Ejemplos de optimización en Inventarios multi-escalón, basados en simulación

Administrar el inventario en una sola instalación es bastante difícil, pero el problema se vuelve mucho más complejo cuando hay múltiples instalaciones dispuestas en múltiples escalones. La complejidad surge de las interacciones entre los escalones, con demandas en los niveles más bajos que aumentan y cualquier escasez en los niveles más altos se reduce en cascada.

Si cada una de las instalaciones se administrara de forma aislada, se podrían usar métodos estándar, sin tener en cuenta las interacciones, para establecer parámetros de control de inventario, como puntos de pedido y cantidades de pedido. Sin embargo, ignorar las interacciones entre niveles puede conducir a fallas catastróficas. La experiencia y el ensayo y error permiten el diseño de sistemas estables, pero esa estabilidad puede verse afectada por cambios en los patrones de demanda o tiempos de entrega o por la adición de nuevas instalaciones. El análisis avanzado de la cadena de suministro ayuda en gran medida a hacer frente a tales cambios, lo que proporciona un "sandbox" seguro dentro del cual probar los cambios propuestos en el sistema antes de implementarlos. Este blog ilustra ese punto.

 

El escenario

Para tener alguna esperanza de discutir este problema de manera útil, este blog simplificará el problema al considerar la jerarquía de dos niveles que se muestra en la Figura 1. Imagine que las instalaciones en el nivel inferior son almacenes (WH) desde los cuales se pretende satisfacer las demandas de los clientes. , y que los artículos de inventario en cada WH son piezas de servicio que se venden a una amplia gama de clientes externos.

 

Realidad y fantasía en la optimización de Inventarios multi-escalón

Figura 1: Estructura general de un tipo de sistema de inventario de dos niveles

Imagine que el nivel superior consiste en un único centro de distribución (DC) que no atiende a los clientes directamente pero sí reabastece los WH. Para simplificar, suponga que el centro de distribución en sí se reabastece desde una fuente que siempre tiene (o produce) existencias suficientes para enviar inmediatamente las piezas al centro de distribución, aunque con cierto retraso. (Alternativamente, podríamos considerar que el sistema tiene tiendas minoristas abastecidas por un almacén).

Cada nivel se puede describir en términos de niveles de demanda (tratados como aleatorios), plazos de entrega (aleatorios), parámetros de control de inventario (aquí, valores mínimos y máximos) y política de escasez (aquí, se permiten pedidos pendientes).

 

El método de análisis

La literatura académica ha avanzado en este problema, aunque generalmente a costa de simplificaciones necesarias para facilitar una solución puramente matemática. Nuestro enfoque aquí es más accesible y flexible: simulación Monte Carlo. Es decir, construimos un programa informático que incorpora la lógica de funcionamiento del sistema. El programa “crea” una demanda aleatoria en el nivel de WH, procesa la demanda de acuerdo con la lógica de una política de inventario elegida y crea demanda para el CD agrupando las solicitudes aleatorias de reposición realizadas por los WH. Este enfoque nos permite observar muchos días simulados de operación del sistema mientras observamos eventos significativos como desabastecimientos en cualquier nivel.

 

Un ejemplo

Para ilustrar un análisis, simulamos un sistema que consta de cuatro WH y un DC. La demanda promedio varió entre los WH. La reposición del CD a cualquier WH tomó de 4 a 7 días, con un promedio de 5,15 días. La reposición de la CC desde la Fuente tomó 7, 14, 21 o 28 días, pero 90% del tiempo fue 21 o 28 días, lo que hace un promedio de 21 días. Cada instalación tenía valores mínimos y máximos establecidos por el criterio del analista después de algunos cálculos aproximados.

La Figura 2 muestra los resultados de un año de operación diaria simulada de este sistema. La primera fila de la figura muestra la demanda diaria del artículo en cada WH, que se supuso que era "puramente aleatoria", lo que significa que tenía una distribución de Poisson. La segunda fila muestra el inventario disponible al final de cada día, con los valores mínimo y máximo indicados por líneas azules. La tercera fila describe las operaciones en el CD. Contrariamente a la suposición de gran parte de la teoría, la demanda en el DC no estaba cerca de ser Poisson, ni tampoco la demanda fuera del DC a la Fuente. En este escenario, los valores Mín. y Máx. fueron suficientes para mantener alta la disponibilidad de artículos en cada WH y en el CD, y no se observaron desabastecimientos en ninguna de las cinco instalaciones.

 

Click aquí para ampliar la imagen

Figura 2 - Año simulado de operación de un sistema con cuatro WHs y un DC.

Figura 2 – Año de operación simulado de un sistema con cuatro WHs y un DC.

 

Ahora vamos a variar el escenario. Cuando los desabastecimientos son extremadamente raros, como en la Figura 2, a menudo hay un exceso de inventario en el sistema. Supongamos que alguien sugiere que el nivel de inventario en el centro de distribución parece un poco alto y piensa que sería una buena idea ahorrar dinero allí. Su sugerencia para reducir las existencias en el CD es reducir el valor de Min en el CD de 100 a 50. ¿Qué sucede? Podrías adivinar, o podrías simular.

La figura 3 muestra la simulación: el resultado no es agradable. El sistema funciona bien durante gran parte del año, luego el centro de distribución se queda sin existencias y no puede ponerse al día a pesar de enviar órdenes de reposición cada vez mayores a la fuente. Tres de los cuatro WH descienden en espirales de muerte al final del año (y WH1 sigue a partir de entonces). La simulación ha puesto de relieve una sensibilidad que no se puede ignorar y ha marcado una mala decisión.

 

Haga click aquí para ampliar la imágen

Figura 3 - Efectos simulados de reducir el Min en el DC.

Figura 3: efectos simulados de reducir el Min en el DC.

 

Ahora los gerentes de inventario pueden volver a la mesa de diseño y probar otras formas posibles de reducir la inversión en inventario a nivel de CD. Un movimiento que siempre ayuda, si usted y su proveedor pueden lograrlo juntos, es crear un sistema más ágil al reducir el tiempo de reabastecimiento. Trabajar con la fuente para garantizar que el centro de distribución siempre obtenga sus reabastecimientos en 7 o 14 días estabiliza el sistema, como se muestra en la Figura 4.

 

Haga click aquí para ampliar la imágen

Figura 4: efectos simulados de reducir el tiempo de espera para reponer el centro de distribución.

Figura 4: efectos simulados de reducir el tiempo de espera para reponer el centro de distribución.

 

Desafortunadamente, no se ha logrado la intención de reducir el inventario en el DC. El recuento de inventario diario original era de unas 80 unidades y sigue siendo de unas 80 unidades después de reducir el mínimo del centro de distribución y mejorar drásticamente el tiempo de entrega de la fuente al centro de distribución. Pero con el modelo de simulación, el equipo de planificación puede probar otras ideas hasta llegar a un rediseño satisfactorio. O, dado que la Figura 4 muestra que el inventario de CD comienza a coquetear con cero, podrían pensar que es prudente aceptar la necesidad de un promedio de aproximadamente 80 unidades en el CD y buscar formas de recortar la inversión en inventario en los WH.

 

la comida para llevar

  1. La optimización de inventario de varios niveles (MEIO) es compleja. Muchos factores interactúan para producir comportamientos del sistema que pueden resultar sorprendentes incluso en sistemas simples de dos niveles.
  2. La simulación de Monte Carlo es una herramienta útil para los planificadores que necesitan diseñar nuevos sistemas o modificar los existentes.

 

 

 

Deja un comentario
Artículos Relacionados
Gestión de inventario basada en pronósticos para una mejor planificación

Gestión de inventario basada en pronósticos para una mejor planificación

Forecast-based inventory management, or MRP (Material Requirements Planning) logic, is a forward-planning method that helps businesses meet demand without overstocking or understocking. By anticipating demand and adjusting inventory levels, it maintains a balance between meeting customer needs and minimizing excess inventory costs. This approach optimizes operations, reduces waste, and enhances customer satisfaction.

Haga de la optimización de inventario impulsada por IA un aliado para su organización

Haga de la optimización de inventario impulsada por IA un aliado para su organización

En este blog, exploraremos cómo las organizaciones pueden lograr una eficiencia y precisión excepcionales con la optimización del inventario impulsada por la IA. Los métodos tradicionales de gestión de inventario a menudo resultan insuficientes debido a su naturaleza reactiva y su dependencia de procesos manuales. Mantener niveles óptimos de inventario es fundamental para satisfacer la demanda de los clientes y minimizar los costos. La introducción de la optimización del inventario impulsada por la IA puede reducir significativamente la carga de los procesos manuales, brindando alivio a los gerentes de la cadena de suministro de tareas tediosas.

La importancia de definiciones claras de niveles de servicio en la gestión de inventario

La importancia de definiciones claras de niveles de servicio en la gestión de inventario

El software de optimización de inventario que respalda el análisis hipotético expondrá el equilibrio entre los desabastecimientos y los costos excesivos de los distintos objetivos de nivel de servicio. Pero primero es importante identificar cómo se interpretan, miden y reportan los “niveles de servicio”. Esto evitará la falta de comunicación y la falsa sensación de seguridad que puede desarrollarse cuando se utilizan definiciones menos estrictas. Definir claramente cómo se calcula el nivel de servicio pone a todas las partes interesadas en la misma página. Esto facilita una mejor toma de decisiones.

Realidad y fantasía en la optimización de Inventarios multi-escalón

Para la mayoría de los pequeños y medianos fabricantes y distribuidores, la optimización del inventario de un solo nivel o de un solo escalón está a la vanguardia de la práctica logística. La optimización de inventario de niveles múltiples ("MEIO") implica jugar el juego a un nivel aún más alto y, por lo tanto, es mucho menos común. Este blog es el primero de dos. Su objetivo es explicar qué es MEIO, por qué fallan las teorías estándar de MEIO y cómo el modelado probabilístico a través de la simulación de escenarios puede restaurar la realidad del proceso MEIO. El segundo blog mostrará un ejemplo particular.

 

Definición de optimización de inventario

Un sistema de inventario se basa en un conjunto de opciones de diseño.

La primera opción es la política para responder a los desabastecimientos: ¿simplemente pierde la venta ante un competidor o puede convencer al cliente para que acepte un pedido pendiente? Lo primero es más común con los distribuidores que con los fabricantes, pero esto puede no ser una gran elección ya que los clientes pueden dictar la respuesta.

La segunda opción es la política de inventario. Estas se dividen en políticas de “revisión continua” y “revisión periódica”, con varias opciones dentro de cada tipo. Puede enlazar a un video tutorial que describe varias políticas de inventario comunes aquí. Quizás el más eficiente sea conocido por los profesionales como "Min/Max" y por los académicos como (s, s) o “pequeña S, gran S”. Utilizamos esta política en las siguientes simulaciones de escenarios. Funciona de la siguiente manera: cuando el inventario disponible cae por debajo del mínimo (s), se realiza un pedido de reposición. El tamaño del pedido es la brecha entre el inventario disponible y el Max (S), por lo que si Min es 10, Max es 25 y disponible es 8, es hora de hacer un pedido de 25-8 = 17 unidades.

La tercera opción es decidir sobre los mejores valores de los "parámetros" de la política de inventario, por ejemplo, los valores que se utilizarán para Min y Max. Antes de asignar números a Min y Max, necesita claridad sobre lo que significa "mejor" para usted. Por lo general, lo mejor significa opciones que minimizan los costos operativos de inventario sujetos a un piso en la disponibilidad del artículo, expresado como Nivel de servicio o Tasa de llenado. En términos matemáticos, este es un "problema de optimización de enteros con restricciones bidimensional". "Bidimensional" porque tienes que elegir dos números: Min y Max. "Entero" porque Min y Max tienen que ser números enteros. "Restringido" porque debe elegir valores mínimos y máximos que brinden un nivel lo suficientemente alto de disponibilidad de artículos, como niveles de servicio y tasas de llenado. “Optimización” porque desea llegar allí con el costo operativo más bajo (el costo operativo combina los costos de mantenimiento, pedido y escasez).

 

Sistemas de inventario de varios niveles

El problema de optimización se vuelve más difícil en sistemas de múltiples escalones. En un sistema de un solo escalón, cada elemento del inventario se puede analizar de forma aislada: un par de valores Mín./Máx. por SKU. Debido a que hay más partes en un sistema de varios niveles, existe un problema computacional mayor.

La Figura 1 muestra un sistema simple de dos niveles para administrar un solo SKU. En el nivel inferior, las demandas llegan a varios almacenes. Cuando están en peligro de agotarse, se reabastecen desde un centro de distribución (DC). Cuando el propio DC está en peligro de agotarse, lo suministra una fuente externa, como el fabricante del artículo.

El problema de diseño aquí es multidimensional: necesitamos valores mínimos y máximos para 4 almacenes y para el CD, por lo que la optimización ocurre en 4×2+1×2=10 dimensiones. El análisis debe tener en cuenta una multitud de factores contextuales:

  • El nivel promedio y la volatilidad de la demanda que ingresa a cada almacén.
  • El promedio y la variabilidad de los plazos de reabastecimiento del centro de distribución.
  • El promedio y la variabilidad de los plazos de reabastecimiento desde la fuente.
  • El nivel de servicio mínimo exigido en los almacenes.
  • El nivel de servicio mínimo requerido en el CD.
  • Los costos de mantenimiento, pedido y escasez en cada almacén.
  • Los costos de mantenimiento, pedido y escasez en el centro de distribución.

Como era de esperar, las conjeturas en el asiento de los pantalones no funcionarán bien en esta situación. Tampoco intentar simplificar el problema analizando cada escalón por separado. Por ejemplo, los desabastecimientos en el centro de distribución aumentan el riesgo de desabastecimiento a nivel de almacén y viceversa.

Obviamente, este problema es demasiado complicado para tratar de resolverlo sin la ayuda de algún tipo de modelo informático.

 

Por qué la teoría del inventario estándar es mala matemática

Con un poco de búsqueda, puede encontrar modelos, artículos de revistas y libros sobre MEIO. Estas son fuentes valiosas de información y conocimiento, incluso números. Pero la mayoría de ellos confían en el recurso de simplificar demasiado el problema para que sea posible escribir y resolver ecuaciones. Esta es la “Fantasía” a la que se refiere el título.

Hacerlo es una maniobra clásica de modelado y no es necesariamente una mala idea. Cuando era estudiante de posgrado en el MIT, me enseñaron el valor de tener dos modelos: un modelo pequeño y aproximado para servir como una especie de visor y un modelo más grande y preciso para producir números confiables. El modelo más pequeño está basado en ecuaciones y teorías; el modelo más grande está basado en procedimientos y datos, es decir, una simulación detallada del sistema. Los modelos basados en teorías y ecuaciones simples pueden producir malas estimaciones numéricas e incluso pasar por alto fenómenos completos. Por el contrario, los modelos basados en procedimientos (p. ej., "pedir hasta el máximo cuando supere el mínimo") y hechos (p. ej., los últimos 3 años de demanda diaria de artículos) requerirán mucha más computación pero darán respuestas más realistas. Afortunadamente, gracias a la nube, tenemos mucha potencia informática al alcance de la mano.

Quizás el mayor "pecado" de modelado en la literatura de MEIO es la suposición de que las demandas en todos los escalones se pueden modelar como procesos de Poisson puramente aleatorios. Incluso si fuera cierto a nivel de almacén, estaría lejos de ser cierto a nivel de CD. El proceso de Poisson es la "rata blanca del modelado de demanda" porque es simple y permite una mayor manipulación de ecuaciones con lápiz y papel. Dado que no todas las demandas tienen forma de Poisson, esto da como resultado recomendaciones poco realistas.

 

Optimización de simulación basada en escenarios

Para obtener realismo, debemos profundizar en los detalles de cómo funcionan los sistemas de inventario en cada escalón. Con pocos límites, excepto los impuestos por el hardware, como el tamaño de la memoria, los programas de computadora pueden mantener cualquier nivel de complejidad. Por ejemplo, no hay necesidad de suponer que cada uno de los almacenes enfrenta flujos de demanda idénticos o tiene los mismos costos que todos los demás.

Una simulación por computadora funciona de la siguiente manera.

  1. El historial de demanda del mundo real y el historial de tiempo de entrega se recopilan para cada SKU en cada ubicación.
  2. Los valores de los parámetros de inventario (p. ej., Min y Max) se seleccionan para la prueba.
  3. Los historiales de demanda y reposición se utilizan para crear escenarios que representan las entradas al programa de computadora que codifica las reglas de operación del sistema.
  4. Las entradas se utilizan para impulsar la operación de un modelo informático del sistema con los valores de los parámetros elegidos durante un largo período, digamos un año.
  5. Los indicadores clave de rendimiento (KPI) se calculan para el año simulado.
  6. Los pasos 2 a 5 se repiten muchas veces y los resultados se promedian para vincular las opciones de parámetros con el rendimiento del sistema.
  7.  

La optimización del inventario agrega otro "bucle externo" a los cálculos mediante la búsqueda sistemática de los posibles valores de Min y Max. Entre esos pares de parámetros que satisfacen la restricción de disponibilidad de artículos, la búsqueda adicional identifica los valores Mín. y Máx. que dan como resultado el costo operativo más bajo.

Realidad y fantasía en la optimización de Inventarios multi-escalón

Figura 1: Estructura general de un tipo de sistema de inventario de dos niveles

 

Estén atentos a nuestro próximo blog

PRÓXIMAMENTE, EN BREVE, PRONTO. Para ver un ejemplo de una simulación del sistema en la Figura 1, lea el segundo blog sobre este tema

 

 

Deja un comentario
Artículos Relacionados
Gestión de inventario basada en pronósticos para una mejor planificación

Gestión de inventario basada en pronósticos para una mejor planificación

Forecast-based inventory management, or MRP (Material Requirements Planning) logic, is a forward-planning method that helps businesses meet demand without overstocking or understocking. By anticipating demand and adjusting inventory levels, it maintains a balance between meeting customer needs and minimizing excess inventory costs. This approach optimizes operations, reduces waste, and enhances customer satisfaction.

Haga de la optimización de inventario impulsada por IA un aliado para su organización

Haga de la optimización de inventario impulsada por IA un aliado para su organización

En este blog, exploraremos cómo las organizaciones pueden lograr una eficiencia y precisión excepcionales con la optimización del inventario impulsada por la IA. Los métodos tradicionales de gestión de inventario a menudo resultan insuficientes debido a su naturaleza reactiva y su dependencia de procesos manuales. Mantener niveles óptimos de inventario es fundamental para satisfacer la demanda de los clientes y minimizar los costos. La introducción de la optimización del inventario impulsada por la IA puede reducir significativamente la carga de los procesos manuales, brindando alivio a los gerentes de la cadena de suministro de tareas tediosas.

La importancia de definiciones claras de niveles de servicio en la gestión de inventario

La importancia de definiciones claras de niveles de servicio en la gestión de inventario

El software de optimización de inventario que respalda el análisis hipotético expondrá el equilibrio entre los desabastecimientos y los costos excesivos de los distintos objetivos de nivel de servicio. Pero primero es importante identificar cómo se interpretan, miden y reportan los “niveles de servicio”. Esto evitará la falta de comunicación y la falsa sensación de seguridad que puede desarrollarse cuando se utilizan definiciones menos estrictas. Definir claramente cómo se calcula el nivel de servicio pone a todas las partes interesadas en la misma página. Esto facilita una mejor toma de decisiones.