los niveles de inventario y disponibilidad causados por cualquier decisión que tome sobre cómo administrar cada artículo en su inventario, pero solo usted puede decidir si un conjunto determinado de indicadores clave de desempeño es consistente con lo que desea.

Saber lo que quieres en un sentido general es fácil: lo quieres todo. Pero saber qué prefiere al comparar escenarios específicos es más difícil. Es útil poder ver una variedad de posibilidades realizables y reflexionar sobre cuál parece mejor cuando se presentan una al lado de la otra.

Ver lo que sigue

El software de cadena de suministro puede brindarle una visión de la curva de compensación. En general, usted sabe que el inventario reducido y la alta disponibilidad de artículos se compensan entre sí, pero ver las curvas de compensación de artículos específicos agudiza su atención.

¿Por qué hay una curva? Porque tienes opciones sobre cómo gestionar cada elemento. Por ejemplo, si verifica el estado del inventario continuamente, ¿qué valores asignará a los Mínimo y máximo valores que rigen cuándo pedir reabastecimientos y cuánto pedir. La curva de compensación surge porque elegir diferentes valores mínimos y máximos conduce a diferentes niveles de inventario disponible y diferentes niveles de disponibilidad de artículos, por ejemplo, medidos por tasa de relleno.

 

Un escenario para el análisis

Para ilustrar estas ideas, utilicé un gemelo digital  para estimar cómo se comportarían varios valores de Min y Max en un escenario particular. El escenario se centró en una pieza de repuesto teórica con una demanda puramente aleatoria que tenía un nivel moderadamente alto de intermitencia (37% de días con demanda cero). Los plazos de reposición fueron de entre 7 y 14 días. Los valores Min y Max fueron variados sistemáticamente: Min de 20 a 40 unidades, Max de Min+1 unidades a 2xMin unidades. Cada par (Min,Max) se simuló durante 365 días de operación un total de 1000 veces, luego los resultados se promediaron para estimar tanto el número promedio de unidades disponibles como la tasa de cumplimiento, es decir, el porcentaje de demandas diarias que se cumplieron inmediatamente desde existencias. Si no había stock disponible, se encontraba pendiente de entrega.

 

Resultados

El experimento produjo dos tipos de resultados:

  • Gráficos que muestran la relación entre los valores mínimos y máximos y dos indicadores clave de rendimiento: tasa de cumplimiento y unidades promedio disponibles.
  • Una curva de compensación que muestra cómo la tasa de cumplimiento y las unidades disponibles se compensan entre sí.

La Figura 1 muestra el inventario disponible en función de los valores de Min y Max. El experimento arrojó niveles manuales que oscilaban entre cerca de 0 y aproximadamente 40 unidades. En general, mantener Min constante y aumentar Max da como resultado más unidades disponibles. La relación con Min es más compleja: mantener Max constante y aumentar Min primero aumenta el inventario, pero en algún momento lo reduce.

La Figura 2 muestra la tasa de llenado en función de los valores de Min y Max. El experimento arrojó niveles de tasa de llenado que van desde cerca de 0% hasta 100%. En general, las relaciones funcionales entre la tasa de llenado y los valores de Min y Max reflejaron las de la Figura 1.

La Figura 3 destaca el punto clave, mostrando cómo variar Min y Max produce un emparejamiento perverso de los indicadores clave de desempeño. En términos generales, los valores de Min y Max que maximizan la disponibilidad del artículo (tasa de cumplimiento) son los mismos valores que maximizan el costo del inventario (unidades promedio disponibles). Este patrón general está representado por la curva azul. Los experimentos también produjeron algunas ramificaciones de la curva azul que están asociadas con malas elecciones de Min y Max, en el sentido de que otras opciones las dominan al producir la misma tasa de cumplimiento con un inventario más bajo.

 

Conclusiones

La Figura 3 deja en claro que su elección de cómo administrar un artículo del inventario lo obliga a equilibrar el costo del inventario y la disponibilidad del artículo. Puede evitar algunas combinaciones ineficientes de valores mínimos y máximos, pero no puede escapar de la compensación.

El lado bueno de esta realidad es que no tienes que adivinar qué sucederá si cambias tus valores actuales de Min y Max por otros. El software le dirá cuánto le permitirá comprar esa mudanza y cuánto le costará. Puedes quitarte el sombrero de Guestimator y hacer lo tuyo con confianza.

Figure 1 On Hand Inventory as a function of Min and Max values

Figura 1 Inventario disponible en función de los valores mínimos y máximos

 

 

Figure 2 Fill Rate as a function of Min and Max values

Figura 2 Tasa de llenado en función de los valores mínimo y máximo

 

 

Figure 3 Tradeoff curve between Fill Rate and On Hand Inventory

Figura 3 Curva de compensación entre tasa de cumplimiento e inventario disponible

 

 

 

Cómo pronosticar los requisitos de inventario

La previsión de las necesidades de inventario es una variante especializada de la previsión que se centra en el extremo superior del rango de posible demanda futura.

Para simplificar, considere el problema de pronosticar las necesidades de inventario para un solo período de anticipación, digamos un día antes. Por lo general, el trabajo de pronóstico consiste en estimar el nivel más probable o promedio de demanda del producto. Sin embargo, si el inventario disponible es igual a la demanda promedio, existe una probabilidad de aproximadamente 50% de que la demanda exceda el inventario y resulte en pérdida de ventas y/o pérdida de buena voluntad. Fijar el nivel de inventario en, digamos, diez veces la demanda promedio probablemente eliminará el problema de los desabastecimientos, pero con la misma seguridad resultará en costos de inventario inflados.

El truco de la optimización del inventario es encontrar un equilibrio satisfactorio entre tener suficiente inventario para satisfacer la mayor parte de la demanda sin comprometer demasiados recursos en el proceso. Por lo general, la solución es una combinación de criterio empresarial y estadísticas. La parte crítica es definir un nivel de servicio de inventario aceptable, como satisfacer 95% de demanda inmediatamente desde el stock. La parte estadística es estimar el percentil 95 de la demanda.

Cuando no se trata de demanda intermitente, a menudo se puede estimar el nivel de inventario requerido asumiendo una curva de demanda en forma de campana (normal), estimando tanto el centro como el ancho de la curva de campana y luego usando una fórmula estadística estándar para estimar el percentil deseado. La diferencia entre el nivel de inventario deseado y el nivel promedio de demanda se denomina "existencia de seguridad" porque protege contra la posibilidad de desabastecimiento.

Cuando se trata de demanda intermitente, la curva en forma de campana es una aproximación muy pobre a la distribución estadística de la demanda. En este caso especial, Smart aprovecha la tecnología patentada para la demanda intermitente que está diseñada para pronosticar con precisión los rangos y producir una mejor estimación del stock de seguridad necesario para lograr el nivel de servicio de inventario requerido.

 

Todo el mundo pronostica para impulsar la planificación del inventario. Es solo una cuestión de cómo.

Descubra cómo se utilizan los pronósticos con estas 4 preguntas.

A menudo, las empresas insisten en que "no usan pronósticos" para planificar el inventario. A menudo usan métodos de punto de pedido y tienen dificultades para mejorar la entrega a tiempo, la rotación de inventario y otros KPI. Si bien no piensan en lo que están haciendo como un pronóstico explícito, ciertamente usan estimaciones de la demanda futura para desarrollar puntos de reorden como mínimo/máximo.

Independientemente de cómo se llame, todo el mundo trata de estimar la demanda futura de alguna manera y utiliza esta estimación para establecer políticas de almacenamiento e impulsar pedidos. Para mejorar la planificación del inventario y asegurarse de no realizar pedidos excesivos o insuficientes y crear grandes desabastecimientos e hinchazón del inventario, es importante comprender exactamente cómo utiliza su organización las previsiones. Una vez que comprenda esto, puede evaluar si se puede mejorar la calidad de los pronósticos.

Intente obtener respuestas a las siguientes preguntas. Revelará cómo se utilizan las previsiones en su empresa, incluso si cree que no utiliza previsiones.

1. ¿Es su pronóstico una estimación período por período a lo largo del tiempo que se usa para predecir qué inventario disponible habrá en el futuro y desencadena sugerencias de pedidos en su sistema ERP?

2. ¿O se usa su pronóstico para derivar un punto de reorden pero no se usa explícitamente como un controlador por período para generar órdenes? Aquí, puedo predecir que venderemos 10 por semana según el historial, pero no estamos cargando 10, 10, 10, 10, etc., en el ERP. En su lugar, derivo un punto de reorden o Mín. que cubre el tiempo de entrega de dos períodos + cierta cantidad de reserva para ayudar a proteger contra el agotamiento de existencias. En este caso, pediré más cuando llegue a 25.

3. ¿Su pronóstico se usa como una guía para que el planificador ayude a determinar subjetivamente cuándo debe ordenar más? Aquí, predigo 10 por semana y evalúo el inventario disponible periódicamente, reviso el tiempo de entrega esperado y decido, dadas las 40 unidades que tengo disponibles hoy, que tengo "suficiente". Por lo tanto, no hago nada ahora, pero volveré a consultar en una semana.

4. ¿Se utiliza para configurar pedidos abiertos con proveedores? Aquí, predigo 10 por semana y acepto una orden de compra general con el proveedor de 520 por año. Luego, los pedidos se hacen con anticipación para que lleguen en cantidades de 10 una vez por semana hasta que se consuma el pedido general.

Una vez que obtenga las respuestas, puede preguntar cómo se crean las estimaciones de la demanda. ¿Es un promedio? ¿Está derivando la demanda sobre el tiempo de entrega a partir de un pronóstico de ventas? ¿Hay un pronóstico estadístico generado en alguna parte? ¿Qué métodos se consideran? También será importante evaluar cómo se utilizan las existencias de seguridad para protegerse contra la variabilidad de la oferta y la demanda. Más sobre todo esto en un próximo artículo.

 

Lo que Silicon Valley Bank puede aprender de la planificación de la cadena de suministro

Si últimamente tenías la cabeza en alto, es posible que hayas notado alguna locura adicional fuera de la cancha de baloncesto: el fracaso del Silicon Valley Bank. Aquellos de nosotros en el mundo de la cadena de suministro tal vez hayamos descartado la quiebra del banco como un problema de otra persona, pero ese lamentable episodio también contiene una gran lección para nosotros: la importancia de hacer bien las pruebas de estrés.

Él El Correo de Washington Recientemente se publicó un artículo de opinión de Natasha Sarin llamado “Los reguladores se perdieron los problemas de Silicon Valley Bank durante meses. Este es el por qué." Sarin describió las fallas en el régimen de pruebas de estrés impuesto al banco por la Reserva Federal. Un problema es que las pruebas de estrés son demasiado estáticas. El factor de estrés de la Fed para el crecimiento del PIB nominal fue un escenario único que enumeraba valores supuestos durante los próximos 13 trimestres (ver Figura 1). Esas 13 proyecciones trimestrales pueden ser la opinión consensuada de alguien sobre cómo se vería un mal día para el cabello, pero esa no es la única forma en que podrían desarrollarse las cosas. Como sociedad, se nos enseña a apreciar una mejor manera de mostrar las contingencias cada vez que el Servicio Meteorológico Nacional nos muestra las trayectorias proyectadas de los huracanes (consulte la Figura 2). Cada escenario representado por una línea de color diferente muestra una posible trayectoria de tormenta, y las líneas concentradas representan la más probable. Al exponer las rutas de menor probabilidad, se mejora la planificación de riesgos.

Al realizar pruebas de estrés en la cadena de suministro, necesitamos escenarios realistas de posibles demandas futuras que podrían ocurrir, incluso demandas extremas. Smart proporciona esto en nuestro software (con mejoras considerables en nuestros métodos Gen2). El software genera una gran cantidad de escenarios de demanda creíbles, suficientes para exponer el alcance completo de los riesgos (consulte la Figura 3). Las pruebas de estrés tienen que ver con la generación de cantidades masivas de escenarios de planificación, y los métodos probabilísticos de Smart son una desviación radical de las aplicaciones S&OP deterministas anteriores, ya que se basan completamente en escenarios.

La otra falla en las pruebas de estrés de la Fed fue que fueron diseñadas con meses de anticipación pero nunca actualizadas para las condiciones cambiantes. Los planificadores de la demanda y los gerentes de inventario aprecian intuitivamente que las variables clave como la demanda de artículos y el tiempo de entrega del proveedor no solo son muy aleatorias, incluso cuando las cosas son estables, sino que también están sujetas a cambios abruptos que deberían requerir una reescritura rápida de los escenarios de planificación (consulte la Figura 4, donde la demanda promedio salta dramáticamente entre las observaciones 19 y 20). Los productos Gen2 de Smart incluyen nueva tecnología para detectar tales "cambios de régimen” y cambiando automáticamente los escenarios en consecuencia.

Los bancos se ven obligados a someterse a pruebas de estrés, por muy defectuosas que sean, para proteger a sus depositantes. Los profesionales de la cadena de suministro ahora tienen una manera de proteger sus cadenas de suministro mediante el uso de un software moderno para realizar pruebas de estrés de sus planes de demanda y decisiones de gestión de inventario.

1 Scenarios used the Fed to stress test banks Software

Figura 1: Escenarios utilizados por la Fed para hacer pruebas de estrés a los bancos.

 

2 Scenarios used by the National Weather Service to predict hurricane tracks

Figura 2: Escenarios utilizados por el Servicio Meteorológico Nacional para predecir las trayectorias de los huracanes

 

3 Demand scenarios of the type generated by Smart Demand Planner

Figura 3: Escenarios de demanda del tipo generado por Smart Demand Planner

 

4 Example of regime change in product demand after observation #19

Figura 4: Ejemplo de cambio de régimen en la demanda del producto después de la observación #19

 

 

¿Ahorrar miles de millones? Hasta dónde podría llevar el 'Centro de Innovación en Sistemas Logísticos' al Ejército de EE. UU.

El Blog de Smart

Recomendaciones para la planificación de la demanda,

previsión y optimización de inventario

Contribuido a The Smart Forecaster por el Dr. Greg Parlier (Coronel, Ejército de EE. UU., retirado). Los detalles sobre los antecedentes del Dr. Parlier concluyen la publicación.

Durante más de dos décadas, la Oficina de Contabilidad General (GAO) ha indicado que la gestión logística del Departamento de Defensa ha sido ineficaz y derrochadora, y que los Servicios carecen de planes estratégicos para mejorar la gestión general del inventario y el rendimiento de la cadena de suministro.

Para el Ejército de los EE. UU., este problema está directamente relacionado con una incapacidad persistente para vincular los niveles y las políticas de inversión en inventario con la efectividad de la cadena de suministro para lograr los objetivos de preparación del equipo de combate requeridos para las fuerzas desplegadas a nivel mundial. Esta deficiencia se ha atribuido a numerosas complejidades asociadas con la gestión de organizaciones que operan de forma independiente y dispersas geográficamente, agravadas aún más por la falta de visibilidad, autoridad y responsabilidad en esta vasta empresa global.

A diferencia del mundo corporativo, donde fuerzas poderosas alientan innovación Para impulsar la competitividad y la eficiencia, el Ejército no es una organización generadora de ingresos centrada en las “ganancias trimestrales” y la rentabilidad. Ciertamente, el Ejército quiere ser un consumidor eficiente de recursos, pero a diferencia del enfoque del sector privado en las ganancias como resultado final, el motivador sustituto del Ejército es la 'preparación de la fuerza'. Esto incluye la disponibilidad de equipos y la preparación del sistema de armas para las operaciones actuales en Afganistán, así como los requisitos de capacidad futuros dirigidos por la Autoridad de Comando Nacional.

Para mantener la disponibilidad de ese equipo, el Ejército debe sincronizar componentes organizativos dispares utilizando innumerables procesos con sistemas de información de gestión heredados desconectados en numerosas actividades de apoyo de suministro que con frecuencia se reubican para apoyar a las fuerzas desplegadas.

Hoy, mientras aún participa en Afganistán, el Ejército también está comprometido con una transformación integral y continua. Un elemento central de este esfuerzo es el reconocimiento de que se deben lograr mejoras drásticas en las operaciones logísticas y la gestión de la cadena de suministro. Al poseer una de las cadenas de suministro más grandes y complejas del mundo, el Ejército ahora está invirtiendo en esfuerzos históricamente sin precedentes para capitalizar completamente las promesas que ofrecen las nuevas tecnologías basadas en la información. Por ejemplo, se cree que la “Empresa Logística del Ejército Único” es el proyecto de implementación de Planificación de Recursos Empresariales (ERP) más ambicioso y costoso jamás emprendido.

Estos proyectos de implementación de ERP han tenido resultados muy variados. Si bien la evidencia sugiere que se pueden lograr mejoras dramáticas en el desempeño para lograr una ventaja competitiva en el sector comercial, esto solo ha ocurrido cuando las llamadas "soluciones de TI" se aplican a una base subyacente de procesos de negocios maduros, eficientes y apropiados.

La realidad de la mayoría de los casos en los últimos años, sin embargo, no ha sido este éxito. Por el contrario, se han hecho intentos de "atornillar" una solución (como un sistema ERP, por ejemplo) a los procesos comerciales existentes, en esfuerzos equivocados para replicar las prácticas de gestión heredadas. Tales esfuerzos para automatizar los procesos existentes, con demasiada frecuencia, simplemente han creado caos. De hecho, estos intentos no solo no lograron las mejoras previstas, sino que en realidad dieron como resultado una reducción del rendimiento.

El patrón general ha sido: cuanto mayor es la inversión en TI y el alcance de la organización, es más probable que se produzca un “fracaso”, en forma de sobrecostos, retrasos en los cronogramas e incluso fracaso del proyecto, donde finalmente se abandonó el esfuerzo.

Creemos que la forma de habilitar un enfoque coordinado e integral para la transformación de la logística es mediante la creación de un "motor para la innovación" para acelerar y mantener la mejora continua del desempeño de la logística y la gestión de la cadena de suministro del Ejército. Estamos desarrollando un 'Centro de Innovación en Sistemas Logísticos' para evaluar sistemáticamente los principales componentes organizativos, realizar análisis de causa raíz, diagnosticar trastornos estructurales y prescribir soluciones integradas. Ahora hemos identificado varios 'catalizadores para la innovación' para reducir la variabilidad del lado de la oferta y la incertidumbre de la demanda, las causas próximas del notorio 'efecto látigo'. Estos incluyen lo que llamamos la 'ecuación de preparación', 'pronóstico basado en la misión', 'ahorro basado en la preparación' y 'retrógrado sensible a la preparación'.

Nuestro objetivo es desarrollar una capacidad de modelado integral para generar y probar estos catalizadores de innovación junto con varias otras iniciativas para estimar enfoques rentables antes de que se adopten como política y se implementen en la práctica. Estamos analizando el análisis de rendimiento, el diseño organizativo, la información de gestión y los conceptos de apoyo a las decisiones, la ingeniería de sistemas empresariales y las consideraciones sobre la fuerza laboral, incluidas las necesidades de inversión en capital humano.

Al examinar los 'catalizadores' de forma aislada, hemos visto un importante potencial de mejora que podría generar cientos de millones de dólares en ahorros. Sin embargo, cuando se combinan con nuevas prácticas de gestión integradas, la magnitud potencial de la mejora es realmente espectacular: es probable que se ahorren miles de millones de dólares. Más importante aún, es posible relacionar los niveles de inversión con la preparación actual y las capacidades futuras.

El centro es capaz de desarrollar 'innovación de gestión como tecnología estratégica' al integrar análisis avanzados con planificación estratégica transformacional. Al aprovechar, enfocar y aplicar el poder del análisis, estamos promoviendo el sentido común tanto cualitativo como cuantitativo: los argumentos analíticos convincentes para el cambio necesario para perseguir una visión común. Con este poder, estamos comenzando a educar al liderazgo del Ejército, motivar a los gerentes de logística a actuar y proporcionar una fuente de innovación que la cultura pueda adoptar. Durante nuestro viaje, ciertamente nos hemos adaptado y aplicado mucho tanto de los dominios académicos como del sector corporativo. Ellos, a su vez, ahora también podrían beneficiarse de lo que hemos podido aprender y lograr.

Antes de jubilarse, el Coronel Parlier era el analista de investigación de operaciones de mayor antigüedad y más experimentado del Ejército y se desempeñó como Comandante Adjunto de Transformación del Comando de Aviación y Misiles del Ejército (AMCOM). Él es el autor de Transformando las cadenas de suministro del ejército de EE. UU.: estrategias para la innovación en la gestión, que describe el marco analítico de un proyecto de investigación y desarrollo del Comando de Material del Ejército (AMC) de varios años que proporciona conocimientos de investigación de operaciones para uso del Ejército y el Departamento de Defensa.

Deja un comentario

Artículos Relacionados

Constructive Play with Digital Twins

Juego constructivo con gemelos digitales

Aquellos de ustedes que siguen temas candentes estarán familiarizados con el término "gemelo digital". Aquellos que han estado demasiado ocupados con el trabajo tal vez quieran seguir leyendo y ponerse al día. Si bien existen varias definiciones de gemelo digital, aquí hay una que funciona bien: un gemelo digital es una copia virtual dinámica de un activo físico, proceso, sistema o entorno que se parece y se comporta de manera idéntica a su contraparte del mundo real. Un gemelo digital ingiere datos y replica procesos para que pueda predecir posibles resultados de rendimiento y problemas que podría experimentar el producto del mundo real.

Direct to the Brain of the Boss – Inventory Analytics and Reporting

Directo al cerebro del jefe: análisis e informes de inventario

En este blog, la atención se centra en el software que crea informes para la gestión, el héroe silencioso que traduce la belleza de los cálculos furiosos en informes procesables. Observe cómo los cálculos, intrincadamente guiados por los planificadores que utilizan nuestro software, convergen sin problemas en informes de Smart Operational Analytics (SOA), dividiendo cinco áreas clave: análisis de inventario, rendimiento del inventario, tendencias del inventario, rendimiento de los proveedores y anomalías de la demanda.

How Are We Doing? KPI’s and KPP’s

¿Cómo vamos? KPI y KPP

Lidiar con el día a día de la gestión de inventario puede mantenerle ocupado. Pero sabes que tienes que levantar la cabeza de vez en cuando para ver hacia dónde te diriges. Para eso, su software de inventario debe mostrarle métricas (y no solo una, sino un conjunto completo de métricas o KPI): indicadores clave de rendimiento.

Mensajes recientes

  • Managing Spare Parts Inventory: Best PracticesGestión del inventario de repuestos: mejores prácticas
    En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
  • 5 Ways to Improve Supply Chain Decision Speed5 formas de mejorar la velocidad de toma de decisiones en la cadena de suministro
    La promesa de una cadena de suministro digital ha transformado la forma en que operan las empresas. En esencia, permite tomar decisiones rápidas basadas en datos y, al mismo tiempo, garantizar la calidad y la eficiencia en todas las operaciones. Sin embargo, no se trata solo de tener acceso a más datos. Las organizaciones necesitan las herramientas y plataformas adecuadas para convertir esos datos en información procesable. Aquí es donde la toma de decisiones se vuelve fundamental, especialmente en un panorama en el que las nuevas soluciones de cadena de suministro digital y las plataformas impulsadas por IA pueden ayudarlo a agilizar muchos procesos dentro de la matriz de decisiones. […]
  • Two employees checking inventory in temporary storage in a distribution warehouse.12 causas del exceso de stock y soluciones prácticas
    Gestionar el inventario de manera eficaz es fundamental para mantener un balance saludable y garantizar que los recursos se asignen de manera óptima. A continuación, se analizan en profundidad las principales causas del exceso de existencias, sus implicaciones y posibles soluciones. […]
  • FAQ Mastering Smart IP&O for Better Inventory ManagementPreguntas frecuentes: Cómo dominar la IP&O inteligente para una mejor gestión del inventario.
    Una gestión eficaz de la cadena de suministro y del inventario es esencial para lograr la eficiencia operativa y la satisfacción del cliente. Este blog ofrece respuestas claras y concisas a algunas preguntas básicas y otras preguntas comunes de nuestros clientes de Smart IP&O, ofreciendo información práctica para superar los desafíos típicos y mejorar sus prácticas de gestión de inventario. Centrándonos en estas áreas clave, lo ayudamos a transformar problemas complejos de inventario en acciones estratégicas y manejables que reducen los costos y mejoran el rendimiento general con Smart IP&O. […]
  • 7 Key Demand Planning Trends Shaping the Future7 tendencias clave en planificación de la demanda que están dando forma al futuro
    La planificación de la demanda va más allá de la simple previsión de las necesidades de productos; se trata de garantizar que su empresa satisfaga las demandas de los clientes con precisión, eficiencia y rentabilidad. La última tecnología de planificación de la demanda aborda desafíos clave como la precisión de las previsiones, la gestión de inventarios y la capacidad de respuesta al mercado. En este blog, presentaremos tendencias críticas de planificación de la demanda, que incluyen información basada en datos, previsión probabilística, planificación por consenso, análisis predictivo, modelado de escenarios, visibilidad en tiempo real y previsión multinivel. Estas tendencias le ayudarán a mantenerse a la vanguardia, optimizar su cadena de suministro, reducir costes y mejorar la satisfacción del cliente, posicionando a su empresa para el éxito a largo plazo. […]

    Optimización de inventario para fabricantes, distribuidores y MRO

    • Managing Spare Parts Inventory: Best PracticesGestión del inventario de repuestos: mejores prácticas
      En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
    • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovando en el mercado de repuestos OEM con optimización de inventario impulsada por IA
      El sector de posventa ofrece a los fabricantes de equipos originales una ventaja decisiva al ofrecer un flujo de ingresos constante y fomentar la lealtad del cliente mediante la entrega confiable y oportuna de piezas de repuesto. Sin embargo, la gestión del inventario y la previsión de la demanda en el mercado de posventa está plagada de desafíos, incluidos patrones de demanda impredecibles, amplias gamas de productos y la necesidad de entregas rápidas. Los métodos tradicionales a menudo no son suficientes debido a la complejidad y variabilidad de la demanda en el mercado de posventa. Las últimas tecnologías pueden analizar grandes conjuntos de datos para predecir la demanda futura con mayor precisión y optimizar los niveles de inventario, lo que conduce a un mejor servicio y menores costos. […]
    • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationUtilidades preparadas para el futuro: análisis avanzados para la optimización de la cadena de suministro
      Los servicios públicos en los campos de la electricidad, el gas natural, el agua urbana y las telecomunicaciones requieren muchos activos y dependen de una infraestructura física que debe mantenerse, actualizarse y mejorarse adecuadamente con el tiempo. Maximizar el tiempo de actividad de los activos y la confiabilidad de la infraestructura física exige una gestión eficaz del inventario, la previsión de piezas de repuesto y la gestión de proveedores. Una empresa de servicios públicos que ejecuta estos procesos de manera efectiva superará a sus pares, brindará mejores retornos para sus inversores y mayores niveles de servicio para sus clientes, al mismo tiempo que reducirá su impacto ambiental. […]
    • Centering Act Spare Parts Timing Pricing and ReliabilityLey de centrado: sincronización, precio y confiabilidad de los repuestos
      En este artículo, lo guiaremos a través del proceso de elaboración de un plan de inventario de repuestos que priorice las métricas de disponibilidad, como los niveles de servicio y las tasas de cumplimiento, al tiempo que garantiza la rentabilidad. Nos centraremos en un enfoque para la planificación de inventario llamado Optimización de inventario basada en el nivel de servicio. A continuación, analizaremos cómo determinar qué piezas debe incluir en su inventario y cuáles podrían no ser necesarias. Por último, exploraremos formas de mejorar consistentemente su plan de inventario basado en el nivel de servicio. […]