¿Qué hace un pronóstico probabilístico?

¿Qué es todo el alboroto en torno al término "pronóstico probabilístico"? ¿Es solo un término de marketing más reciente que algunos proveedores de software y consultores han acuñado para fingir innovación? ¿Hay alguna diferencia tangible real en comparación con las técnicas anteriores de "mejor ajuste"? ¿No son todos los pronósticos probabilísticos de todos modos?

Para responder a esta pregunta, es útil pensar en lo que realmente le dice el pronóstico en términos de probabilidades. Un pronóstico "bueno" debe ser imparcial y, por lo tanto, arrojar una probabilidad de 50/50 de ser mayor o menor que el real. Un pronóstico "malo" generará amortiguadores subjetivos (o deprimirá artificialmente el pronóstico) y dará como resultado una demanda sesgada hacia arriba o hacia abajo. Considere a un vendedor que reduce intencionalmente su pronóstico al no informar las ventas que espera cerrar para ser "conservador". Sus pronósticos tendrán un sesgo de pronóstico negativo ya que los datos reales casi siempre serán más altos de lo que predijeron. Por otro lado, considere un cliente que proporciona un pronóstico inflado a su fabricante. Preocupados por los desabastecimientos, sobrestiman la demanda para asegurar su suministro. Su pronóstico tendrá un sesgo positivo ya que los datos reales casi siempre serán más bajos de lo que predijeron. 

Estos tipos de pronósticos de un número descritos anteriormente son problemáticos. Nos referimos a estas predicciones como "pronósticos puntuales", ya que representan un punto (o una serie de puntos a lo largo del tiempo) en un gráfico de lo que podría suceder en el futuro. No brindan una imagen completa porque para tomar decisiones comerciales efectivas, como determinar cuánto inventario almacenar o la cantidad de empleados disponibles para respaldar la demanda, se requiere información detallada sobre cuánto más bajo o más alto será el real. En otras palabras, necesita las probabilidades de cada posible resultado que podría ocurrir. Entonces, por sí mismo, el pronóstico puntual no es probabilístico.   

Para obtener un pronóstico probabilístico, debe conocer la distribución de las posibles demandas en torno a ese pronóstico. Una vez que calcula esto, el pronóstico se convierte en "probabilidad". La forma en que los sistemas de pronóstico y los profesionales, como planificadores de demanda, analistas de inventario, gerentes de materiales y directores financieros, determinan estas probabilidades es el núcleo de la pregunta: "¿qué hace que un pronóstico sea probabilístico?"     

Distribuciones normales
La mayoría de los pronósticos y los sistemas/software que los producen comienzan con una predicción de la demanda. Luego, calculan el rango de posibles demandas en torno a ese pronóstico al hacer suposiciones teóricas incorrectas sobre la distribución. Si alguna vez usó un "intervalo de confianza" en su software de pronóstico, esto se basa en una distribución de probabilidad alrededor del pronóstico. La forma en que se determina este rango de demanda es asumiendo un tipo particular de distribución. La mayoría de las veces esto significa asumir una forma de campana, también conocida como distribución normal. Cuando la demanda es intermitente, algunos sistemas de optimización de inventario y previsión de la demanda pueden suponer que la demanda tiene forma de Poisson. 

Después de crear el pronóstico, la distribución supuesta se aplica alrededor del pronóstico de demanda y luego tiene su estimación de probabilidades para cada demanda posible, es decir, un "pronóstico probabilístico". Estas estimaciones de la demanda y las probabilidades asociadas se pueden usar para determinar valores extremos o cualquier valor intermedio si se desea. Los valores extremos en los percentiles superiores de la distribución (es decir, 92%, 95%, 99%, etc.) se utilizan con mayor frecuencia como entradas para los modelos de control de inventario. Por ejemplo, los puntos de pedido de piezas de repuesto críticas en una empresa de servicios eléctricos pueden planificarse en función de un nivel de servicio de 99,51 TP3T o incluso superior. Mientras que una pieza de servicio no crítica podría planificarse en un nivel de servicio 85% o 90%.

El problema de hacer suposiciones sobre la distribución es que estas probabilidades se equivocarán. Por ejemplo, si la demanda no se distribuye normalmente pero está forzando una curva normal/en forma de campana en el pronóstico, entonces, ¿cómo es posible que las probabilidades sean incorrectas? Específicamente, es posible que desee saber el nivel de inventario necesario para lograr una probabilidad 99% de no quedarse sin existencias y la distribución normal le indicará que almacene 200 unidades. Pero cuando se compara con la demanda real, descubre que 200 unidades solo llenaron la demanda por completo en 40/50 observaciones. Entonces, en lugar de obtener un nivel de servicio 99%, ¡solo logró un nivel de servicio 80%! Esta es una falla gigantesca que resulta de intentar encajar una clavija cuadrada en un agujero redondo. El error lo habría llevado a tomar una reducción de inventario incorrecta.

Las distribuciones estimadas empíricamente son inteligentes
Para producir un pronóstico probabilístico inteligente (lectura precisa), primero debe estimar la distribución de la demanda empíricamente sin suposiciones ingenuas sobre la forma de la distribución. Smart Software hace esto mediante la ejecución de decenas de miles de escenarios simulados de demanda y tiempo de entrega. Nuestra solución aprovecha técnicas patentadas que incorporan simulación Monte Carlo, Bootstrapping estadístico y otros métodos. Los escenarios están diseñados para simular la incertidumbre y la aleatoriedad de la vida real tanto de la demanda como de los plazos de entrega. Las observaciones históricas reales se utilizan como entradas principales, pero la solución también le dará la opción de simular a partir de valores no observados. Por ejemplo, el hecho de que 100 unidades hayan sido la demanda histórica máxima no significa que esté garantizado alcanzar un máximo de 100 en el futuro. Después de terminar los escenarios, sabrá la probabilidad exacta de cada resultado. El pronóstico “puntual” se convierte entonces en el centro de esa distribución. Cada período futuro a lo largo del tiempo se expresa en términos de la distribución de probabilidad asociada con ese período.

Líderes en Pronóstico Probabilístico
Smart Software, Inc. fue la primera empresa en introducir el arranque estadístico como parte de un sistema de software de pronóstico de demanda disponible comercialmente hace veinte años. En ese momento se nos otorgó una patente de EE. UU. y se nos nombró finalista en los Premios a la Excelencia Corporativa APICS para la Innovación Tecnológica. Nuestro Investigación patrocinada por la NSF que condujo a este y otros descubrimientos fueron fundamentales para avanzar en la previsión y la optimización del inventario. Estamos comprometidos con la innovación continua, y usted puede encuentre más información sobre nuestra patente más reciente aquí.

 

 

Tipos de problemas de pronóstico que ayudamos a resolver

Estos son ejemplos de problemas de pronóstico que SmartForecasts puede resolver, junto con los tipos de datos comerciales representativos de cada uno.

Pronosticar un artículo en función de su patrón

Dadas las siguientes seis cifras de ventas trimestrales, ¿qué ventas puede esperar para el tercer y cuarto trimestre de 2023?

Pronosticar un artículo en función de su patrón

Ventas por Trimestre

SmartForecasts le brinda muchas formas de abordar este problema. Puede hacer sus propios pronósticos estadísticos utilizando cualquiera de los seis Suavizado exponencial y media móvil métodos. O, como la mayoría de los pronosticadores no técnicos, puede usar el comando Automático que ahorra tiempo, que ha sido programado para seleccionar y usar automáticamente el método más preciso para sus datos. Finalmente, para incorporar su juicio comercial en el proceso de pronóstico, puede ajustar gráficamente cualquier resultado de pronóstico estadístico usando SmartForecasts. ajuste de "globo ocular" capacidades.

 

Pronosticar un artículo en función de su relación con otras variables.

Dada la siguiente relación histórica entre las ventas de unidades y la cantidad de representantes de ventas, ¿qué niveles de ventas puede esperar cuando se produzca el aumento planificado del personal de ventas durante los dos últimos trimestres de 2023?

Pronosticar un artículo en función de su relación con otras variables.

Ventas y Representantes de Ventas por Trimestre

Puede responder una pregunta como esta usando el poderoso SmartForecasts Regresión comando, diseñado específicamente para facilitar las aplicaciones de pronóstico que requieren soluciones de análisis de regresión. Los modelos de regresión con un número esencialmente ilimitado de variables predictoras/independientes son posibles, aunque la mayoría de los modelos de regresión útiles usan solo un puñado de predictores.

 

Pronosticar simultáneamente una cantidad de artículos de productos y su total

Dadas las siguientes ventas totales de todas las camisas de vestir y la distribución de las ventas por color, ¿cuáles serán las ventas individuales y totales durante los próximos seis meses?

Pronosticar un artículo en función de su relación con otras variables.

Ventas mensuales de camisas de vestir por color

Las funciones exclusivas de pronóstico de grupo de SmartForecasts pronostican automática y simultáneamente series de tiempo estrechamente relacionadas, como estos artículos en el mismo grupo de productos. Esto ahorra un tiempo considerable y proporciona resultados de pronóstico no solo para los artículos individuales sino también para su total. Los ajustes de "ojo" tanto a nivel de elemento como de grupo son fáciles de realizar. Puede crear rápidamente pronósticos para grupos de productos con cientos o incluso miles de artículos.

 

Pronóstico de miles de artículos automáticamente

Dado el siguiente registro de demanda de productos a nivel de SKU, ¿cuál puede esperar que sea la demanda durante los próximos seis meses para cada uno de los 5000 SKU?

Pronóstico de miles de artículos automáticamente

Demanda Mensual de Producto por SKU (Unidad de Mantenimiento de Stock)

En solo unos minutos, la poderosa selección automática de SmartForecasts puede realizar un trabajo de pronóstico de este tamaño, leer los datos de demanda del producto, crear automáticamente pronósticos estadísticos para cada SKU y guardar el resultado. Los resultados están listos para exportarlos a su sistema ERP aprovechando cualquiera de nuestros conectores basados en API o mediante la exportación de archivos. Una vez configurados, los pronósticos se producirán automáticamente en cada ciclo de planificación sin la intervención del usuario.

 

Pronosticar la demanda que en la mayoría de los casos es cero

Un tipo de datos distinto y especialmente desafiante para pronosticar es intermitente demanda, que suele ser cero, pero salta a valores aleatorios distintos de cero en momentos aleatorios. Este patrón es típico de la demanda de lento Moviente artículos, tales como repuestos o grande boleto bienes de equipo.

Por ejemplo, considere la siguiente muestra de demanda de repuestos para aeronaves. Tenga en cuenta la preponderancia de valores cero mezclados con valores distintos de cero, a menudo en ráfagas.

Pronosticar la demanda que en la mayoría de los casos es cero

SmartForecasts tiene un método único diseñado especialmente para este tipo de datos: la función de pronóstico de Demanda Intermitente. Dado que la demanda intermitente surge con mayor frecuencia en el contexto del control de inventario, esta función se enfoca en pronosticar el rango de valores probables para la demanda total durante un tiempo de anticipación, por ejemplo, la demanda acumulada durante el período del 23 de junio al 23 de agosto en el ejemplo anterior. .

 

Pronóstico de requisitos de inventario

La previsión de necesidades de inventario es una variante especializada de la previsión que se centra en el extremo superior del rango de valores futuros posibles.

Para simplificar, considere el problema de pronosticar los requisitos de inventario para solo un período por delante, digamos un día por delante. Por lo general, el trabajo de pronóstico consiste en estimar el nivel promedio o más probable de demanda del producto. Sin embargo, si el inventario disponible es igual a la demanda promedio, existe una probabilidad de 50% de que la demanda supere el inventario, lo que resultará en pérdida de ventas y/o pérdida de buena voluntad. Establecer el nivel de inventario en, digamos, diez veces la demanda promedio probablemente eliminará el problema de los desabastecimientos, pero seguramente resultará en costos de inventario inflados.

El truco de la optimización del inventario es encontrar un equilibrio satisfactorio entre tener suficiente inventario para satisfacer la mayor parte de la demanda sin comprometer demasiados recursos en el proceso. Por lo general, la solución es una combinación de criterio empresarial y estadísticas. La parte crítica es definir un nivel de servicio de inventario aceptable, como satisfacer 95% de demanda inmediatamente desde el stock. La parte estadística es estimar el percentil 95 de la demanda.

Cuando no se trata de demanda intermitente, SmartForecasts estima el nivel de inventario requerido asumiendo una curva de demanda en forma de campana (Normal), estimando tanto el centro como el ancho de la curva de campana y luego usando una fórmula estadística estándar para estimar el percentil deseado. La diferencia entre el nivel de inventario deseado y el nivel promedio de demanda se denomina stock de seguridad porque protege contra la posibilidad de desabastecimiento.

Cuando se trata de demanda intermitente, la curva en forma de campana es una mala aproximación a la distribución estadística de la demanda. En este caso especial, SmartForecasts utiliza tecnología patentada de pronóstico de demanda intermitente para estimar el nivel de servicio de inventario requerido.

 

 

Tres formas de estimar la precisión del pronóstico

La precisión del pronóstico es una métrica clave para juzgar la calidad de su proceso de planificación de la demanda. (No es el único. Otros incluyen oportunidad y costo; Ver 5 consejos de planificación de la demanda para calcular la incertidumbre del pronóstico.) Una vez que tenga los pronósticos, hay varias formas de resumir su precisión, generalmente designados por acrónimos oscuros de tres o cuatro letras como MAPE, RMSE y MAE. Ver Cuatro formas útiles de medir el error de pronóstico para más detalles.

Un tema menos discutido pero más fundamental es cómo se organizan los experimentos computacionales para calcular el error de pronóstico. Esta publicación compara los tres diseños experimentales más importantes. Uno de ellos es de la vieja escuela y esencialmente equivale a hacer trampa. Otro es el patrón oro. Un tercero es un recurso útil que imita el patrón oro y se considera mejor como una predicción de cómo resultará el patrón oro. La figura 1 es una vista esquemática de los tres métodos.

 

Tres formas de estimar la precisión del pronóstico Software Smart

Figura 1: Tres formas de evaluar el error de pronóstico

 

El panel superior de la Figura 1 muestra la forma en que se evaluó el error de pronóstico a principios de la década de 1980 antes de que moviéramos el estado del arte al esquema que se muestra en el panel central. En los viejos tiempos, los pronósticos se evaluaban con los mismos datos que se usaban para calcular los pronósticos. Después de ajustar un modelo a los datos, los errores calculados no eran para los pronósticos del modelo sino para el modelo. encaja. La diferencia es que los pronósticos son para valores futuros, mientras que los ajustes son para valores concurrentes. Por ejemplo, suponga que el modelo de pronóstico es un promedio móvil simple de las tres observaciones más recientes. En el momento 3, el modelo calcula el promedio de las observaciones 1, 2 y 3. Este promedio luego se compararía con el valor observado en el momento 3. Llamamos a esto hacer trampa porque el valor observado en el momento 3 obtuvo un voto sobre el pronóstico. debería ser en el momento 3. Una evaluación de pronóstico real compararía el promedio de las primeras tres observaciones con el valor del próximo, cuarto, observación. De lo contrario, el pronosticador se queda con una evaluación demasiado optimista de la precisión del pronóstico.

El panel inferior de la Figura 1 muestra la mejor manera de evaluar la precisión del pronóstico. En este esquema, todos los datos históricos de demanda se utilizan para ajustar un modelo, que luego se utiliza para pronosticar valores de demanda futuros desconocidos. Eventualmente, el futuro se desarrolla, los verdaderos valores futuros se revelan y se pueden calcular los errores de pronóstico reales. Este es el estándar de oro. Esta información completa el informe de "pronósticos versus datos reales" en nuestro software.

El panel central representa una medida intermedia útil. El problema con el patrón oro es que debe esperar para saber qué tan bien funcionan los métodos de pronóstico elegidos. Este retraso no ayuda cuando se requiere elegir, en el momento, qué método de pronóstico usar para cada artículo. Tampoco proporciona una estimación oportuna de la incertidumbre del pronóstico que experimentará, lo cual es importante para la gestión de riesgos, como la cobertura del pronóstico. El camino intermedio se basa en el análisis de exclusión, que excluye (“excluye”) las observaciones más recientes y le pide al método de pronóstico que haga su trabajo sin conocer esas verdades fundamentales. Luego, los pronósticos basados en el historial de demanda abreviado se pueden comparar con los valores reales retenidos para obtener una evaluación honesta del error de pronóstico.

 

 

Smart Software VP Research presentará en el Simposio MORS y en el Foro de Técnicas Emergentes

Smart Software anunció hoy que su cofundador y vicepresidente sénior de investigación, el Dr. Thomas Willemain, ha sido seleccionado para presentar en el prestigioso Foro de técnicas emergentes del 7 al 9 de diciembre de 2021, y también en el Simposio 89 de MORS el 21 de junio. 25 de enero de 2021. MORS es la Sociedad de Investigación de Operaciones Militares, financiada por la Armada, el Ejército, la Fuerza Aérea, el Cuerpo de Marines, la Oficina del Secretario de Defensa y el Departamento de Seguridad Nacional. Su misión es mejorar la calidad del análisis que informa las decisiones de seguridad nacional y nacional.

1) El simposio virtual de MORS proporciona a la comunidad analítica de defensa un amplio contenido sobre temas y técnicas analíticas emergentes. El enfoque del Simposio 89 MORS será "Análisis para mejorar la toma de decisiones". Willemain presentará cuatro sesiones este año:

Reconocimiento de datos de alta dimensión usando serpientes

The Snake es una nueva herramienta de análisis que puede detectar la presencia de grupos y estimar su número. Las serpientes proporcionan una representación visual única y fácil de interpretar de la estructura de los datos de alta dimensión.

Coincidencias: ¿Señal o Ruido?

Queremos saber si la ocurrencia simultánea de dos eventos, es decir, una coincidencia, es simplemente un evento fortuito. Si no, puede haber algún vínculo explotable entre los eventos. Proponemos pruebas más completas basadas en modelos de eventos que tienen en cuenta la autocorrelación, la tendencia y la estacionalidad. 

Generación de Escenarios Visuales para Uso en Entrenamiento de Operadores

La capacitación del operador se ve reforzada por la exposición a escenarios que representan flujos de datos del mundo real. Los bootstraps de series temporales correctamente ajustados pueden crear escenarios univariados y multivariados que cumplen con los estándares de cantidad, costo, fidelidad y variedad. 

Pruebas de igualdad de varias distribuciones en dimensiones altas

Una tarea fundamental del análisis de Pruebas y Evaluación es buscar diferencias entre sistemas o procesos alternativos. Varias estadísticas nuevas basadas en árboles funcionan bien para efectos que tienen impactos múltiples en datos MVN y no MVN.

 

2) El Foro de técnicas emergentes proporciona a la comunidad analítica de defensa un amplio contenido sobre técnicas y temas analíticos emergentes. Willemain será uno de los pocos expertos que hablarán en la pista de Toma de decisiones aumentada. 

El tema del Dr. Willemain será "Hacer frente al cambio de régimen en las operaciones logísticas".

Foro de técnicas emergentes de la Sociedad de Investigación de Operaciones Militares (MORS)

 

La investigación del Dr. Thomas Willemain en Smart Software y el Instituto Politécnico Rensselaer ayuda a innovar constantemente Smart IP&O, la plataforma basada en la web de múltiples inquilinos de la empresa para pronósticos, planificación de inventario y optimización.

 

 

Acerca de Smart Software, Inc.

Fundada en 1981, Smart Software, Inc. es líder en brindar a las empresas soluciones de optimización de inventario, planificación y previsión de la demanda para toda la empresa. Las soluciones de optimización de inventario y pronóstico de la demanda de Smart Software han ayudado a miles de usuarios en todo el mundo, incluidos clientes de empresas medianas y compañías Fortune 500, como Disneyland Resorts, Metro-North Railroad y American Red Cross. La planificación y optimización inteligente del inventario brinda a los planificadores de la demanda las herramientas para manejar la estacionalidad de las ventas, las promociones, los productos nuevos y antiguos, las jerarquías multidimensionales y las piezas de servicio y bienes de capital con demanda intermitente. También proporciona a los administradores de inventario estimaciones precisas del inventario óptimo y del stock de seguridad necesarios para cumplir con los pedidos futuros y lograr los niveles de servicio deseados. Smart Software tiene su sede en Belmont, Massachusetts y se puede encontrar en la World Wide Web en www.smartcorp.com.

 

SmartForecasts y Smart IP&O son marcas comerciales registradas de Smart Software, Inc. Todas las demás marcas comerciales son propiedad de sus respectivos dueños.


Para obtener más información, comuníquese con Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Teléfono: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; Correo electrónico: info@smartcorp.com

 

 

Software inteligente para presentar en NESCON 2020
El presidente y director ejecutivo de Smart Software presentará la sesión de trabajo de NESCON New England Supply Chain Conference 2020 sobre procesos de planificación de inventario
 
Belmont, Massachusetts, octubre de 2020

Smart Software, Inc., proveedor de soluciones de optimización de inventario, planificación y pronóstico de demanda líderes en la industria, anunció hoy que se presentará en NESCON 2020, la Conferencia y Exposición de la Cadena de Suministro de Nueva Inglaterra. La presentación está programada para el 5 de octubre, de 1:00 p. m. a 1:30 p. m.

Greg Hartunian, CEO de Smart Software, bajo el título “Procesos de Planificación de Inventarios Tradicionales: Problemas y Soluciones”, presentará la Sesión. Greg explicará cómo empoderar a los equipos de planificación para reducir el inventario, mejorar los niveles de servicio y aumentar la eficiencia operativa.

La optimización del inventario puede ser fácil. La mayoría de los equipos de planificación de inventario se basan en enfoques de pronóstico tradicionales, métodos de regla general y comentarios de ventas a pedido. Nuestra sesión de trabajo en NESCON analiza estos enfoques, por qué a menudo fallan y cómo los nuevos métodos de optimización y pronóstico probabilístico pueden marcar una gran diferencia en sus resultados.

 

Acerca de Smart Software, Inc.

Fundada en 1981, Smart Software, Inc. es líder en brindar a las empresas soluciones de optimización de inventario, planificación y previsión de la demanda para toda la empresa. Las soluciones de optimización de inventario y pronóstico de demanda de Smart Software han ayudado a miles de usuarios en todo el mundo, incluidos clientes de empresas medianas y compañías Fortune 500, como Mitsubishi, Siemens, Disney, FedEx, MARS y The Home Depot. La planificación y optimización inteligente del inventario brinda a los planificadores de la demanda las herramientas para manejar la estacionalidad de las ventas, las promociones, los productos nuevos y antiguos, las jerarquías multidimensionales y las piezas de servicio y bienes de capital con demanda intermitente. También proporciona a los administradores de inventario estimaciones precisas del inventario óptimo y del stock de seguridad necesarios para cumplir con los pedidos futuros y lograr los niveles de servicio deseados. Smart Software tiene su sede en Belmont, Massachusetts y se puede encontrar en la World Wide Web en www.smartcorp.com.

SmartForecasts y Smart IP&O son marcas comerciales registradas de Smart Software, Inc. Todas las demás marcas comerciales son propiedad de sus respectivos dueños.


Para obtener más información, comuníquese con Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Teléfono: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; Correo electrónico: info@smartcorp.com