5 formas de mejorar la velocidad de toma de decisiones en la cadena de suministro

La promesa de una cadena de suministro digital ha transformado la forma en que operan las empresas. En esencia, permite tomar decisiones rápidas basadas en datos y, al mismo tiempo, garantizar la calidad y la eficiencia en todas las operaciones. Sin embargo, no se trata solo de tener acceso a más datos. Las organizaciones necesitan las herramientas y plataformas adecuadas para convertir esos datos en información procesable. Aquí es donde la toma de decisiones se vuelve fundamental, especialmente en un panorama en el que las nuevas soluciones de cadena de suministro digital y las plataformas impulsadas por IA pueden ayudarlo a agilizar muchos procesos dentro de la matriz de decisiones.

¿Por qué es tan importante la toma de decisiones rápida en la cadena de suministro digital?

Los negocios están en plena aceleración; los clientes esperan entregas más rápidas, mejores niveles de servicio y mayor transparencia. La clave para satisfacer estas demandas radica en soluciones de cadena de suministro digital que respalden la toma de decisiones inteligente.

Sin embargo, muchas organizaciones tienen dificultades. La brecha entre los datos, el análisis y la acción persiste. Las empresas recopilan grandes cantidades de información, pero no actúan con la suficiente rapidez o, peor aún, toman decisiones basadas en datos obsoletos o incompletos. Es necesario superar esta brecha para aprovechar el verdadero valor de una cadena de suministro digital.

Toma de decisiones rápida y consecuencias para la calidad

1. La brecha de decisión
Muchas organizaciones se encuentran estancadas entre la recopilación de datos y la acción. Esta “brecha de decisión” provoca demoras, lo que reduce el valor comercial potencial que podría haberse obtenido. En el contexto de una cadena de suministro, las decisiones demoradas pueden provocar desabastecimiento, exceso de existencias, pérdida de ventas y clientes insatisfechos.

2. Las nuevas plataformas de IA son clave
Las plataformas digitales y de inteligencia artificial permiten a las empresas tomar decisiones más rápidas e informadas al digitalizar el proceso de datos a la acción. La previsión de la demanda y la optimización del inventario son procesos clave dentro de la matriz de decisiones, y herramientas como Smart IP&O ayudan a predecir las necesidades de inventario y optimizar esas decisiones en función de los costos, los niveles de servicio y los patrones de demanda cambiantes. Esto permite tomar decisiones a una velocidad y escala que antes eran inalcanzables. Además, Smart IP&O admite decisiones estratégicas más importantes y decisiones operativas más pequeñas y frecuentes, lo que garantiza la optimización de una amplia gama de la cadena de suministro.

3. Calidad de la toma de decisiones
Las decisiones rápidas por sí solas no son suficientes. La calidad de esas decisiones es importante. Una toma de decisiones eficaz requiere datos precisos, previsiones y análisis para garantizar que las decisiones conduzcan a resultados positivos. Las organizaciones pueden equilibrar mejor factores importantes como el coste, la disponibilidad y los niveles de servicio aprovechando herramientas que proporcionan información sobre las tendencias y el rendimiento futuros. Este enfoque les permite crear estrategias alineadas con las necesidades y demandas reales, mejorando la eficiencia y el éxito general.

Smart IP&O utiliza modelos de previsión avanzados y datos en tiempo real para garantizar la toma de decisiones rápidas y fiables. Por ejemplo, las organizaciones pueden utilizar métricas proyectadas para equilibrar los niveles de servicio, los costes y la disponibilidad de existencias, lo que garantiza que las políticas de inventario se alineen con las tendencias de demanda reales.

4. Escalabilidad y consistencia en la toma de decisiones
A medida que las empresas crecen, aumenta la complejidad de las decisiones en la cadena de suministro y gestionar una cantidad cada vez mayor de productos, puntos de datos y procesos puede resultar complicado. Las plataformas digitales y las herramientas de automatización ayudan a las empresas a escalar sus procesos de toma de decisiones mediante la gestión de grandes cantidades de datos con precisión y uniformidad.

Al automatizar tareas repetitivas y aplicar reglas consistentes en distintos escenarios, las empresas pueden garantizar que las decisiones se tomen de manera uniforme, lo que genera resultados más predecibles y confiables. Este enfoque genera resultados más predecibles y confiables, ya que los sistemas automatizados garantizan que las decisiones sean consistentes incluso cuando la empresa se expande.

Las plataformas impulsadas por IA como Smart IP&O ofrecen escalabilidad, lo que permite a las empresas gestionar miles de productos y puntos de datos con precisión constante. Esta consistencia es fundamental para mantener los niveles de servicio y reducir los costos a medida que las operaciones se expanden.

5. Digitalización de los procesos de decisión
La digitalización de los procesos de toma de decisiones implica la automatización de diversos aspectos de la toma de decisiones. Mediante el uso de herramientas digitales, se pueden automatizar las decisiones rutinarias, como las relacionadas con el inventario, la demanda y la producción, lo que permite una gestión más rápida y eficiente de las tareas cotidianas. En los casos en los que aún se requiere la intervención humana, se pueden configurar sistemas para notificar a los usuarios cuando se cumplen condiciones o umbrales específicos. Esto reduce el esfuerzo manual y permite a los empleados centrarse en un trabajo más estratégico y complejo, lo que en última instancia mejora la productividad y la eficiencia.

 

La promesa de la cadena de suministro digital reside en su capacidad de transformar los datos en acciones de forma rápida y precisa. Para aprovechar al máximo esta promesa, las organizaciones deben superar la brecha de decisión mediante la adopción de plataformas como Smart IP&O. Estas plataformas mejoran la toma de decisiones rápida y garantizan que no se sacrifique la calidad en el proceso. A medida que las empresas evolucionen, aquellas que integren con éxito estas herramientas en su matriz de decisiones estarán mejor posicionadas para seguir siendo competitivas y satisfacer las expectativas cada vez mayores de los clientes.

 

Haga de la optimización de inventario impulsada por IA un aliado para su organización
En este blog, exploraremos cómo las organizaciones pueden lograr una eficiencia y precisión excepcionales con la optimización del inventario impulsada por la IA. Los métodos tradicionales de gestión de inventario a menudo resultan insuficientes debido a su naturaleza reactiva y su dependencia de procesos manuales. Mantener niveles óptimos de inventario es fundamental para satisfacer la demanda de los clientes y minimizar los costos. La introducción de la optimización del inventario impulsada por la IA puede reducir significativamente la carga de los procesos manuales, brindando alivio a los gerentes de la cadena de suministro de tareas tediosas. Con la IA, podemos predecir la demanda con mayor precisión, reducir el exceso de existencias, evitar desabastecimientos y, en última instancia, mejorar los resultados de nuestra organización. Exploremos cómo este enfoque no solo aumenta las ventas y la eficiencia operativa, sino que también eleva la satisfacción del cliente al garantizar que los productos estén siempre disponibles cuando sea necesario.

 

Información para mejorar la toma de decisiones en la gestión de inventarios

  1. Precisión de pronóstico mejorada Los algoritmos avanzados de aprendizaje automático analizan datos históricos para identificar patrones que los humanos podrían pasar por alto. Técnicas como la agrupación, la detección de cambios de régimen, la detección de anomalías y el análisis de regresión proporcionan información profunda sobre los datos. Medir el error de pronóstico es esencial para perfeccionar los modelos de pronóstico; por ejemplo, técnicas como el error absoluto medio (MAE) y el error cuadrático medio (RMSE) ayudan a cuantificar la precisión de los pronósticos. Las empresas pueden mejorar la precisión monitoreando y ajustando continuamente los pronósticos en función de estas métricas de error. como el Planificador de demanda en un minorista de hardware declarado, "Con las mejoras en nuestros pronósticos y planificación de inventario que permitió Smart Software, hemos podido reducir el stock de seguridad en 20% y al mismo tiempo reducir los desabastecimientos en 35%".
  1. Análisis de datos en tiempo real Los sistemas de última generación pueden procesar grandes cantidades de datos en tiempo real, lo que permite a las empresas ajustar sus niveles de inventario de forma dinámica en función de las tendencias actuales de la demanda y las condiciones del mercado. Los algoritmos de detección de anomalías pueden identificar y corregir automáticamente picos o caídas repentinas en la demanda, garantizando que los pronósticos sigan siendo precisos. Una historia de éxito notable proviene de Smart IP&O, que permitió a una empresa reducir el inventario en 20% mientras mantenía los niveles de servicio mediante el análisis continuo de datos en tiempo real y el ajuste de los pronósticos en consecuencia. Destacado Gerente de Materiales de FedEx Tech, "Cualquiera que sea la solicitud, debemos cumplir con nuestro compromiso de servicio al día siguiente: Smart nos permite ajustar el riesgo de nuestro inventario para asegurarnos de que tenemos los productos y piezas disponibles para lograr los niveles de servicio que nuestros clientes requieren".
  1. Mejora de la eficiencia de la cadena de suministro Las plataformas tecnológicas inteligentes pueden optimizar toda la cadena de suministro, desde la adquisición hasta la distribución, prediciendo los plazos de entrega y optimizando las cantidades de los pedidos. Esto reduce el riesgo de exceso y falta de existencias. Por ejemplo, al utilizar la gestión de inventario basada en pronósticos, Smart Software ayudó a un fabricante a optimizar su cadena de suministro, reduciendo los tiempos de entrega en 15% y mejorando la eficiencia general. El vicepresidente de operaciones de Procon Pump declaró: "Una de las cosas que me gusta de esta nueva herramienta... es que puedo evaluar las consecuencias de las decisiones sobre el almacenamiento del inventario antes de implementarlas".
  1. Toma de decisiones mejorada La IA proporciona información y recomendaciones prácticas, lo que permite a los gerentes tomar decisiones informadas. Esto incluye identificar artículos de baja rotación, pronosticar la demanda futura y optimizar los niveles de existencias. El análisis de regresión, por ejemplo, puede relacionar las ventas con variables externas como la estacionalidad o indicadores económicos, proporcionando una comprensión más profunda de los impulsores de la demanda. Uno de los clientes de Smart Software informó una mejora significativa en los procesos de toma de decisiones, lo que resultó en un aumento de 30% en los niveles de servicio y al mismo tiempo redujo el exceso de inventario en 15%. "Smart IP&O nos permitió modelar la demanda en cada ubicación de almacenamiento y, utilizando una planificación basada en el nivel de servicio, determinar cuánto almacenar para lograr el nivel de servicio que requerimos", señaló el Responsable de Compras en Empresas Seneca.
  1. Reducción de costo Al optimizar los niveles de inventario, las empresas pueden reducir los costos de mantenimiento y minimizar las pérdidas por productos obsoletos o caducados. Los sistemas impulsados por IA también reducen la necesidad de realizar comprobaciones manuales de inventario, lo que ahorra tiempo y costes laborales. Un estudio de caso reciente muestra cómo se logró la implementación de la planificación y optimización del inventario (IP&O) dentro de los 90 días posteriores al inicio del proyecto. Durante los seis meses siguientes, IP&O permitió ajustar los parámetros de almacenamiento de varios miles de artículos, lo que resultó en reducciones de inventario de $9,0 millones y al mismo tiempo mantuvo los niveles de servicio objetivo.

 

Al aprovechar algoritmos avanzados y análisis de datos en tiempo real, las empresas pueden mantener niveles óptimos de inventario y mejorar el rendimiento general de su cadena de suministro. La planificación y optimización del inventario (IP&O) es una herramienta poderosa que puede ayudar a su organización a alcanzar estos objetivos. La incorporación de optimización de inventario de última generación en su organización puede generar mejoras significativas en la eficiencia, la reducción de costos y la satisfacción del cliente.

 

 

Necesitas formar equipo con los algoritmos

Hace más de cuarenta años, Smart Software estaba formada por tres amigos que trabajaban para iniciar una empresa en el sótano de una iglesia. Hoy, nuestro equipo se ha expandido para operar desde múltiples ubicaciones en Massachusetts, New Hampshire y Texas, con miembros del equipo en Inglaterra, España, Armenia e India. Como muchos de ustedes en sus trabajos, hemos encontrado formas de hacer que los equipos distribuidos trabajen para nosotros y para usted.

Esta nota trata sobre un tipo diferente de trabajo en equipo: la colaboración entre usted y nuestro software que ocurre al alcance de su mano. A menudo escribo sobre el software en sí y lo que sucede "debajo del capó". Esta vez, mi tema es cuál es la mejor forma de asociarse con el software.

Nuestro paquete de software, Smart Inventory Planning and Optimization (Smart IP&O™) es capaz de realizar cálculos enormemente detallados de la demanda futura y los parámetros de control de inventario (por ejemplo, puntos de reorden y cantidades de pedidos) que administrarían esa demanda de manera más efectiva. Pero se requiere su participación para aprovechar al máximo todo ese poder. Necesitas formar equipo con los algoritmos.

Esa interacción puede adoptar varias formas. Puede comenzar simplemente evaluando cómo se encuentra ahora. Las funciones de redacción de informes en Smart IP&O (Smart Operational Analytics™) pueden recopilar y analizar todos sus datos transaccionales para medir sus indicadores clave de rendimiento (KPI), tanto financieros (por ejemplo, inversión en inventario) como operativos (por ejemplo, tasas de cumplimiento).

El siguiente paso podría ser utilizar SIO (Smart Inventory Optimization™), el análisis de inventario dentro de SIP&O, para jugar juegos de “qué pasaría si” con el software. Por ejemplo, podría preguntar "¿Qué pasaría si redujéramos la cantidad del pedido del artículo 1234 de 50 a 40?" El software calcula los números para hacerle saber cómo se desarrollaría y luego usted reacciona. Esto puede resultar útil, pero ¿qué pasa si tienes que considerar 50.000 elementos? Querría hacer juegos hipotéticos para algunos elementos críticos, pero no para todos.

El verdadero poder proviene del uso de la capacidad de optimización automática en SIO. Aquí puedes formar equipo con los algoritmos a escala. Utilizando su criterio empresarial, puede crear "grupos", es decir, colecciones de elementos que comparten algunas características críticas. Por ejemplo, podría crear un grupo para “repuestos críticos para clientes de servicios eléctricos” que consta de 1200 piezas. Luego, recurriendo nuevamente a su criterio comercial, podría especificar qué estándar de disponibilidad de artículos debe aplicarse a todos los artículos de ese grupo (por ejemplo, “al menos 95% de posibilidades de no desabastecerse en un año”). Ahora el software puede tomar el control y calcular automáticamente los mejores puntos de reorden y cantidades de pedidos para cada uno de esos artículos para lograr la disponibilidad de artículos requerida al menor costo total posible. Y eso, querido lector, es un poderoso trabajo en equipo.

 

 

¿Confundido acerca de la IA y el aprendizaje automático?

¿Está confundido acerca de qué es la IA y qué es el aprendizaje automático? ¿No está seguro de por qué saber más le ayudará con su trabajo de planificación de inventario? No te desesperes. Estarás bien y te mostraremos cómo algo de lo que sea puede ser útil.

¿Qué es y qué no es?

¿Qué es la IA y en qué se diferencia del ML? Bueno, ¿qué hace alguien hoy en día cuando quiere saber algo? Lo buscan en Google. Y cuando lo hacen, comienza la confusión.

Una fuente dice que la metodología de la red neuronal llamada aprendizaje profundo es un subconjunto del aprendizaje automático, que es un subconjunto de la IA. Pero otra fuente dice que el aprendizaje profundo ya es parte de la IA porque en cierto modo imita la forma en que funciona la mente humana, mientras que el aprendizaje automático no intenta hacer eso.

Una fuente dice que hay dos tipos de aprendizaje automático: supervisado y no supervisado. Otro dice que hay cuatro: supervisada, no supervisada, semisupervisada y de refuerzo.

Algunos dicen que el aprendizaje por refuerzo es aprendizaje automático; otros lo llaman IA.

Algunos de nosotros, los tradicionalistas, llamamos a muchas de ellas “estadísticas”, aunque no todas lo son.

Al nombrar los métodos, hay mucho espacio tanto para la emoción como para el arte de vender. Si un proveedor de software cree que usted quiere escuchar la frase "IA", es posible que la diga por usted sólo para hacerlo feliz.

Mejor centrarse en lo que sale al final.

Puede evitar algunas exageraciones confusas si se concentra en el resultado final que obtiene de alguna tecnología analítica, independientemente de su etiqueta. Hay varias tareas analíticas que son relevantes para los planificadores de inventario y los planificadores de demanda. Estos incluyen agrupamiento, detección de anomalías, detección de cambios de régimen y análisis de regresión. Los cuatro métodos suelen, aunque no siempre, clasificarse como métodos de aprendizaje automático. Pero sus algoritmos pueden surgir directamente de la estadística clásica.

Agrupación

Agrupar significa agrupar cosas que son similares y distanciarlas de cosas que son diferentes. A veces, agrupar es fácil: para separar geográficamente a sus clientes, simplemente ordénelos por estado o región de ventas. Cuando el problema no es tan obvio, puede utilizar datos y algoritmos de agrupamiento para realizar el trabajo automáticamente, incluso cuando se trata de conjuntos de datos masivos.

Por ejemplo, la Figura 1 ilustra un grupo de “perfiles de demanda”, que en este caso divide todos los artículos de un cliente en nueve grupos según la forma de sus curvas de demanda acumuladas. El grupo 1.1 en la parte superior izquierda contiene artículos cuya demanda se ha ido agotando, mientras que el grupo 3.1 en la parte inferior izquierda contiene artículos cuya demanda se ha acelerado. La agrupación también se puede realizar con proveedores. La elección del número de clústeres normalmente se deja a criterio del usuario, pero ML puede guiar esa elección. Por ejemplo, un usuario puede indicarle al software que "divida mis partes en 4 grupos", pero el uso de ML puede revelar que en realidad hay 6 grupos distintos que el usuario debe analizar. 

 

Confundido acerca de la planificación de inventarios de IA y aprendizaje automático

Figura 1: Agrupación de artículos según las formas de su demanda acumulada

Detección de anomalías

La previsión de la demanda se realiza tradicionalmente mediante la extrapolación de series temporales. Por ejemplo, el suavizado exponencial simple funciona para encontrar el “medio” de la distribución de la demanda en cualquier momento y proyectar ese nivel hacia adelante. Sin embargo, si ha habido un aumento o disminución repentino y único en la demanda en el pasado reciente, ese valor anómalo puede tener un efecto significativo pero no deseado en el pronóstico a corto plazo. Igual de grave para la planificación de inventarios, la anomalía puede tener un efecto enorme en la estimación de la variabilidad de la demanda, que va directamente al cálculo de los requisitos de existencias de seguridad.

Es posible que los planificadores prefieran encontrar y eliminar dichas anomalías (y tal vez hacer un seguimiento fuera de línea para descubrir el motivo de la rareza). Pero nadie que tenga un gran trabajo que hacer querrá escanear visualmente miles de gráficos de demanda para detectar valores atípicos, eliminarlos del historial de demanda y luego volver a calcular todo. La inteligencia humana podría hacer eso, pero la paciencia humana pronto fallaría. Los algoritmos de detección de anomalías podrían hacer el trabajo automáticamente utilizando métodos estadísticos relativamente sencillos. Podrías llamar a esto “inteligencia artificial” si lo deseas.

Detección de cambio de régimen

La detección de cambios de régimen es como el hermano mayor de la detección de anomalías. El cambio de régimen es un cambio sostenido, más que temporal, en uno o más aspectos del carácter de una serie temporal. Si bien la detección de anomalías suele centrarse en cambios repentinos de la demanda media, el cambio de régimen podría implicar cambios en otras características de la demanda, como su volatilidad o su forma distributiva.  

La Figura 2 ilustra un ejemplo extremo de cambio de régimen. La demanda de este artículo tocó fondo alrededor del día 120. Las políticas de control de inventario y los pronósticos de demanda basados en datos más antiguos estarían tremendamente fuera de lugar al final del historial de demanda.

Confundido acerca de la planificación de la demanda de IA y aprendizaje automático

Figura 2: Un ejemplo de cambio de régimen extremo en un artículo con demanda intermitente

También en este caso se pueden desarrollar algoritmos estadísticos para resolver este problema, y sería justo llamarlos “aprendizaje automático” o “inteligencia artificial” si así estuviera motivado. El uso de ML o AI para identificar cambios de régimen en el historial de la demanda permite que el software de planificación de la demanda utilice automáticamente solo el historial relevante al realizar pronósticos en lugar de tener que seleccionar manualmente la cantidad de historial para introducirlo en el modelo. 

Análisis de regresión

El análisis de regresión relaciona una variable con otra mediante una ecuación. Por ejemplo, las ventas de marcos de ventanas en un mes pueden predecirse a partir de los permisos de construcción expedidos unos meses antes. El análisis de regresión se ha considerado parte de la estadística durante más de un siglo, pero podemos decir que es "aprendizaje automático", ya que un algoritmo encuentra la manera precisa de convertir el conocimiento de una variable en una predicción del valor de otra.

Resumen

Es razonable estar interesado en lo que sucede en las áreas de aprendizaje automático e inteligencia artificial. Si bien la atención prestada a ChatGPT y sus competidores es interesante, no es relevante para el aspecto numérico de la planificación de la demanda o la gestión de inventario. Los aspectos numéricos del ML y la IA son potencialmente relevantes, pero hay que intentar ver a través de la nube de publicidad que rodea a estos métodos y centrarse en lo que pueden hacer. Si puede hacer el trabajo con métodos estadísticos clásicos, puede hacerlo y luego ejercer su opción de pegar la etiqueta ML a cualquier cosa que se mueva.