Cuatro formas útiles de medir el error de pronóstico

El Blog de Smart

 Recomendaciones para la planificación de la demanda,

previsión y optimización de inventario

Mejore la precisión de la prediccion, optimice el inventario y maximice los niveles de servicio

En este video, el Dr. Thomas Willemain, cofundador y vicepresidente senior de investigación, habla sobre cómo mejorar la precisión de los pronósticos midiendo el error de pronóstico. Comenzamos con una descripción general de los distintos tipos de métricas de error: error dependiente de escala, error porcentual, error relativo y métrica de error sin escala. Si bien algunos errores son inevitables, hay formas de reducirlos, y las métricas de pronóstico son ayudas necesarias para monitorear y mejorar la precisión del pronóstico. Luego explicaremos el problema especial de la demanda intermitente y los problemas de división por cero. Tom concluye explicando cómo evaluar los pronósticos de múltiples artículos y cómo a menudo tiene sentido usar promedios ponderados, ponderando los artículos de manera diferente por volumen o ingresos.

 

Cuatro tipos generales de métricas de error 

1. Error dependiente de la escala
2. Error porcentual
3. Error relativo
4. Error sin escala

Observación: Las métricas dependientes de la escala se expresan en las unidades de la variable pronosticada. Los otros tres se expresan como porcentajes.

 

1. Métricas de error dependientes de la escala

  • Error absoluto medio (MAE), también conocido como desviación absoluta media (MAD)
  • Error absoluto medio (MdAE)
  • Error cuadrático medio (RMSE)
  • Estas métricas expresan el error en las unidades originales de los datos.
    • Ej: unidades, cajas, barriles, kilogramos, dólares, litros, etc.
  • Dado que los pronósticos pueden ser demasiado altos o demasiado bajos, los signos de los errores serán positivos o negativos, lo que permitirá cancelaciones no deseadas.
    • Ej: no desea que los errores de +50 y -50 se cancelen y muestren "sin error".
  • Para lidiar con el problema de la cancelación, estas métricas eliminan los signos negativos elevando al cuadrado o utilizando el valor absoluto.

 

2. Métrica de porcentaje de error

  • Error porcentual absoluto medio (MAPE)
  • Esta métrica expresa el tamaño del error como porcentaje del valor real de la variable pronosticada.
  • La ventaja de este enfoque es que deja claro de inmediato si el error es importante o no.
  • Ej: Supongamos que el MAE es de 100 unidades. ¿Es horrible un error típico de 100 unidades? ¿OK? ¿estupendo?
  • La respuesta depende del tamaño de la variable que se pronostica. Si el valor real es 100, entonces un MAE = 100 es tan grande como lo que se pronostica. Pero si el valor real es 10,000, entonces un MAE = 100 muestra una gran precisión, ya que el MAPE es solo 1% del real.

 

3. Métrica de error relativo

  • Error absoluto relativo mediano (MdRAE)
  • ¿Relativo a qué? A un pronóstico de referencia.
  • ¿Qué punto de referencia? Por lo general, el pronóstico "ingenuo".
  • ¿Cuál es el pronóstico ingenuo? Próximo valor de previsión = último valor real.
  • ¿Por qué utilizar el pronóstico ingenuo? Porque si no puedes vencer eso, estás en una forma difícil.

 

4. Métrica de error sin escala

  • Error escalado relativo mediano (MdRSE)
  • Esta métrica expresa el error de pronóstico absoluto como un porcentaje del nivel natural de aleatoriedad (volatilidad) en los datos.
  • La volatilidad se mide por el tamaño promedio del cambio en la variable pronosticada de un período de tiempo al siguiente.
    • (Esto es lo mismo que el error cometido por el pronóstico ingenuo).
  • ¿En qué se diferencia esta métrica de la MdRAE anterior?
    • Ambos usan el pronóstico ingenuo, pero esta métrica usa errores al pronosticar el historial de demanda, mientras que MdRAE usa errores al pronosticar valores futuros.
    • Esto es importante porque normalmente hay muchos más valores históricos que pronósticos.
    • A su vez, eso es importante porque esta métrica "explotaría" si todos los datos fueran cero, lo que es menos probable cuando se usa el historial de demanda.

 

Intermittent Demand Planning and Parts Forecasting

 

El problema especial de la demanda intermitente

  • La demanda "intermitente" tiene muchas demandas cero mezcladas con demandas aleatorias distintas de cero.
  • MAPE se arruina cuando los errores se dividen por cero.
  • MdRAE también puede arruinarse.
  • Es menos probable que MdSAE se arruine.

 

Resumen y comentarios

  • Las métricas de pronóstico son ayudas necesarias para monitorear y mejorar la precisión del pronóstico.
  • Hay dos clases principales de métricas: absolutas y relativas.
  • Las medidas absolutas (MAE, MdAE, RMSE) son opciones naturales al evaluar los pronósticos de un artículo.
  • Las medidas relativas (MAPE, MdRAE, MdSAE) son útiles al comparar la precisión entre elementos o entre pronósticos alternativos del mismo elemento o al evaluar la precisión en relación con la variabilidad natural de un elemento.
  • La demanda intermitente presenta problemas de división por cero que favorecen a MdSAE sobre MAPE.
  • Al evaluar los pronósticos de varios artículos, a menudo tiene sentido usar promedios ponderados, ponderando los artículos de manera diferente por volumen o ingresos.
Deja un comentario

MENSAJES RECIENTES

The Importance of Clear Service Level Definitions in Inventory Management

La importancia de definiciones claras de niveles de servicio en la gestión de inventario

El software de optimización de inventario que respalda el análisis hipotético expondrá el equilibrio entre los desabastecimientos y los costos excesivos de los distintos objetivos de nivel de servicio. Pero primero es importante identificar cómo se interpretan, miden y reportan los “niveles de servicio”. Esto evitará la falta de comunicación y la falsa sensación de seguridad que puede desarrollarse cuando se utilizan definiciones menos estrictas. Definir claramente cómo se calcula el nivel de servicio pone a todas las partes interesadas en la misma página. Esto facilita una mejor toma de decisiones.

The Cost of Spreadsheet Planning

El costo de la planificación con hojas de cálculo

Las empresas que dependen de hojas de cálculo para la planificación de la demanda, la previsión y la gestión de inventario a menudo se ven limitadas por las limitaciones inherentes de las hojas de cálculo. Esta publicación examina los inconvenientes de los enfoques tradicionales de gestión de inventario causados por las hojas de cálculo y sus costos asociados, comparándolos con los importantes beneficios que se obtienen al adoptar tecnologías de planificación de última generación.

Leveraging Epicor Kinetic Planning BOMs with Smart IP&O to Forecast Accurately

Aprovechando las listas de materiales de Epicor Kinetic Planning con Smart IP&O para pronosticar con precisión

En este blog, exploramos cómo aprovechar las listas de materiales de Epicor Kinetic Planning con Smart IP&O puede transformar su enfoque de pronóstico en un entorno de fabricación altamente configurable. Descubra cómo Smart, una solución de optimización de inventario y planificación de la demanda basada en IA de vanguardia, puede simplificar las complejidades de predecir la demanda de productos terminados, especialmente cuando se trata de componentes intercambiables. Descubra cómo la planificación de listas de materiales y las técnicas avanzadas de previsión permiten a las empresas anticipar las necesidades de los clientes con mayor precisión, garantizando la eficiencia operativa y manteniéndose a la vanguardia en un mercado competitivo.

Mensajes recientes

  • Managing Spare Parts Inventory: Best PracticesGestión del inventario de repuestos: mejores prácticas
    En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
  • 5 Ways to Improve Supply Chain Decision Speed5 formas de mejorar la velocidad de toma de decisiones en la cadena de suministro
    La promesa de una cadena de suministro digital ha transformado la forma en que operan las empresas. En esencia, permite tomar decisiones rápidas basadas en datos y, al mismo tiempo, garantizar la calidad y la eficiencia en todas las operaciones. Sin embargo, no se trata solo de tener acceso a más datos. Las organizaciones necesitan las herramientas y plataformas adecuadas para convertir esos datos en información procesable. Aquí es donde la toma de decisiones se vuelve fundamental, especialmente en un panorama en el que las nuevas soluciones de cadena de suministro digital y las plataformas impulsadas por IA pueden ayudarlo a agilizar muchos procesos dentro de la matriz de decisiones. […]
  • Two employees checking inventory in temporary storage in a distribution warehouse.12 causas del exceso de stock y soluciones prácticas
    Gestionar el inventario de manera eficaz es fundamental para mantener un balance saludable y garantizar que los recursos se asignen de manera óptima. A continuación, se analizan en profundidad las principales causas del exceso de existencias, sus implicaciones y posibles soluciones. […]
  • FAQ Mastering Smart IP&O for Better Inventory ManagementPreguntas frecuentes: Cómo dominar la IP&O inteligente para una mejor gestión del inventario.
    Una gestión eficaz de la cadena de suministro y del inventario es esencial para lograr la eficiencia operativa y la satisfacción del cliente. Este blog ofrece respuestas claras y concisas a algunas preguntas básicas y otras preguntas comunes de nuestros clientes de Smart IP&O, ofreciendo información práctica para superar los desafíos típicos y mejorar sus prácticas de gestión de inventario. Centrándonos en estas áreas clave, lo ayudamos a transformar problemas complejos de inventario en acciones estratégicas y manejables que reducen los costos y mejoran el rendimiento general con Smart IP&O. […]
  • 7 Key Demand Planning Trends Shaping the Future7 tendencias clave en planificación de la demanda que están dando forma al futuro
    La planificación de la demanda va más allá de la simple previsión de las necesidades de productos; se trata de garantizar que su empresa satisfaga las demandas de los clientes con precisión, eficiencia y rentabilidad. La última tecnología de planificación de la demanda aborda desafíos clave como la precisión de las previsiones, la gestión de inventarios y la capacidad de respuesta al mercado. En este blog, presentaremos tendencias críticas de planificación de la demanda, que incluyen información basada en datos, previsión probabilística, planificación por consenso, análisis predictivo, modelado de escenarios, visibilidad en tiempo real y previsión multinivel. Estas tendencias le ayudarán a mantenerse a la vanguardia, optimizar su cadena de suministro, reducir costes y mejorar la satisfacción del cliente, posicionando a su empresa para el éxito a largo plazo. […]

    Optimización de inventario para fabricantes, distribuidores y MRO

    • Managing Spare Parts Inventory: Best PracticesGestión del inventario de repuestos: mejores prácticas
      En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
    • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovando en el mercado de repuestos OEM con optimización de inventario impulsada por IA
      El sector de posventa ofrece a los fabricantes de equipos originales una ventaja decisiva al ofrecer un flujo de ingresos constante y fomentar la lealtad del cliente mediante la entrega confiable y oportuna de piezas de repuesto. Sin embargo, la gestión del inventario y la previsión de la demanda en el mercado de posventa está plagada de desafíos, incluidos patrones de demanda impredecibles, amplias gamas de productos y la necesidad de entregas rápidas. Los métodos tradicionales a menudo no son suficientes debido a la complejidad y variabilidad de la demanda en el mercado de posventa. Las últimas tecnologías pueden analizar grandes conjuntos de datos para predecir la demanda futura con mayor precisión y optimizar los niveles de inventario, lo que conduce a un mejor servicio y menores costos. […]
    • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationUtilidades preparadas para el futuro: análisis avanzados para la optimización de la cadena de suministro
      Los servicios públicos en los campos de la electricidad, el gas natural, el agua urbana y las telecomunicaciones requieren muchos activos y dependen de una infraestructura física que debe mantenerse, actualizarse y mejorarse adecuadamente con el tiempo. Maximizar el tiempo de actividad de los activos y la confiabilidad de la infraestructura física exige una gestión eficaz del inventario, la previsión de piezas de repuesto y la gestión de proveedores. Una empresa de servicios públicos que ejecuta estos procesos de manera efectiva superará a sus pares, brindará mejores retornos para sus inversores y mayores niveles de servicio para sus clientes, al mismo tiempo que reducirá su impacto ambiental. […]
    • Centering Act Spare Parts Timing Pricing and ReliabilityLey de centrado: sincronización, precio y confiabilidad de los repuestos
      En este artículo, lo guiaremos a través del proceso de elaboración de un plan de inventario de repuestos que priorice las métricas de disponibilidad, como los niveles de servicio y las tasas de cumplimiento, al tiempo que garantiza la rentabilidad. Nos centraremos en un enfoque para la planificación de inventario llamado Optimización de inventario basada en el nivel de servicio. A continuación, analizaremos cómo determinar qué piezas debe incluir en su inventario y cuáles podrían no ser necesarias. Por último, exploraremos formas de mejorar consistentemente su plan de inventario basado en el nivel de servicio. […]

      Los indicadores adelantados pueden presagiar la demanda

      El Blog de Smart

      Recomendaciones para la planificación de la demanda,

      previsión y optimización de inventario

      La mayoría de los pronósticos estadísticos funcionan en un flujo directo desde los datos anteriores hasta el pronóstico. Pronosticar con indicadores adelantados funciona de manera diferente. Un indicador principal es una segunda variable que puede influir en el que se pronostica. La aplicación de conocimiento humano comprobable sobre el poder predictivo en la relación entre estos diferentes conjuntos de datos a veces proporcionará una precisión superior.

      La mayoría de las veces, un pronóstico se basa únicamente en la historia pasada del artículo que se está pronosticando. Supongamos que el problema del pronosticador es predecir las ventas unitarias futuras de un producto importante. El proceso comienza con la recopilación de datos sobre las ventas anteriores del producto. (Gregory Hartunian comparte algunos consejos prácticos para elegir los mejores datos disponibles en una publicación anterior al Smart Forecaster.) Estos datos fluyen hacia el software de pronóstico, que analiza el registro de ventas para medir el nivel de variabilidad aleatoria y explotar cualquier aspecto predecible, como tendencias o patrones regulares de variabilidad estacional. El pronóstico se basa completamente en el comportamiento pasado del artículo que se pronostica. No se tiene en cuenta explícitamente nada que pudiera haber causado las oscilaciones y sacudidas en el gráfico de ventas del producto. Este enfoque es rápido, simple, autónomo y escalable, porque el software puede pasar por una gran cantidad de pronósticos automáticamente.

      Pero a veces el pronosticador puede hacerlo mejor, a costa de más trabajo. Si el pronosticador puede mirar a través de la niebla de la aleatoriedad e identificar una segunda variable que influya en la que se está pronosticando, un indicador adelantado, serán posibles predicciones más precisas.

      Por ejemplo, suponga que el producto es un vidrio de ventana para casas. Es muy posible que los aumentos o disminuciones en el número de permisos de construcción para casas nuevas se reflejen en los correspondientes aumentos o disminuciones en el número de láminas de vidrio ordenadas varios meses después. Si el pronosticador puede destilar esta relación "retrasada" o retrasada en una ecuación, esa ecuación se puede usar para pronosticar las ventas de vidrio dentro de varios meses usando valores conocidos del indicador principal. Esta ecuación se llama "ecuación de regresión" y tiene una forma similar a:

      Ventas de vidrio en 3 meses = 210,9 + 26,7 × Número de viviendas iniciadas este mes.

      El software de pronóstico puede tomar los datos de inicio de viviendas y ventas de vidrio y convertirlos en una ecuación de regresión de este tipo.

      Gráfico que muestra una relación entre cifras de ejemplo para permisos de construcción diferidos y demanda de vidrio
      Indicadores adelantados demostrados
      Sin embargo, a diferencia de los pronósticos estadísticos automáticos basados en las ventas pasadas de un producto, los pronósticos con un indicador anticipado enfrentan el mismo problema que la receta proverbial del estofado de conejo: “Primero atrapa un conejo”. Aquí, la experiencia del pronosticador en la materia es fundamental para el éxito. El pronosticador debe poder nominar a uno o más candidatos para el puesto de indicador principal. Después de este paso crucial, basado en el conocimiento, la experiencia y la intuición del pronosticador, se puede usar el software para verificar que realmente existe una relación predictiva con retraso en el tiempo entre el indicador principal candidato y la variable que se va a pronosticar.

      Este paso de verificación se realiza mediante un análisis de "correlación cruzada". El software esencialmente toma como entrada una secuencia de valores de la variable a pronosticar y otra secuencia de valores del supuesto indicador líder. A continuación, desplaza los datos de la variable de previsión por, sucesivamente, uno, dos, tres, etc. periodos de tiempo. En cada desliz en el tiempo (llamado "retraso", porque el indicador adelantado se está quedando cada vez más atrás de la variable de pronóstico), el software verifica un patrón de asociación entre las dos variables. Si encuentra un patrón que es demasiado fuerte para ser explicado como un accidente estadístico, se confirma la corazonada del pronosticador.

      Obviamente, pronosticar con indicadores principales es más trabajo que pronosticar usando solo los valores pasados de un artículo. El pronosticador tiene que identificar un indicador principal, comenzando con una lista sugerida por la experiencia en la materia del pronosticador. Este es un proceso de “elaboración manual” que no es adecuado para la producción masiva de pronósticos. Pero puede ser un enfoque exitoso para una cantidad menor de elementos importantes que valen la pena el esfuerzo adicional. La función del software de pronóstico, como nuestro sistema SmartForecasts, es ayudar al pronosticador a autenticar el indicador principal y luego explotarlo.

      Thomas Willemain, PhD, cofundó Smart Software y actualmente se desempeña como vicepresidente sénior de investigación. El Dr. Willemain también se desempeña como Profesor Emérito de Ingeniería Industrial y de Sistemas en el Instituto Politécnico Rensselaer y como miembro del personal de investigación en el Centro de Ciencias de la Computación, Instituto de Análisis de Defensa.

      Deja un comentario

      Artículos Relacionados

      The Forecasting Process for Decision-Makers

      El proceso de previsión para los responsables de la toma de decisiones

      En casi todos los negocios e industrias, quienes toman decisiones necesitan pronósticos confiables de variables críticas, como ventas, ingresos, demanda de productos, niveles de inventario, participación de mercado, gastos y tendencias de la industria. Muchos tipos de personas hacen estos pronósticos. Algunos son analistas técnicos sofisticados, como economistas de negocios y estadísticos. Muchos otros consideran que los pronósticos son una parte importante de su trabajo general: gerentes generales, planificadores de producción, especialistas en control de inventarios, analistas financieros, planificadores estratégicos, investigadores de mercado y gerentes de productos y ventas. Aún así, otros rara vez se consideran pronosticadores, sino que a menudo tienen que hacer pronósticos sobre una base intuitiva y crítica.

      Leveraging ERP Planning BOMs with Smart IP&O to Forecast the Unforecastable

      Aprovechar las listas de materiales de planificación de ERP con Smart IP&O para pronosticar lo imprevisible

      En un entorno de fabricación altamente configurable, pronosticar productos terminados puede convertirse en una tarea compleja y desalentadora. El número de posibles productos terminados se disparará cuando muchos componentes sean intercambiables. Un MRP tradicional nos obligaría a pronosticar cada producto terminado, lo que puede ser poco realista o incluso imposible. Varias soluciones ERP líderes introducen el concepto de "Planificación BOM", que permite el uso de pronósticos a un nivel superior en el proceso de fabricación. En este artículo, discutiremos esta funcionalidad en ERP y cómo puede aprovecharla con Smart Inventory Planning and Optimization (Smart IP&O) para adelantarse a su demanda ante esta complejidad.

      The Forecast Matters, but Maybe Not the Way You Think

      El pronóstico importa, pero tal vez no como usted piensa

      Verdadero o falso: El pronóstico no importa para la gestión del inventario de repuestos. A primera vista, esta afirmación parece evidentemente falsa. Después de todo, las previsiones son cruciales para planificar los niveles de existencias, ¿verdad? Depende de lo que entiendas por “previsión”. Si te refieres a un pronóstico de un solo número de la vieja escuela (“la demanda del artículo CX218b será de 3 unidades la próxima semana y de 6 unidades la semana siguiente”), entonces no. Si se amplía el significado de pronóstico para incluir una distribución de probabilidad que tenga en cuenta las incertidumbres tanto de la demanda como de la oferta, entonces sí.

      Mensajes recientes

      • Managing Spare Parts Inventory: Best PracticesGestión del inventario de repuestos: mejores prácticas
        En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
      • 5 Ways to Improve Supply Chain Decision Speed5 formas de mejorar la velocidad de toma de decisiones en la cadena de suministro
        La promesa de una cadena de suministro digital ha transformado la forma en que operan las empresas. En esencia, permite tomar decisiones rápidas basadas en datos y, al mismo tiempo, garantizar la calidad y la eficiencia en todas las operaciones. Sin embargo, no se trata solo de tener acceso a más datos. Las organizaciones necesitan las herramientas y plataformas adecuadas para convertir esos datos en información procesable. Aquí es donde la toma de decisiones se vuelve fundamental, especialmente en un panorama en el que las nuevas soluciones de cadena de suministro digital y las plataformas impulsadas por IA pueden ayudarlo a agilizar muchos procesos dentro de la matriz de decisiones. […]
      • Two employees checking inventory in temporary storage in a distribution warehouse.12 causas del exceso de stock y soluciones prácticas
        Gestionar el inventario de manera eficaz es fundamental para mantener un balance saludable y garantizar que los recursos se asignen de manera óptima. A continuación, se analizan en profundidad las principales causas del exceso de existencias, sus implicaciones y posibles soluciones. […]
      • FAQ Mastering Smart IP&O for Better Inventory ManagementPreguntas frecuentes: Cómo dominar la IP&O inteligente para una mejor gestión del inventario.
        Una gestión eficaz de la cadena de suministro y del inventario es esencial para lograr la eficiencia operativa y la satisfacción del cliente. Este blog ofrece respuestas claras y concisas a algunas preguntas básicas y otras preguntas comunes de nuestros clientes de Smart IP&O, ofreciendo información práctica para superar los desafíos típicos y mejorar sus prácticas de gestión de inventario. Centrándonos en estas áreas clave, lo ayudamos a transformar problemas complejos de inventario en acciones estratégicas y manejables que reducen los costos y mejoran el rendimiento general con Smart IP&O. […]
      • 7 Key Demand Planning Trends Shaping the Future7 tendencias clave en planificación de la demanda que están dando forma al futuro
        La planificación de la demanda va más allá de la simple previsión de las necesidades de productos; se trata de garantizar que su empresa satisfaga las demandas de los clientes con precisión, eficiencia y rentabilidad. La última tecnología de planificación de la demanda aborda desafíos clave como la precisión de las previsiones, la gestión de inventarios y la capacidad de respuesta al mercado. En este blog, presentaremos tendencias críticas de planificación de la demanda, que incluyen información basada en datos, previsión probabilística, planificación por consenso, análisis predictivo, modelado de escenarios, visibilidad en tiempo real y previsión multinivel. Estas tendencias le ayudarán a mantenerse a la vanguardia, optimizar su cadena de suministro, reducir costes y mejorar la satisfacción del cliente, posicionando a su empresa para el éxito a largo plazo. […]

        Optimización de inventario para fabricantes, distribuidores y MRO

        • Managing Spare Parts Inventory: Best PracticesGestión del inventario de repuestos: mejores prácticas
          En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
        • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovando en el mercado de repuestos OEM con optimización de inventario impulsada por IA
          El sector de posventa ofrece a los fabricantes de equipos originales una ventaja decisiva al ofrecer un flujo de ingresos constante y fomentar la lealtad del cliente mediante la entrega confiable y oportuna de piezas de repuesto. Sin embargo, la gestión del inventario y la previsión de la demanda en el mercado de posventa está plagada de desafíos, incluidos patrones de demanda impredecibles, amplias gamas de productos y la necesidad de entregas rápidas. Los métodos tradicionales a menudo no son suficientes debido a la complejidad y variabilidad de la demanda en el mercado de posventa. Las últimas tecnologías pueden analizar grandes conjuntos de datos para predecir la demanda futura con mayor precisión y optimizar los niveles de inventario, lo que conduce a un mejor servicio y menores costos. […]
        • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationUtilidades preparadas para el futuro: análisis avanzados para la optimización de la cadena de suministro
          Los servicios públicos en los campos de la electricidad, el gas natural, el agua urbana y las telecomunicaciones requieren muchos activos y dependen de una infraestructura física que debe mantenerse, actualizarse y mejorarse adecuadamente con el tiempo. Maximizar el tiempo de actividad de los activos y la confiabilidad de la infraestructura física exige una gestión eficaz del inventario, la previsión de piezas de repuesto y la gestión de proveedores. Una empresa de servicios públicos que ejecuta estos procesos de manera efectiva superará a sus pares, brindará mejores retornos para sus inversores y mayores niveles de servicio para sus clientes, al mismo tiempo que reducirá su impacto ambiental. […]
        • Centering Act Spare Parts Timing Pricing and ReliabilityLey de centrado: sincronización, precio y confiabilidad de los repuestos
          En este artículo, lo guiaremos a través del proceso de elaboración de un plan de inventario de repuestos que priorice las métricas de disponibilidad, como los niveles de servicio y las tasas de cumplimiento, al tiempo que garantiza la rentabilidad. Nos centraremos en un enfoque para la planificación de inventario llamado Optimización de inventario basada en el nivel de servicio. A continuación, analizaremos cómo determinar qué piezas debe incluir en su inventario y cuáles podrían no ser necesarias. Por último, exploraremos formas de mejorar consistentemente su plan de inventario basado en el nivel de servicio. […]

          Pronóstico con los datos correctos

          El Blog de Smart

          Recomendaciones para la planificación de la demanda,

          previsión y optimización de inventario

          Para aprovechar los beneficios de eficiencia de la previsión, necesita las previsiones más precisas: previsiones basadas en los datos históricos más apropiados. La mayoría de las discusiones sobre este tema tienden a centrarse en los méritos de usar la demanda frente al historial de envíos, y comentaré esto más adelante. Pero primero, hablemos sobre el uso de datos netos frente a datos brutos.

          Historial neto vs. bruto

          Muchos planificadores se inclinan por usar datos de ventas netas para crear sus pronósticos. Los sistemas que rastrean las ventas capturan las transacciones a medida que ocurren y agregan los resultados en totales periódicos semanales o mensuales. En algunos casos, los registros de ventas contabilizan las compras devueltas como ventas negativas y calculan un total neto. Estas cifras netas, que a menudo enmascaran patrones de ventas reales, se introducen en el sistema de previsión. Los datos históricos utilizados en realidad presentan una falsa sensación de lo que quería el cliente y cuándo lo quería. Esto se trasladará al pronóstico, con resultados menos que óptimos.

          (más…)