El juego de culpar a la cadena de suministro por todo: las 3 principales excusas para la escasez y el exceso de inventario

1. Culpar de la escasez a la variabilidad del tiempo de entrega
Los proveedores a menudo llegan tarde, a veces por mucho. Los retrasos en el tiempo de entrega y la variabilidad del suministro son hechos de la vida de la cadena de suministro, sin embargo, las organizaciones que llevan inventario a menudo se sorprenden cuando un proveedor llega tarde. Un proceso de planificación de inventario efectivo abarca estos hechos de la vida y desarrolla políticas que dan cuenta de manera efectiva de esta incertidumbre. Claro, habrá momentos en que los retrasos en el tiempo de entrega surjan de la nada. Pero la mayoría de las veces, las políticas de almacenamiento, como los puntos de pedido, las existencias de seguridad y los niveles mínimos y máximos, no se recalibran con la frecuencia suficiente para detectar cambios en el tiempo de entrega a lo largo del tiempo. Muchas empresas solo revisan el punto de pedido después de que se haya incumplido, en lugar de volver a calibrar después de cada nuevo recibo de tiempo de entrega. Hemos observado situaciones en las que los ajustes Mín./Máx. solo se recalibran anualmente o incluso son completamente manuales. Si tiene una montaña de piezas que usan niveles mínimos/máximos antiguos y plazos de entrega asociados que eran relevantes hace un año, no debería sorprender que no tenga suficiente inventario para esperar hasta que llegue el próximo pedido.

 

2. Culpar del exceso a las malas previsiones de ventas/clientes
Los pronósticos de sus clientes o su equipo de ventas a menudo se sobreestiman intencionalmente para garantizar el suministro, en respuesta a la escasez de inventario en el pasado donde se quedaron de vacio. O bien, los pronósticos de demanda son inexactos simplemente porque el equipo de ventas no sabe realmente cuál será la demanda de sus clientes, pero se ve obligado a dar un número. La variabilidad de la demanda es otro hecho de la vida de la cadena de suministro, por lo tanto, los procesos de planificación deben hacer un mejor trabajo para tenerlo en cuenta. ¿Por qué confiar en los equipos de ventas para pronosticar cuándo sirven mejor a la empresa vendiendo? ¿Por qué molestarse en jugar el juego de fingir aceptación de los pronósticos de los clientes cuando ambas partes saben que a menudo son falsos? Una mejor manera es aceptar la incertidumbre y acordar un grado de riesgo de desabastecimiento que sea aceptable para todos los grupos de artículos. Una vez que se acuerda el riesgo de desabastecimiento, puede generar una estimación precisa del stock de seguridad necesario para contrarrestar la variabilidad de la demanda. El problema es conseguir que se acepte, ya que es posible que no pueda ofrecer niveles de servicio muy altos en todos los artículos. Los clientes deben estar dispuestos a pagar un precio más alto por unidad para que usted brinde niveles de servicio extremadamente altos. El personal de ventas debe aceptar que es más probable que ciertos artículos tengan pedidos pendientes si priorizan la inversión en inventario en otros artículos. El uso de un proceso de inventario de seguridad consensuado garantiza que esté almacenando en búfer adecuadamente y estableciendo las expectativas correctas. Cuando haces esto, liberas a todas las partes de tener que jugar el juego de predicción para el que no estaban equipados en primer lugar.

 

3. Culpar de los problemas a los datos incorrectos
“Basura entra/basura sale” es una excusa común de por qué ahora no es el momento adecuado para invertir en software de planificación. Por supuesto, es cierto que si ingresa datos incorrectos en un modelo, no obtendrá buenos resultados, pero aquí está la cuestión: alguien, en algún lugar de la organización, está planificando el inventario, creando un pronóstico y tomando decisiones sobre qué comprar con los datos que hay. ¿Están haciendo esto a ciegas o están usando datos que han seleccionado en una hoja de cálculo para ayudarlos a tomar decisiones de planificación de inventario? Con suerte, esto último. Combine ese conocimiento interno con el software, la automatización de la importación de datos desde el ERP y la limpieza de datos. Una vez armonizado, su software de planificación proporcionará señales de tiempo de entrega y demanda bien estructuradas y continuamente actualizadas que ahora hacen posible una previsión eficaz de la demanda y la optimización del inventario. El cofundador de Smart Software, Tom Willemain, escribió en un boletín de la IBF que “muchos problemas de datos se derivan de que los datos se descuidaron hasta que un proyecto de pronóstico los hizo importantes”. Entonces, comience ese proyecto de pronóstico, porque el primer paso es asegurarse de que "lo que ingresa" sea una señal de demanda impecable, documentada y precisa.

 

 

El cuento de Ricitos de Oro sobre los niveles de inventario

Puede que recuerdes la historia de Goldilocks de tu juventud hace mucho tiempo. A veces la papilla estaba demasiado caliente, a veces demasiado fría, pero solo una vez estaba bien. Ahora que somos adultos, podemos traducir ese cuento de hadas en un principio profesional para la planificación del inventario: puede haber muy poco o demasiado inventario, y hay un nivel de Ricitos de Oro que es “perfecto”. Este blog trata de encontrar ese punto dulce.

Para ilustrar nuestra fábula de la cadena de suministro, considere este ejemplo. Imagine que vende repuestos para mantener los sistemas de sus clientes en funcionamiento. Usted ofrece una parte de servicio en particular que le cuesta $100 pero se vende por un margen de beneficio de 20%. Puede hacer $20 en cada unidad que vende, pero no puede quedarse con el $20 completo debido a los costos operativos de inventario que soporta para poder vender la pieza. Hay costos de mantenimiento para mantener la pieza en buen estado mientras está en stock y costos de pedido para reabastecer las unidades que vende. Finalmente, a veces se pierden ingresos por ventas perdidas debido a desabastecimientos.  

Estos costos operativos pueden estar directamente relacionados con la forma en que administra la pieza en el inventario. Para nuestro ejemplo, suponga que utiliza una política de inventario (Q,R), donde Q es la cantidad del pedido de reposición y R es el punto de pedido. Suponga además que la razón por la que no está fabricando $30 por unidad es que tiene competidores, y los clientes obtendrán la pieza de ellos si no pueden obtenerla de usted.

Tanto sus ingresos como sus costes dependen de formas complejas de sus elecciones de Q y R. Estas determinarán cuánto pide, cuándo y, por tanto, con qué frecuencia pide, con qué frecuencia se agota y, por tanto, cuántas ventas pierde y cuánto dinero en efectivo que atas en el inventario. Es imposible calcular el costo de estas relaciones con conjeturas, pero el software moderno puede hacer que las relaciones sean visibles y calcular las cifras en dólares que necesita para guiar su elección de valores para Q y R. Lo hace ejecutando simulaciones probabilísticas detalladas y basadas en hechos. que predicen los costes y el rendimiento promediando un gran número de escenarios de demanda realistas.  

Con estos resultados en la mano, puede calcular el margen asociado con los valores (Q,R) usando la fórmula simple

Margen = (Demanda - Ventas perdidas) x Beneficio por unidad vendida - Costos de pedido - Costos de mantenimiento.

En esta fórmula, las ventas perdidas, los costos de pedido y los costos de mantenimiento dependen del punto de pedido R y la cantidad de pedido Q.

La Figura 1 muestra el resultado de las simulaciones que fijaron Q en 25 unidades y variaron R de 10 a 30 en pasos de 5. Si bien la curva es bastante plana en la parte superior, ganaría más dinero manteniendo un inventario disponible de alrededor de 25 unidades ( que corresponde al ajuste R = 20). Más inventario, a pesar de un mayor nivel de servicio y menos ventas perdidas, generaría un poco menos de dinero (y vincularía mucho más efectivo), y menos inventario generaría mucho menos.

 

Margins vs Inventory Level Business

Figura 1: Mostrando que puede haber muy poco o demasiado inventario disponible

 

Sin confiar en el software de simulación de inventario, no podríamos descubrir

  • a) que es posible llevar muy poco y demasiado inventario
  • b) cuál es el mejor nivel de inventario
  • c) cómo llegar allí mediante las elecciones adecuadas del punto de pedido R y la cantidad de pedido Q.

 

Sin una comprensión explícita de lo anterior, las empresas tomarán decisiones de inventario diarias basándose en la intuición y los métodos de regla empírica basados en promedios. Las compensaciones descritas aquí no están expuestas y la combinación resultante de inventario produce un retorno mucho menor, perdiendo cientos de miles a millones por año en ganancias perdidas. Así que sé como Ricitos de Oro. Con los sistemas y las herramientas de software correctos, ¡usted también puede hacerlo bien!    

 

 

Deja un comentario
Artículos Relacionados
The Next Frontier in Supply Chain Analytics

La próxima frontera en análisis de la cadena de suministro

Creemos que la vanguardia del análisis de la cadena de suministro es el desarrollo de gemelos digitales de sistemas de inventario. Estos gemelos toman la forma de modelos de eventos discretos que utilizan la simulación Monte Carlo para generar y optimizar toda la gama de riesgos operativos. También afirmamos que nosotros y nuestros colegas de Smart Software hemos desempeñado un papel enorme en la creación de esa vanguardia.

Overcoming Uncertainty with Service and Inventory Optimization Technology

Superar la incertidumbre con tecnología de optimización de servicio e inventario

En este blog, analizaremos el mercado impredecible y de ritmo rápido de hoy y los constantes desafíos que enfrentan las empresas para administrar su inventario y niveles de servicio de manera eficiente. El tema principal de esta discusión, arraigado en el concepto de “Optimización probabilística del inventario”, se centra en cómo se puede aprovechar la tecnología moderna para lograr objetivos óptimos de servicio e inventario en medio de la incertidumbre. Este enfoque no sólo aborda los problemas tradicionales de gestión de inventarios, sino que también ofrece una ventaja estratégica para afrontar las complejidades de las fluctuaciones de la demanda y las interrupciones de la cadena de suministro.

Centering Act: Spare Parts Timing, Pricing, and Reliability

Ley de centrado: sincronización, precio y confiabilidad de los repuestos

En este artículo, lo guiaremos a través del proceso de elaboración de un plan de inventario de repuestos que priorice las métricas de disponibilidad, como los niveles de servicio y las tasas de cumplimiento, al tiempo que garantiza la rentabilidad. Nos centraremos en un enfoque para la planificación de inventario llamado Optimización de inventario basada en el nivel de servicio. A continuación, analizaremos cómo determinar qué piezas debe incluir en su inventario y cuáles podrían no ser necesarias. Por último, exploraremos formas de mejorar consistentemente su plan de inventario basado en el nivel de servicio.

Ejemplos de optimización en Inventarios multi-escalón, basados en simulación

Administrar el inventario en una sola instalación es bastante difícil, pero el problema se vuelve mucho más complejo cuando hay múltiples instalaciones dispuestas en múltiples escalones. La complejidad surge de las interacciones entre los escalones, con demandas en los niveles más bajos que aumentan y cualquier escasez en los niveles más altos se reduce en cascada.

Si cada una de las instalaciones se administrara de forma aislada, se podrían usar métodos estándar, sin tener en cuenta las interacciones, para establecer parámetros de control de inventario, como puntos de pedido y cantidades de pedido. Sin embargo, ignorar las interacciones entre niveles puede conducir a fallas catastróficas. La experiencia y el ensayo y error permiten el diseño de sistemas estables, pero esa estabilidad puede verse afectada por cambios en los patrones de demanda o tiempos de entrega o por la adición de nuevas instalaciones. El análisis avanzado de la cadena de suministro ayuda en gran medida a hacer frente a tales cambios, lo que proporciona un "sandbox" seguro dentro del cual probar los cambios propuestos en el sistema antes de implementarlos. Este blog ilustra ese punto.

 

El escenario

Para tener alguna esperanza de discutir este problema de manera útil, este blog simplificará el problema al considerar la jerarquía de dos niveles que se muestra en la Figura 1. Imagine que las instalaciones en el nivel inferior son almacenes (WH) desde los cuales se pretende satisfacer las demandas de los clientes. , y que los artículos de inventario en cada WH son piezas de servicio que se venden a una amplia gama de clientes externos.

 

Fact and Fantasy in Multiechelon Inventory Optimization

Figura 1: Estructura general de un tipo de sistema de inventario de dos niveles

Imagine que el nivel superior consiste en un único centro de distribución (DC) que no atiende a los clientes directamente pero sí reabastece los WH. Para simplificar, suponga que el centro de distribución en sí se reabastece desde una fuente que siempre tiene (o produce) existencias suficientes para enviar inmediatamente las piezas al centro de distribución, aunque con cierto retraso. (Alternativamente, podríamos considerar que el sistema tiene tiendas minoristas abastecidas por un almacén).

Cada nivel se puede describir en términos de niveles de demanda (tratados como aleatorios), plazos de entrega (aleatorios), parámetros de control de inventario (aquí, valores mínimos y máximos) y política de escasez (aquí, se permiten pedidos pendientes).

 

El método de análisis

La literatura académica ha avanzado en este problema, aunque generalmente a costa de simplificaciones necesarias para facilitar una solución puramente matemática. Nuestro enfoque aquí es más accesible y flexible: simulación Monte Carlo. Es decir, construimos un programa informático que incorpora la lógica de funcionamiento del sistema. El programa “crea” una demanda aleatoria en el nivel de WH, procesa la demanda de acuerdo con la lógica de una política de inventario elegida y crea demanda para el CD agrupando las solicitudes aleatorias de reposición realizadas por los WH. Este enfoque nos permite observar muchos días simulados de operación del sistema mientras observamos eventos significativos como desabastecimientos en cualquier nivel.

 

Un ejemplo

Para ilustrar un análisis, simulamos un sistema que consta de cuatro WH y un DC. La demanda promedio varió entre los WH. La reposición del CD a cualquier WH tomó de 4 a 7 días, con un promedio de 5,15 días. La reposición de la CC desde la Fuente tomó 7, 14, 21 o 28 días, pero 90% del tiempo fue 21 o 28 días, lo que hace un promedio de 21 días. Cada instalación tenía valores mínimos y máximos establecidos por el criterio del analista después de algunos cálculos aproximados.

La Figura 2 muestra los resultados de un año de operación diaria simulada de este sistema. La primera fila de la figura muestra la demanda diaria del artículo en cada WH, que se supuso que era "puramente aleatoria", lo que significa que tenía una distribución de Poisson. La segunda fila muestra el inventario disponible al final de cada día, con los valores mínimo y máximo indicados por líneas azules. La tercera fila describe las operaciones en el CD. Contrariamente a la suposición de gran parte de la teoría, la demanda en el DC no estaba cerca de ser Poisson, ni tampoco la demanda fuera del DC a la Fuente. En este escenario, los valores Mín. y Máx. fueron suficientes para mantener alta la disponibilidad de artículos en cada WH y en el CD, y no se observaron desabastecimientos en ninguna de las cinco instalaciones.

 

Click aquí para ampliar la imagen

Figure 2 - Simulated year of operation of a system with four WHs and one DC.

Figura 2 – Año de operación simulado de un sistema con cuatro WHs y un DC.

 

Ahora vamos a variar el escenario. Cuando los desabastecimientos son extremadamente raros, como en la Figura 2, a menudo hay un exceso de inventario en el sistema. Supongamos que alguien sugiere que el nivel de inventario en el centro de distribución parece un poco alto y piensa que sería una buena idea ahorrar dinero allí. Su sugerencia para reducir las existencias en el CD es reducir el valor de Min en el CD de 100 a 50. ¿Qué sucede? Podrías adivinar, o podrías simular.

La figura 3 muestra la simulación: el resultado no es agradable. El sistema funciona bien durante gran parte del año, luego el centro de distribución se queda sin existencias y no puede ponerse al día a pesar de enviar órdenes de reposición cada vez mayores a la fuente. Tres de los cuatro WH descienden en espirales de muerte al final del año (y WH1 sigue a partir de entonces). La simulación ha puesto de relieve una sensibilidad que no se puede ignorar y ha marcado una mala decisión.

 

Haga click aquí para ampliar la imágen

Figure 3 - Simulated effects of reducing the Min at the DC.

Figura 3: efectos simulados de reducir el Min en el DC.

 

Ahora los gerentes de inventario pueden volver a la mesa de diseño y probar otras formas posibles de reducir la inversión en inventario a nivel de CD. Un movimiento que siempre ayuda, si usted y su proveedor pueden lograrlo juntos, es crear un sistema más ágil al reducir el tiempo de reabastecimiento. Trabajar con la fuente para garantizar que el centro de distribución siempre obtenga sus reabastecimientos en 7 o 14 días estabiliza el sistema, como se muestra en la Figura 4.

 

Haga click aquí para ampliar la imágen

Figure 4 - Simulated effects of reducing the lead time for replenishing the DC.

Figura 4: efectos simulados de reducir el tiempo de espera para reponer el centro de distribución.

 

Desafortunadamente, no se ha logrado la intención de reducir el inventario en el DC. El recuento de inventario diario original era de unas 80 unidades y sigue siendo de unas 80 unidades después de reducir el mínimo del centro de distribución y mejorar drásticamente el tiempo de entrega de la fuente al centro de distribución. Pero con el modelo de simulación, el equipo de planificación puede probar otras ideas hasta llegar a un rediseño satisfactorio. O, dado que la Figura 4 muestra que el inventario de CD comienza a coquetear con cero, podrían pensar que es prudente aceptar la necesidad de un promedio de aproximadamente 80 unidades en el CD y buscar formas de recortar la inversión en inventario en los WH.

 

la comida para llevar

  1. La optimización de inventario de varios niveles (MEIO) es compleja. Muchos factores interactúan para producir comportamientos del sistema que pueden resultar sorprendentes incluso en sistemas simples de dos niveles.
  2. La simulación de Monte Carlo es una herramienta útil para los planificadores que necesitan diseñar nuevos sistemas o modificar los existentes.

 

 

 

Deja un comentario
Artículos Relacionados
The Next Frontier in Supply Chain Analytics

La próxima frontera en análisis de la cadena de suministro

Creemos que la vanguardia del análisis de la cadena de suministro es el desarrollo de gemelos digitales de sistemas de inventario. Estos gemelos toman la forma de modelos de eventos discretos que utilizan la simulación Monte Carlo para generar y optimizar toda la gama de riesgos operativos. También afirmamos que nosotros y nuestros colegas de Smart Software hemos desempeñado un papel enorme en la creación de esa vanguardia.

Overcoming Uncertainty with Service and Inventory Optimization Technology

Superar la incertidumbre con tecnología de optimización de servicio e inventario

En este blog, analizaremos el mercado impredecible y de ritmo rápido de hoy y los constantes desafíos que enfrentan las empresas para administrar su inventario y niveles de servicio de manera eficiente. El tema principal de esta discusión, arraigado en el concepto de “Optimización probabilística del inventario”, se centra en cómo se puede aprovechar la tecnología moderna para lograr objetivos óptimos de servicio e inventario en medio de la incertidumbre. Este enfoque no sólo aborda los problemas tradicionales de gestión de inventarios, sino que también ofrece una ventaja estratégica para afrontar las complejidades de las fluctuaciones de la demanda y las interrupciones de la cadena de suministro.

Centering Act: Spare Parts Timing, Pricing, and Reliability

Ley de centrado: sincronización, precio y confiabilidad de los repuestos

En este artículo, lo guiaremos a través del proceso de elaboración de un plan de inventario de repuestos que priorice las métricas de disponibilidad, como los niveles de servicio y las tasas de cumplimiento, al tiempo que garantiza la rentabilidad. Nos centraremos en un enfoque para la planificación de inventario llamado Optimización de inventario basada en el nivel de servicio. A continuación, analizaremos cómo determinar qué piezas debe incluir en su inventario y cuáles podrían no ser necesarias. Por último, exploraremos formas de mejorar consistentemente su plan de inventario basado en el nivel de servicio.

Realidad y fantasía en la optimización de Inventarios multi-escalón

Para la mayoría de los pequeños y medianos fabricantes y distribuidores, la optimización del inventario de un solo nivel o de un solo escalón está a la vanguardia de la práctica logística. La optimización de inventario de niveles múltiples ("MEIO") implica jugar el juego a un nivel aún más alto y, por lo tanto, es mucho menos común. Este blog es el primero de dos. Su objetivo es explicar qué es MEIO, por qué fallan las teorías estándar de MEIO y cómo el modelado probabilístico a través de la simulación de escenarios puede restaurar la realidad del proceso MEIO. El segundo blog mostrará un ejemplo particular.

 

Definición de optimización de inventario

Un sistema de inventario se basa en un conjunto de opciones de diseño.

La primera opción es la política para responder a los desabastecimientos: ¿simplemente pierde la venta ante un competidor o puede convencer al cliente para que acepte un pedido pendiente? Lo primero es más común con los distribuidores que con los fabricantes, pero esto puede no ser una gran elección ya que los clientes pueden dictar la respuesta.

La segunda opción es la política de inventario. Estas se dividen en políticas de “revisión continua” y “revisión periódica”, con varias opciones dentro de cada tipo. Puede enlazar a un video tutorial que describe varias políticas de inventario comunes aquí. Quizás el más eficiente sea conocido por los profesionales como "Min/Max" y por los académicos como (s, s) o “pequeña S, gran S”. Utilizamos esta política en las siguientes simulaciones de escenarios. Funciona de la siguiente manera: cuando el inventario disponible cae por debajo del mínimo (s), se realiza un pedido de reposición. El tamaño del pedido es la brecha entre el inventario disponible y el Max (S), por lo que si Min es 10, Max es 25 y disponible es 8, es hora de hacer un pedido de 25-8 = 17 unidades.

La tercera opción es decidir sobre los mejores valores de los "parámetros" de la política de inventario, por ejemplo, los valores que se utilizarán para Min y Max. Antes de asignar números a Min y Max, necesita claridad sobre lo que significa "mejor" para usted. Por lo general, lo mejor significa opciones que minimizan los costos operativos de inventario sujetos a un piso en la disponibilidad del artículo, expresado como Nivel de servicio o Tasa de llenado. En términos matemáticos, este es un "problema de optimización de enteros con restricciones bidimensional". "Bidimensional" porque tienes que elegir dos números: Min y Max. "Entero" porque Min y Max tienen que ser números enteros. "Restringido" porque debe elegir valores mínimos y máximos que brinden un nivel lo suficientemente alto de disponibilidad de artículos, como niveles de servicio y tasas de llenado. “Optimización” porque desea llegar allí con el costo operativo más bajo (el costo operativo combina los costos de mantenimiento, pedido y escasez).

 

Sistemas de inventario de varios niveles

El problema de optimización se vuelve más difícil en sistemas de múltiples escalones. En un sistema de un solo escalón, cada elemento del inventario se puede analizar de forma aislada: un par de valores Mín./Máx. por SKU. Debido a que hay más partes en un sistema de varios niveles, existe un problema computacional mayor.

La Figura 1 muestra un sistema simple de dos niveles para administrar un solo SKU. En el nivel inferior, las demandas llegan a varios almacenes. Cuando están en peligro de agotarse, se reabastecen desde un centro de distribución (DC). Cuando el propio DC está en peligro de agotarse, lo suministra una fuente externa, como el fabricante del artículo.

El problema de diseño aquí es multidimensional: necesitamos valores mínimos y máximos para 4 almacenes y para el CD, por lo que la optimización ocurre en 4×2+1×2=10 dimensiones. El análisis debe tener en cuenta una multitud de factores contextuales:

  • El nivel promedio y la volatilidad de la demanda que ingresa a cada almacén.
  • El promedio y la variabilidad de los plazos de reabastecimiento del centro de distribución.
  • El promedio y la variabilidad de los plazos de reabastecimiento desde la fuente.
  • El nivel de servicio mínimo exigido en los almacenes.
  • El nivel de servicio mínimo requerido en el CD.
  • Los costos de mantenimiento, pedido y escasez en cada almacén.
  • Los costos de mantenimiento, pedido y escasez en el centro de distribución.

Como era de esperar, las conjeturas en el asiento de los pantalones no funcionarán bien en esta situación. Tampoco intentar simplificar el problema analizando cada escalón por separado. Por ejemplo, los desabastecimientos en el centro de distribución aumentan el riesgo de desabastecimiento a nivel de almacén y viceversa.

Obviamente, este problema es demasiado complicado para tratar de resolverlo sin la ayuda de algún tipo de modelo informático.

 

Por qué la teoría del inventario estándar es mala matemática

Con un poco de búsqueda, puede encontrar modelos, artículos de revistas y libros sobre MEIO. Estas son fuentes valiosas de información y conocimiento, incluso números. Pero la mayoría de ellos confían en el recurso de simplificar demasiado el problema para que sea posible escribir y resolver ecuaciones. Esta es la “Fantasía” a la que se refiere el título.

Hacerlo es una maniobra clásica de modelado y no es necesariamente una mala idea. Cuando era estudiante de posgrado en el MIT, me enseñaron el valor de tener dos modelos: un modelo pequeño y aproximado para servir como una especie de visor y un modelo más grande y preciso para producir números confiables. El modelo más pequeño está basado en ecuaciones y teorías; el modelo más grande está basado en procedimientos y datos, es decir, una simulación detallada del sistema. Los modelos basados en teorías y ecuaciones simples pueden producir malas estimaciones numéricas e incluso pasar por alto fenómenos completos. Por el contrario, los modelos basados en procedimientos (p. ej., "pedir hasta el máximo cuando supere el mínimo") y hechos (p. ej., los últimos 3 años de demanda diaria de artículos) requerirán mucha más computación pero darán respuestas más realistas. Afortunadamente, gracias a la nube, tenemos mucha potencia informática al alcance de la mano.

Quizás el mayor "pecado" de modelado en la literatura de MEIO es la suposición de que las demandas en todos los escalones se pueden modelar como procesos de Poisson puramente aleatorios. Incluso si fuera cierto a nivel de almacén, estaría lejos de ser cierto a nivel de CD. El proceso de Poisson es la "rata blanca del modelado de demanda" porque es simple y permite una mayor manipulación de ecuaciones con lápiz y papel. Dado que no todas las demandas tienen forma de Poisson, esto da como resultado recomendaciones poco realistas.

 

Optimización de simulación basada en escenarios

Para obtener realismo, debemos profundizar en los detalles de cómo funcionan los sistemas de inventario en cada escalón. Con pocos límites, excepto los impuestos por el hardware, como el tamaño de la memoria, los programas de computadora pueden mantener cualquier nivel de complejidad. Por ejemplo, no hay necesidad de suponer que cada uno de los almacenes enfrenta flujos de demanda idénticos o tiene los mismos costos que todos los demás.

Una simulación por computadora funciona de la siguiente manera.

  1. El historial de demanda del mundo real y el historial de tiempo de entrega se recopilan para cada SKU en cada ubicación.
  2. Los valores de los parámetros de inventario (p. ej., Min y Max) se seleccionan para la prueba.
  3. Los historiales de demanda y reposición se utilizan para crear escenarios que representan las entradas al programa de computadora que codifica las reglas de operación del sistema.
  4. Las entradas se utilizan para impulsar la operación de un modelo informático del sistema con los valores de los parámetros elegidos durante un largo período, digamos un año.
  5. Los indicadores clave de rendimiento (KPI) se calculan para el año simulado.
  6. Los pasos 2 a 5 se repiten muchas veces y los resultados se promedian para vincular las opciones de parámetros con el rendimiento del sistema.
  7.  

La optimización del inventario agrega otro "bucle externo" a los cálculos mediante la búsqueda sistemática de los posibles valores de Min y Max. Entre esos pares de parámetros que satisfacen la restricción de disponibilidad de artículos, la búsqueda adicional identifica los valores Mín. y Máx. que dan como resultado el costo operativo más bajo.

Fact and Fantasy in Multiechelon Inventory Optimization

Figura 1: Estructura general de un tipo de sistema de inventario de dos niveles

 

Estén atentos a nuestro próximo blog

PRÓXIMAMENTE, EN BREVE, PRONTO. Para ver un ejemplo de una simulación del sistema en la Figura 1, lea el segundo blog sobre este tema

 

 

Deja un comentario
Artículos Relacionados
The Next Frontier in Supply Chain Analytics

La próxima frontera en análisis de la cadena de suministro

Creemos que la vanguardia del análisis de la cadena de suministro es el desarrollo de gemelos digitales de sistemas de inventario. Estos gemelos toman la forma de modelos de eventos discretos que utilizan la simulación Monte Carlo para generar y optimizar toda la gama de riesgos operativos. También afirmamos que nosotros y nuestros colegas de Smart Software hemos desempeñado un papel enorme en la creación de esa vanguardia.

Overcoming Uncertainty with Service and Inventory Optimization Technology

Superar la incertidumbre con tecnología de optimización de servicio e inventario

En este blog, analizaremos el mercado impredecible y de ritmo rápido de hoy y los constantes desafíos que enfrentan las empresas para administrar su inventario y niveles de servicio de manera eficiente. El tema principal de esta discusión, arraigado en el concepto de “Optimización probabilística del inventario”, se centra en cómo se puede aprovechar la tecnología moderna para lograr objetivos óptimos de servicio e inventario en medio de la incertidumbre. Este enfoque no sólo aborda los problemas tradicionales de gestión de inventarios, sino que también ofrece una ventaja estratégica para afrontar las complejidades de las fluctuaciones de la demanda y las interrupciones de la cadena de suministro.

Centering Act: Spare Parts Timing, Pricing, and Reliability

Ley de centrado: sincronización, precio y confiabilidad de los repuestos

En este artículo, lo guiaremos a través del proceso de elaboración de un plan de inventario de repuestos que priorice las métricas de disponibilidad, como los niveles de servicio y las tasas de cumplimiento, al tiempo que garantiza la rentabilidad. Nos centraremos en un enfoque para la planificación de inventario llamado Optimización de inventario basada en el nivel de servicio. A continuación, analizaremos cómo determinar qué piezas debe incluir en su inventario y cuáles podrían no ser necesarias. Por último, exploraremos formas de mejorar consistentemente su plan de inventario basado en el nivel de servicio.

Evaluación de cómo los proveedores influyen en los coste del inventario

El Blog de Smart

 Recomendaciones para la planificación de la demanda,

previsión y optimización de inventario

El software para la optimización del inventario se usa con sobre todo para generar los resultados analítico que ayudan a ejecutar a diario el negocio. Los puntos rereabastecimineto (también conocidos como Min ) y las cantidades de pedido. EL software especializado puede ayudar a encontrar el punto óptimo de equilibrio entre los costos de inventario y la disponibilidad de artículos..

El software de optimización de inventario también se puede utilizar para realizar análisis hipotéticos en escenarios que describen cambios en su entorno operativo actual. El análisis hipotético (también llamado "análisis de sensibilidad") le permite elevar su pensamiento de lo táctico a lo estratégico. Le ayuda a imaginar cómo debería cambiar sus operaciones para adaptarse a los posibles cambios en su entorno operativo. Estos cambios pueden ser presiones negativas impuestas desde el exterior o pueden ser el resultado de sus propias acciones positivas. En este blog, proporcionamos un ejemplo de cómo realizar un "análisis de qué" en los plazos de entrega y las cantidades de los pedidos. La empresa puede utilizar los resultados del análisis para evaluar el impacto de estos cambios en los costos de inventario y el rendimiento del nivel de servicio.

Cómo los proveedores limitan su libertad de maniobra

 

Hablando con nuestros clientes sobre las entradas de datos requeridas por el software de optimización de inventario, notamos que los proveedores tienen una influencia prominente en sus operaciones. Dejamos de lado por ahora temas tan importantes como compartir previsiones de demanda con los proveedores y elaborando respuestas a las interrupciones de la cadena de suministro, como el huracán Matthew el año pasado en el sureste de los EE. UU. En cambio, nos enfocamos en dos formas más comunes en que los proveedores influyen en los costos de inventario de los productores: los plazos de reposición y las restricciones en las cantidades de los pedidos.

El tiempo de espera de reposición es el número de días que transcurren entre que el inventario alcanza o supera un punto de pedido y la aparición de unidades de reposición en stock. Una parte del tiempo de entrega es interno del productor, quizás debido a reacciones lentas en un departamento de compras. El resto del tiempo de entrega depende del proveedor. En esta discusión, asumimos que la contribución de los proveedores a los tiempos de entrega podría cambiar, para bien o para mal. (Pero los mismos resultados podrían aplicarse a los cambios en las contribuciones de los productores a los plazos de entrega).

Las restricciones sobre las cantidades de pedido que consideramos son mínimos de pedido y múltiplos de pedido. Es posible que desee pedir 3 unidades de algún artículo, pero el proveedor podría imponer un pedido mínimo de 6 unidades, por lo que su pedido de 3 unidades tendría que convertirse en un pedido de 6 unidades. O puede pedir 21 unidades, superando fácilmente el tamaño mínimo de pedido de 6 unidades, pero si el proveedor también tiene un pedido múltiplo de 6, lo que significa que cada pedido debe ser un múltiplo de 6 unidades, entonces su pedido de 21 unidades tendría que aumentar a 24 unidades.

Análisis de escenarios

 

Para ilustrar el uso del software de optimización de inventario para el análisis hipotético, examinamos dos conjuntos de escenarios. En el primer conjunto, los plazos de entrega varían de -20% a +20% de sus valores en un escenario de referencia. En el segundo conjunto, los resultados se calculan primero sin restricciones de proveedores, luego solo con pedidos mínimos y finalmente con una combinación de pedidos mínimos y múltiplos de pedidos. Utilizamos el software Smart Inventory Optimization para los cálculos.

El escenario de referencia utiliza datos del mundo real sobre 2852 repuestos administrados por una agencia de transporte público progresista. Estas partes tienen una mezcla extremadamente heterogénea de atributos. Sus costos por unidad oscilan entre $1 y $23,105, y sus plazos de entrega varían entre 1 día y 300 días. Durante 24 meses, la demanda media osciló entre menos de 1 unidad por mes y 1508 unidades por mes, con coeficientes de variación que van desde un manejable 10% hasta un aterrador 2171%. Además, la imagen de los proveedores también es muy compleja, ya que involucra a 293 proveedores únicos, que suministran un promedio de alrededor de 10 piezas cada uno. Esta heterogeneidad implica que una optimización del mundo real seleccionaría y elegiría entre artículos y proveedores. Sin embargo, para simplificar la exposición y desarrollar conocimientos básicos, nuestros escenarios hipotéticos en este ejemplo tratan a todos los artículos y proveedores por igual. De manera similar, asumimos en la línea de base que los costos de mantenimiento equivalían a 20% del valor en dólares de un artículo y que cada pedido de reabastecimiento tenía un costo fijo de $40.

Realizamos dos experimentos hipotéticos. El primero examinó los efectos de cambiar los plazos de entrega. El segundo examinó los efectos de la introducción de restricciones en las cantidades de pedido. En cada experimento, registramos los efectos de los cambios en dos métricas operativas: promedio de unidades en stock y promedio de pedidos por año. A su vez, estos influyeron en cuatro métricas financieras: valor promedio en dólares del inventario, costo promedio de mantenimiento, costo promedio de pedido y la suma de los dos últimos, que es el costo operativo total del inventario.

En todos los escenarios, los puntos de pedido se calcularon para lograr una probabilidad de 95% de evitar desabastecimientos mientras se espera la reposición. Las cantidades de pedido, en ausencia de restricciones de proveedores, se calcularon como lo que llamamos "EOQ factible". EOQ es la clásica "cantidad económica de pedido" que se enseña en el Inventario 101; se calcula a partir de la demanda media, el coste de mantenimiento y el coste de pedido. La EOQ factible agrega una consideración adicional: la dinámica del inventario. Si el punto de pedido es muy bajo, es posible que EOQ sea demasiado pequeño para mantener un nivel de inventario estable y positivo. En estos casos, la EOQ factible aumenta la cantidad del pedido por encima de la EOQ para asegurar que el inventario promedio no sea negativo.

Efectos de cambiar los plazos de entrega

La Tabla 1 muestra los resultados de cambiar los plazos de entrega. Trabajando alrededor del caso base, cambiamos el tiempo de entrega de cada artículo por -20%, -10%, +10% y +20%.

No sorprende que la reducción de los plazos de entrega redujera el nivel requerido de inventario y su aumento hiciera lo contrario. Tanto el número promedio de unidades como el valor en dólares asociado se comportaron como se esperaba. Lo que puede resultar sorprendente es que los efectos fueron algo silenciados, es decir, un cambio del X por ciento en el tiempo de espera produjo una respuesta de menos del X por ciento. Por ejemplo, una reducción de 20% en el tiempo de entrega produjo solo una reducción de 7.9% en el inventario disponible y solo una reducción de 12.0% en el valor en dólares de esas unidades. Además, los efectos de las reducciones y los aumentos son asimétricos: un aumento de 201 TP3T en el tiempo de entrega generó solo un aumento de 7,31 TP3T en unidades (frente a 7,91 TP3T) y solo un aumento de 9,61 TP3T en el valor del inventario (frente a 12,01 TP3T).

Similares resultados atenuados y asimétricos se mantuvieron para los costos operativos. Una reducción de 20% en el tiempo de entrega redujo los costos operativos totales en 7,0%, pero un aumento de 20% en el tiempo de entrega solo provocó un aumento de 5,1% en los costos operativos.

Ahora considere las implicaciones de estos resultados para la práctica. En un mundo competitivo, las reducciones de costos del orden de 10% o incluso 5% son significativas. Esto significa que los esfuerzos para reducir los plazos de entrega pueden tener beneficios importantes. A su vez, esto significa que puede valer la pena hacer esfuerzos para optimizar los procesos de compra. Del mismo modo, existe un caso para involucrar a los proveedores en la reducción de su parte del tiempo de entrega, posiblemente compartiendo los ahorros para incentivarlos.

 

Inventory Optimization - Effects of Changing Lead Times
Tabla 1: Efectos de cambiar los plazos de entrega

Efecto de las restricciones de cantidad de pedidos

 

La Tabla 2 muestra el efecto de imponer restricciones a los proveedores sobre las cantidades de los pedidos. En el caso base, no hay restricciones, es decir, el mínimo de pedido es 0 y el múltiplo de pedido es 1, lo que implica que cualquier cantidad de pedido es aceptable para los proveedores. Partiendo del caso base, primero analizamos imponer un pedido mínimo de 5 unidades en todos los artículos y luego agregar un pedido múltiplo de 5 para todos los artículos.

Obligar a los pedidos a ser más grandes de lo que de otro modo tendrían tuvo el impacto esperado en el número promedio de unidades disponibles, incrementándolo en 0.9% con solo un mínimo de pedido y en 3.4% con un mínimo y un múltiplo. Los cambios correspondientes en el valor en dólares del inventario fueron más dramáticos: 22.4% y 23.3%. Esta diferencia en el tamaño de la respuesta porcentual probablemente se deba a la gran cantidad de repuestos de bajo volumen y alto costo administrados por la agencia de transporte público.

Otra sorpresa fue la reducción neta en los costos operativos cuando se impusieron restricciones a los proveedores. Si bien los costos de mantenimiento aumentaron en 22,41 TP3T y 23,31 TP3T en los dos escenarios hipotéticos, las mayores cantidades de pedidos permitieron menos pedidos por año, lo que resultó en reducciones compensatorias en los costos de pedidos de -24,41 TP3T y -32,71 TP3T, respectivamente. Los impactos netos en los costos operativos fueron entonces reducciones de 3.7% y 7.9%.

En general, se esperaría que la imposición de restricciones a las acciones del productor reduzca el desempeño. Entonces, los resultados en estos escenarios fueron contrarios a la intuición. Sin embargo, el mensaje real aquí es que usar EOQ, o incluso EOQ mejorado, para establecer una cantidad de pedido no brinda resultados óptimos. Paradójicamente, las restricciones de cantidad de pedido que investigamos parecen haber forzado las cantidades de pedido más cerca de los niveles óptimos.

 

Inventory Optimization - Effect of Order Quantity Restrictions
Tabla 2: Efecto de las restricciones de cantidad de pedido

Conclusiones

 

Los análisis hipotéticos que se muestran aquí no conducen a conclusiones universales. Por ejemplo, cambiar el costo asumido por pedido de $40 a un número más pequeño podría mostrar que las restricciones del proveedor aumentaron en lugar de disminuir los costos operativos del inventario del productor.

Al realizar un análisis hipotético en situaciones reales, los usuarios crearían naturalmente escenarios con un nivel de detalle más bajo. Por ejemplo, podrían evaluar el efecto de los cambios en los plazos de entrega de los proveedores proveedor por proveedor para encontrar los que tendrían los beneficios potenciales más altos. O pueden hacer arreglos para que los pedidos mínimos, si ya existen para todos los artículos, cambien en un porcentaje específico en lugar de una cantidad fija, lo que podría ser algo más realista.

La conclusión clave es que el software de optimización de inventario se puede usar en "modo hipotético" para explorar problemas estratégicos, más allá de su uso habitual para calcular puntos de pedido, existencias de seguridad, cantidades de pedidos y transferencias de inventario.

Deja un comentario

Artículos Relacionados

Mensajes recientes

  • Managing Spare Parts Inventory: Best PracticesGestión del inventario de repuestos: mejores prácticas
    En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
  • 5 Ways to Improve Supply Chain Decision Speed5 formas de mejorar la velocidad de toma de decisiones en la cadena de suministro
    La promesa de una cadena de suministro digital ha transformado la forma en que operan las empresas. En esencia, permite tomar decisiones rápidas basadas en datos y, al mismo tiempo, garantizar la calidad y la eficiencia en todas las operaciones. Sin embargo, no se trata solo de tener acceso a más datos. Las organizaciones necesitan las herramientas y plataformas adecuadas para convertir esos datos en información procesable. Aquí es donde la toma de decisiones se vuelve fundamental, especialmente en un panorama en el que las nuevas soluciones de cadena de suministro digital y las plataformas impulsadas por IA pueden ayudarlo a agilizar muchos procesos dentro de la matriz de decisiones. […]
  • Two employees checking inventory in temporary storage in a distribution warehouse.12 causas del exceso de stock y soluciones prácticas
    Gestionar el inventario de manera eficaz es fundamental para mantener un balance saludable y garantizar que los recursos se asignen de manera óptima. A continuación, se analizan en profundidad las principales causas del exceso de existencias, sus implicaciones y posibles soluciones. […]
  • FAQ Mastering Smart IP&O for Better Inventory ManagementPreguntas frecuentes: Cómo dominar la IP&O inteligente para una mejor gestión del inventario.
    Una gestión eficaz de la cadena de suministro y del inventario es esencial para lograr la eficiencia operativa y la satisfacción del cliente. Este blog ofrece respuestas claras y concisas a algunas preguntas básicas y otras preguntas comunes de nuestros clientes de Smart IP&O, ofreciendo información práctica para superar los desafíos típicos y mejorar sus prácticas de gestión de inventario. Centrándonos en estas áreas clave, lo ayudamos a transformar problemas complejos de inventario en acciones estratégicas y manejables que reducen los costos y mejoran el rendimiento general con Smart IP&O. […]
  • 7 Key Demand Planning Trends Shaping the Future7 tendencias clave en planificación de la demanda que están dando forma al futuro
    La planificación de la demanda va más allá de la simple previsión de las necesidades de productos; se trata de garantizar que su empresa satisfaga las demandas de los clientes con precisión, eficiencia y rentabilidad. La última tecnología de planificación de la demanda aborda desafíos clave como la precisión de las previsiones, la gestión de inventarios y la capacidad de respuesta al mercado. En este blog, presentaremos tendencias críticas de planificación de la demanda, que incluyen información basada en datos, previsión probabilística, planificación por consenso, análisis predictivo, modelado de escenarios, visibilidad en tiempo real y previsión multinivel. Estas tendencias le ayudarán a mantenerse a la vanguardia, optimizar su cadena de suministro, reducir costes y mejorar la satisfacción del cliente, posicionando a su empresa para el éxito a largo plazo. […]

    Optimización de inventario para fabricantes, distribuidores y MRO

    • Managing Spare Parts Inventory: Best PracticesGestión del inventario de repuestos: mejores prácticas
      En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
    • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovando en el mercado de repuestos OEM con optimización de inventario impulsada por IA
      El sector de posventa ofrece a los fabricantes de equipos originales una ventaja decisiva al ofrecer un flujo de ingresos constante y fomentar la lealtad del cliente mediante la entrega confiable y oportuna de piezas de repuesto. Sin embargo, la gestión del inventario y la previsión de la demanda en el mercado de posventa está plagada de desafíos, incluidos patrones de demanda impredecibles, amplias gamas de productos y la necesidad de entregas rápidas. Los métodos tradicionales a menudo no son suficientes debido a la complejidad y variabilidad de la demanda en el mercado de posventa. Las últimas tecnologías pueden analizar grandes conjuntos de datos para predecir la demanda futura con mayor precisión y optimizar los niveles de inventario, lo que conduce a un mejor servicio y menores costos. […]
    • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationUtilidades preparadas para el futuro: análisis avanzados para la optimización de la cadena de suministro
      Los servicios públicos en los campos de la electricidad, el gas natural, el agua urbana y las telecomunicaciones requieren muchos activos y dependen de una infraestructura física que debe mantenerse, actualizarse y mejorarse adecuadamente con el tiempo. Maximizar el tiempo de actividad de los activos y la confiabilidad de la infraestructura física exige una gestión eficaz del inventario, la previsión de piezas de repuesto y la gestión de proveedores. Una empresa de servicios públicos que ejecuta estos procesos de manera efectiva superará a sus pares, brindará mejores retornos para sus inversores y mayores niveles de servicio para sus clientes, al mismo tiempo que reducirá su impacto ambiental. […]
    • Centering Act Spare Parts Timing Pricing and ReliabilityLey de centrado: sincronización, precio y confiabilidad de los repuestos
      En este artículo, lo guiaremos a través del proceso de elaboración de un plan de inventario de repuestos que priorice las métricas de disponibilidad, como los niveles de servicio y las tasas de cumplimiento, al tiempo que garantiza la rentabilidad. Nos centraremos en un enfoque para la planificación de inventario llamado Optimización de inventario basada en el nivel de servicio. A continuación, analizaremos cómo determinar qué piezas debe incluir en su inventario y cuáles podrían no ser necesarias. Por último, exploraremos formas de mejorar consistentemente su plan de inventario basado en el nivel de servicio. […]

      Cuatro formas de optimizar el inventario

      El Blog de Smart

       Recomendaciones para la planificación de la demanda,

      previsión y optimización de inventario

      Ahora mas que nunca

      La optimización del inventario se ha convertido en una prioridad aún mayor en los últimos meses para muchos de nuestros clientes. Algunos están encontrando sus productos en una demanda mucho mayor; más tienen el problema opuesto. En cualquier caso, eventos como la pandemia de Covid19 están obligando a reexaminar las condiciones operativas estándar, como las opciones de puntos de pedido y cantidades de pedido.

      Incluso en tiempos más tranquilos, los parámetros de control de inventario como Mins y Maxes pueden establecerse lejos de sus mejores valores. Podemos preguntar "¿Por qué el punto de pedido para SKU_1234 se establece en 20 unidades y la cantidad de pedido se establece en 35?" Esas elecciones probablemente fueron el resultado anquilosado de años de conjeturas acumuladas. Un poco de investigación puede mostrar que las opciones de 20 y 35 ya no están correctamente alineadas con el nivel de demanda actual, la volatilidad de la demanda, el tiempo de entrega del proveedor y los costos de los artículos.

      La persistente sensación de que "Deberíamos repensar todas estas opciones" a menudo es seguida por "Oh, no, ¿tenemos que resolver esto para los 10,000 artículos en el inventario?" El salvador aquí es software avanzado que puede ampliar el proceso y hacerlo no solo deseable sino factible. El software utiliza algoritmos sofisticados para traducir los cambios en los parámetros de inventario, como los puntos de pedido, en indicadores clave de rendimiento, como los niveles de servicio y los costos operativos (definidos como la suma de los costos de mantenimiento, los costos de pedido y los costos de escasez).

      Este blog describe cómo obtener la beneficios de la optimización del inventario describiendo 4 enfoques con diversos grados de automatización.

      Cuatro enfoques para la optimización del inventario

       

      Caza y picotear

      La primera forma es la optimización de "cazar y picotear" específica del artículo. Es decir, usted aísla un artículo de inventario a la vez y hace conjeturas sobre cómo administrar ese artículo. Por ejemplo, puede pedirle al software que evalúe qué sucede si cambia el punto de reorden para SKU123 de 20 a 21 mientras deja la cantidad de pedido fija en 35. Luego, puede intentar dejar 20 solo y reducir 35 a 34. Horas más tarde, porque su las intuiciones son buenas, es posible que haya encontrado un mejor par de opciones, pero no sabe si hay una combinación aún mejor que no probó, y es posible que deba pasar al siguiente SKU y al siguiente y el siguiente… Necesitas algo más automatizado y completo.

      Hay tres maneras de hacer el trabajo de manera más productiva. Los dos primeros combinan tu intuición con la eficiencia de tratar grupos de elementos relacionados. La tercera es una búsqueda totalmente automática.

      Optimización basada en el nivel de servicio

      1. Identifique los elementos que desea que tengan el mismo nivel de servicio. Por ejemplo, puede administrar cientos de elementos "C" y preguntarse si su objetivo de nivel de servicio debe ser 70%, más o menos.
      2. Ingrese un objetivo de nivel de servicio potencial y haga que el software prediga las consecuencias en términos de inversión en dólares de inventario y costo operativo de inventario.
      3. Si no le gusta lo que ve, pruebe con otro objetivo de nivel de servicio hasta que se sienta cómodo. Aquí el software hace predicciones a nivel de grupo de las consecuencias de sus elecciones, pero aún está explorando sus elecciones.

      Optimización por Reasignación a partir de un Benchmark

      1. Identifique los artículos que están relacionados de alguna manera, como "todos los repuestos para trenes de rodaje de vehículos ligeros sobre rieles".
      2. Utilice el software para evaluar el espectro actual de niveles de servicio y costos en todo el grupo de artículos. Por lo general, descubrirá que algunos artículos tienen un exceso de existencias (como lo indican los niveles de servicio irrazonablemente altos) y otros con una falta de existencias (niveles de servicio vergonzosamente bajos).
      3. Utilice el software para calcular los cambios necesarios para reducir los niveles de servicio más altos y aumentar los más bajos. Este ajuste a menudo dará como resultado el logro de dos objetivos a la vez: aumentar el nivel de servicio promedio y, al mismo tiempo, disminuir los costos operativos promedio.

      Optimización específica de artículos totalmente automatizada

      1. Identifique los elementos que requieren niveles de servicio por encima de un cierto mínimo. Por ejemplo, tal vez desee que todos sus elementos "A" tengan al menos un nivel de servicio 95%.
      2. Utilice el software para identificar, para cada artículo, la elección de los parámetros de inventario que minimizarán el costo de cumplir o exceder el nivel de servicio mínimo. El software buscará eficientemente el "espacio de diseño" definido por pares de parámetros de inventario (p. ej., Mín. y Máx.) para diseños (p. ej., Mín. = 10, Máx. = 23) que satisfagan la restricción del nivel de servicio. Entre ellos, identificará el diseño de menor costo.

      Este enfoque va más allá para trasladar la carga del planificador al programa. Muchos se beneficiarían de hacer de esta la forma estándar en que administran grandes cantidades de artículos de inventario. Para algunos artículos, puede ser útil dedicar un poco más de tiempo para asegurarse de que también se tengan en cuenta las consideraciones adicionales. Por ejemplo, la capacidad limitada en un departamento de compras puede hacer que la solución se aleje del ideal al requerir una disminución en la frecuencia de los pedidos, a pesar del precio pagado en costos operativos generales más altos.

      Avanzando

      Optimizar los parámetros de inventario nunca ha sido más importante, pero siempre pareció un sueño imposible: era demasiado trabajo y no había buenos modelos para relacionar las opciones de parámetros con indicadores clave de rendimiento como el nivel de servicio y el costo operativo. El software moderno para el análisis de la cadena de suministro ha cambiado el juego. Ahora la pregunta no es "¿Por qué haríamos eso?" sino "¿Por qué no estamos haciendo eso?" Con el software, puede conectar "Esto es lo que queremos" con "Hacerlo así".

       

       

       

       

      Volume and color boxes in a warehouese

       

      Deja un comentario
      Artículos Relacionados
      The Next Frontier in Supply Chain Analytics

      La próxima frontera en análisis de la cadena de suministro

      Creemos que la vanguardia del análisis de la cadena de suministro es el desarrollo de gemelos digitales de sistemas de inventario. Estos gemelos toman la forma de modelos de eventos discretos que utilizan la simulación Monte Carlo para generar y optimizar toda la gama de riesgos operativos. También afirmamos que nosotros y nuestros colegas de Smart Software hemos desempeñado un papel enorme en la creación de esa vanguardia.

      Overcoming Uncertainty with Service and Inventory Optimization Technology

      Superar la incertidumbre con tecnología de optimización de servicio e inventario

      En este blog, analizaremos el mercado impredecible y de ritmo rápido de hoy y los constantes desafíos que enfrentan las empresas para administrar su inventario y niveles de servicio de manera eficiente. El tema principal de esta discusión, arraigado en el concepto de “Optimización probabilística del inventario”, se centra en cómo se puede aprovechar la tecnología moderna para lograr objetivos óptimos de servicio e inventario en medio de la incertidumbre. Este enfoque no sólo aborda los problemas tradicionales de gestión de inventarios, sino que también ofrece una ventaja estratégica para afrontar las complejidades de las fluctuaciones de la demanda y las interrupciones de la cadena de suministro.

      Centering Act: Spare Parts Timing, Pricing, and Reliability

      Ley de centrado: sincronización, precio y confiabilidad de los repuestos

      En este artículo, lo guiaremos a través del proceso de elaboración de un plan de inventario de repuestos que priorice las métricas de disponibilidad, como los niveles de servicio y las tasas de cumplimiento, al tiempo que garantiza la rentabilidad. Nos centraremos en un enfoque para la planificación de inventario llamado Optimización de inventario basada en el nivel de servicio. A continuación, analizaremos cómo determinar qué piezas debe incluir en su inventario y cuáles podrían no ser necesarias. Por último, exploraremos formas de mejorar consistentemente su plan de inventario basado en el nivel de servicio.

      Mensajes recientes

      • Managing Spare Parts Inventory: Best PracticesGestión del inventario de repuestos: mejores prácticas
        En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
      • 5 Ways to Improve Supply Chain Decision Speed5 formas de mejorar la velocidad de toma de decisiones en la cadena de suministro
        La promesa de una cadena de suministro digital ha transformado la forma en que operan las empresas. En esencia, permite tomar decisiones rápidas basadas en datos y, al mismo tiempo, garantizar la calidad y la eficiencia en todas las operaciones. Sin embargo, no se trata solo de tener acceso a más datos. Las organizaciones necesitan las herramientas y plataformas adecuadas para convertir esos datos en información procesable. Aquí es donde la toma de decisiones se vuelve fundamental, especialmente en un panorama en el que las nuevas soluciones de cadena de suministro digital y las plataformas impulsadas por IA pueden ayudarlo a agilizar muchos procesos dentro de la matriz de decisiones. […]
      • Two employees checking inventory in temporary storage in a distribution warehouse.12 causas del exceso de stock y soluciones prácticas
        Gestionar el inventario de manera eficaz es fundamental para mantener un balance saludable y garantizar que los recursos se asignen de manera óptima. A continuación, se analizan en profundidad las principales causas del exceso de existencias, sus implicaciones y posibles soluciones. […]
      • FAQ Mastering Smart IP&O for Better Inventory ManagementPreguntas frecuentes: Cómo dominar la IP&O inteligente para una mejor gestión del inventario.
        Una gestión eficaz de la cadena de suministro y del inventario es esencial para lograr la eficiencia operativa y la satisfacción del cliente. Este blog ofrece respuestas claras y concisas a algunas preguntas básicas y otras preguntas comunes de nuestros clientes de Smart IP&O, ofreciendo información práctica para superar los desafíos típicos y mejorar sus prácticas de gestión de inventario. Centrándonos en estas áreas clave, lo ayudamos a transformar problemas complejos de inventario en acciones estratégicas y manejables que reducen los costos y mejoran el rendimiento general con Smart IP&O. […]
      • 7 Key Demand Planning Trends Shaping the Future7 tendencias clave en planificación de la demanda que están dando forma al futuro
        La planificación de la demanda va más allá de la simple previsión de las necesidades de productos; se trata de garantizar que su empresa satisfaga las demandas de los clientes con precisión, eficiencia y rentabilidad. La última tecnología de planificación de la demanda aborda desafíos clave como la precisión de las previsiones, la gestión de inventarios y la capacidad de respuesta al mercado. En este blog, presentaremos tendencias críticas de planificación de la demanda, que incluyen información basada en datos, previsión probabilística, planificación por consenso, análisis predictivo, modelado de escenarios, visibilidad en tiempo real y previsión multinivel. Estas tendencias le ayudarán a mantenerse a la vanguardia, optimizar su cadena de suministro, reducir costes y mejorar la satisfacción del cliente, posicionando a su empresa para el éxito a largo plazo. […]

        Optimización de inventario para fabricantes, distribuidores y MRO

        • Managing Spare Parts Inventory: Best PracticesGestión del inventario de repuestos: mejores prácticas
          En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
        • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovando en el mercado de repuestos OEM con optimización de inventario impulsada por IA
          El sector de posventa ofrece a los fabricantes de equipos originales una ventaja decisiva al ofrecer un flujo de ingresos constante y fomentar la lealtad del cliente mediante la entrega confiable y oportuna de piezas de repuesto. Sin embargo, la gestión del inventario y la previsión de la demanda en el mercado de posventa está plagada de desafíos, incluidos patrones de demanda impredecibles, amplias gamas de productos y la necesidad de entregas rápidas. Los métodos tradicionales a menudo no son suficientes debido a la complejidad y variabilidad de la demanda en el mercado de posventa. Las últimas tecnologías pueden analizar grandes conjuntos de datos para predecir la demanda futura con mayor precisión y optimizar los niveles de inventario, lo que conduce a un mejor servicio y menores costos. […]
        • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationUtilidades preparadas para el futuro: análisis avanzados para la optimización de la cadena de suministro
          Los servicios públicos en los campos de la electricidad, el gas natural, el agua urbana y las telecomunicaciones requieren muchos activos y dependen de una infraestructura física que debe mantenerse, actualizarse y mejorarse adecuadamente con el tiempo. Maximizar el tiempo de actividad de los activos y la confiabilidad de la infraestructura física exige una gestión eficaz del inventario, la previsión de piezas de repuesto y la gestión de proveedores. Una empresa de servicios públicos que ejecuta estos procesos de manera efectiva superará a sus pares, brindará mejores retornos para sus inversores y mayores niveles de servicio para sus clientes, al mismo tiempo que reducirá su impacto ambiental. […]
        • Centering Act Spare Parts Timing Pricing and ReliabilityLey de centrado: sincronización, precio y confiabilidad de los repuestos
          En este artículo, lo guiaremos a través del proceso de elaboración de un plan de inventario de repuestos que priorice las métricas de disponibilidad, como los niveles de servicio y las tasas de cumplimiento, al tiempo que garantiza la rentabilidad. Nos centraremos en un enfoque para la planificación de inventario llamado Optimización de inventario basada en el nivel de servicio. A continuación, analizaremos cómo determinar qué piezas debe incluir en su inventario y cuáles podrían no ser necesarias. Por último, exploraremos formas de mejorar consistentemente su plan de inventario basado en el nivel de servicio. […]

          La optimización del inventario se ha convertido en una prioridad aún mayor en los últimos meses para muchos de nuestros clientes. Algunos están encontrando sus productos en una demanda mucho mayor. Las empresas de computación en la nube con servidores y piezas de hardware únicas, comercio electrónico, minoristas en línea, empresas de suministros para el hogar y la oficina, muebles en el sitio, servicios públicos de energía, mantenimiento intensivo de activos o almacenamiento para empresas de suministro de agua han aumentado su actividad durante la pandemia. Los talleres que venden repuestos para automóviles y camiones, los fabricantes de productos farmacéuticos, sanitarios o de suministros médicos y los proveedores de productos de seguridad se enfrentan a una demanda cada vez mayor. Las empresas de servicios de entrega, los servicios de limpieza, las licorerías y los almacenes de productos enlatados o enlatados, las tiendas de mejoras para el hogar, los proveedores de jardinería, las empresas de cuidado de jardines, las ferreterías, las tiendas de suministros de cocina y panadería, los proveedores de muebles para el hogar con una gran demanda enfrentan desabastecimientos, largos plazos de entrega, inventario costos de escasez, mayores costos de operación y costos de pedidos.