Beheer van de inventaris van gepromote artikelen

De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

In een vorige postbesprak ik een van de neteligere problemen waarmee vraagplanners soms worden geconfronteerd: het werken met gegevens over productvraag die worden gekenmerkt door wat statistici scheefheid noemen - een situatie die kostbare voorraadinvesteringen kan vergen. Dit soort problematische gegevens is te vinden in verschillende scenario's. In ten minste één geval, de combinatie van intermitterende vraag en zeer effectieve verkoopacties, leent het probleem zich voor een effectieve oplossing.

Als u de termen herziet, bedenk dan dat "serviceniveau" de waarschijnlijkheid is van het niet bevoorraden terwijl u wacht op een aanvullingsorder, terwijl "vulpercentage" het percentage van de vraag is waaraan onmiddellijk uit voorraad wordt voldaan. In mijn vorige bericht, "The Scourge of Skewness", heb ik erop gewezen dat een bepaald type vraagverdeling, met een "long right tail", zal leiden tot opvullingspercentages die veel lager kunnen zijn dan de serviceniveaus. Ik heb er ook op gewezen dat soms de enige manier om het opvullingspercentage te verbeteren, is om het beoogde serviceniveau te verhogen tot een ongewoon hoog niveau, wat duur kan zijn.

In dit bericht zal ik kijken naar het oplossen van het probleem in één speciaal geval: scheefheid als gevolg van effectieve verkooppromoties vermengd met "intermitterende vraag". Intermitterende vraag heeft een groot deel van nulwaarden, met willekeurige waarden die niet gelijk zijn aan nul. Succesvolle verkooppromoties, uiteraard positief, hebben een keerzijde: ze kunnen het "vraagsignaal" verwarren met pieken in uw vraaggeschiedenis, en kunnen prognoses en vertekening van veiligheidsvoorraadberekeningen ondermijnen. Wanneer een intermitterende vraag en effectieve verkoopacties de oorzaak zijn van de scheefheid van uw gegevens, bestaan er methoden om het probleem te omzeilen om zowel hogere opvullingspercentages als nauwkeurigere vraagprognoses te bereiken.

Hoe promoties scheefheid vergroten

Succesvolle promoties doen de vraag naar artikelen abrupt stijgen. Dit creëert anomalieën, of "uitschieters", die bijdragen aan het vormen van een scheve verdeling. Als we weten wanneer er in het verleden promoties hebben plaatsgevonden, kunnen we het record van de eerdere vraag van een item aanpassen. We produceren een alternatieve vraaggeschiedenis alsof er geen promoties zijn geweest, door de uitschieters te vervangen door waarden die meer representatief zijn voor het "natuurlijke" vraagniveau. Deze aanpassingen verminderen de scheefheid van de vraag. Verminderde scheefheid kan leiden tot aanzienlijke verlagingen van zowel verwachte prognoses als veiligheidsvoorraden, die bij elkaar optellen om bestelpunten te vormen.

Succesvolle promoties zullen waarschijnlijk worden herhaald. Wanneer dat gebeurt, kunnen de promotie-effecten worden toegevoegd aan vraagprognoses om hun nauwkeurigheid te vergroten. Het effect van toekomstige promoties op voorraadbeheer zal zijn dat het risico van stockouts toeneemt, dus een verstandige reactie is om op operationeel niveau te werken aan het opbouwen van tijdelijke voorraad, in een hoeveelheid die is afgestemd op de geschatte impact van eerdere promoties op de betrokken artikelen.

 

Gebeurtenismodellering gebruiken om vraagprognoses te verbeteren

Het is mogelijk om de impact van soortgelijke evenementen te modelleren en dit toe te passen op geplande evenementen in de toekomst. Als u dit doet, kunt u uw prognose op twee manieren verbeteren: door de vraagschok te projecteren die u verwacht van een gepland evenement; en het rationaliseren van de pieken in het verleden die werden veroorzaakt door gebeurtenissen, waardoor uw basisactiviteit zichtbaarder en nauwkeuriger voorspelbaar wordt. We doen dit veel in SmartForecasts, dus sta me toe onze ervaring daar te gebruiken om u te laten zien wat ik bedoel.

Event Modeling omvat de volgende stappen:
• Automatische inschatting van de impact van eerdere promoties (wat op zich al een nuttig resultaat is).
• Historische vraag aanpassen om het effect van promoties statistisch te verwijderen.
• Promotie-vrije prognoses maken.
• Het herzien van de prognoses voor eventuele toekomstige perioden waarin promoties zijn gepland.

We noemen dit type analyse “Promo forecasting”. We gebruiken het woord "promoties" om te beschrijven wat u zelf doet om uw resultaten te verbeteren. We gebruiken 'gebeurtenissen' om te beschrijven wat de wereld met u doet, meestal in uw nadeel; voorbeelden zijn stakingen, stroomuitval, magazijnbranden en andere ongelukkige gebeurtenissen.

Om te begrijpen hoe Event Modeling u kan helpen om te gaan met scheefheid bij het doen van vraagprognoses voor artikelen met een hoog volume, bekijkt u figuren 1-3.

Figuur 1 laat zien dat het vraagpatroon van dit artikel duidelijk seizoensgebonden is en dat de voorspelling zowel seizoensgebonden als "strak" is, wat betekent dat het voorspelde onzekerheidsinterval ("foutmarge", weergegeven in cyaankleurige lijnen) erg smal is.

Afbeelding 2 toont een alternatieve geschiedenis waarin een promotie in juni 2014 het gebruikelijke seizoensdieptepunt van juni-verkopen omkeerde. Dit vraagpatroon werd voorspeld met behulp van het automatische voorspellingstoernooi in SmartForecasts, zoals in afbeelding 1. Deze keer vervormde de promotie het seizoenspatroon voldoende om een ongepaste niet-seizoensgebonden voorspelling te maken, en een die een veel grotere foutmarge heeft.

Ten slotte laat afbeelding 3 zien hoe Promo-prognoses omgaan met hetzelfde gepromote scenario, een seizoensprognose behouden en in de prognose een schatting inbouwen van het effect van een geplande herhalingspromotie in 2015.

Het geval van intermitterende vraag

In afbeelding 1 was het artikel een gereed product met een hoog volume en was de taak vraagprognose. Promomodellering is ook nuttig wanneer het gaat om het instellen van veiligheidsvoorraden en bestelpunten voor artikelen met intermitterende vraag, of het nu gaat om gereed product, componenten of reserveonderdelen. Intermitterende vraag heeft vaak een scheve verdeling die het moeilijk maakt om een hoge artikelbeschikbaarheid te bereiken met een kleine investering in voorraad.

Afbeelding 4 illustreert het probleem dat een succesvolle promotie per ongeluk kan veroorzaken voor voorraadbeheer. Als zo'n piek het gevolg is van de natuurlijke, niet-gestimuleerde vraag, dan is de enige manier om hoge opvullingspercentages te behouden, om veiligheidsvoorraden aan te leggen die groot genoeg zijn om deze willekeurige pieken op te vangen. In dit geval was de grote vraagpiek van 500 stuks in februari 2013 het resultaat van een eenmalige actie.

Rekening houden met promoties om voorraadbeheer te verbeteren

Als u de piek in het bovenstaande voorbeeld onbewust beschouwt als onderdeel van de natuurlijke variabiliteit in de vraag, resulteert dit in een slecht opvullingspercentage. Om een beoogd serviceniveau van bijvoorbeeld 95% met een doorlooptijd van één maand te bereiken, zou een bestelpunt van 38 eenheden nodig zijn, berekend als de som van een verwachte prognose over de aanvultijd van één maand van 21 eenheden aangevuld met een veiligheidsvoorraad van 17 eenheden. Deze investering zou resulteren in een teleurstellend opvullingspercentage van slechts 36%.

Erkennen dat de piek een eenmalige promotie is en de 500 eenheden vervangen door 0 zou natuurlijk een groot verschil maken. Het bestelpunt zou dalen van 38 eenheden naar 31 (de som van een verwachte vraag van 7 eenheden en een veiligheidsvoorraad van 24 eenheden) en het opvullingspercentage zou toenemen tot 94%.

Het is natuurlijk niet oké om vervelende pieken in de vraag gewoon weg te gooien wanneer ze het leven ongemakkelijk maken; er moet een valide 'business story' achter de aanpassing van de historische vraag zitten. Als de piek het gevolg is van een gegevensverwerkingsfout, repareer deze dan in ieder geval. Als de piek samenvalt met een promotie, zal het vervangen van de piek door bijvoorbeeld de mediane vraag (vaak nul, zoals in dit voorbeeld) resulteren in een veel duurzamere voorraadinvestering die nog steeds voldoet aan agressieve prestatiedoelstellingen. Toekomstige promoties van hetzelfde type op hetzelfde artikel zullen wat extra inspanning vergen om zich voor te bereiden op de tijdelijke stijging van de vraag, maar het aanbevolen bestelpunt zal op de lange termijn correct zijn.

Thomas Willemain, PhD, was medeoprichter van Smart Software en is momenteel Senior Vice President for Research. Dr. Willemain is ook emeritus hoogleraar Industrial and Systems Engineering aan het Rensselear Polytechnic Institute en als lid van de onderzoeksstaf van het Centre for Computing Sciences, Institute for Defence Analyses.

Laat een reactie achter

gerelateerde berichten

Forecast-Based Inventory Management for Better Planning

Op prognoses gebaseerd voorraadbeheer voor een betere planning

Op prognoses gebaseerd voorraadbeheer, of MRP-logica (Material Needs Planning), is een methode voor vooruitplanning die bedrijven helpt aan de vraag te voldoen zonder dat er sprake is van over- of ondervoorraad. Door te anticiperen op de vraag en de voorraadniveaus aan te passen, wordt een evenwicht behouden tussen het voldoen aan de behoeften van de klant en het minimaliseren van overtollige voorraadkosten. Deze aanpak optimaliseert de bedrijfsvoering, vermindert verspilling en verbetert de klanttevredenheid.

Future-Proofing Utilities: Advanced Analytics for Supply Chain Optimization

Toekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain

Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert.

Leveraging Epicor Kinetic Planning BOMs with Smart IP&O to Forecast Accurately

Gebruikmaken van Epicor Kinetic Planning BOM's met Smart IP&O voor nauwkeurige prognoses

In deze blog onderzoeken we hoe het gebruik van Epicor Kinetic Planning BOM's met Smart IP&O uw benadering van forecasting in een zeer configureerbare productieomgeving kan transformeren. Ontdek hoe Smart, een geavanceerde AI-gestuurde oplossing voor vraagplanning en voorraadoptimalisatie, de complexiteit van het voorspellen van de vraag naar eindproducten kan vereenvoudigen, vooral als het om verwisselbare componenten gaat. Ontdek hoe het plannen van stuklijsten en geavanceerde prognosetechnieken bedrijven in staat stelt nauwkeuriger te anticiperen op de behoeften van klanten, waardoor de operationele efficiëntie wordt gewaarborgd en een voorsprong behouden in een concurrerende markt.

recente berichten

  • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
    In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
  • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
    De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
  • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
    Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
  • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
    Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
  • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
    Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
      In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
    • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
      De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
    • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
    • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

      De afwegingscurve berijden

      De slimme voorspeller

       Het nastreven van best practices op het gebied van vraagplanning,

      prognoses en voorraadoptimalisatie

      Waar we tegen zijn

      Als Boston Red Sox-fan van de derde generatie ben ik niet geneigd om advies aan te nemen van een New York Yankee-balspeler, zelfs een geweldige, maar ik moet toegeven dat je soms gewoon een beslissing moet nemen. Zou het echter niet beter zijn als we de afwegingen wisten die bij elke beslissing horen. Misschien is de ene weg mooier, maar duurt het langer, terwijl de andere directer maar saaier is. Dan hoeft u het niet zomaar te accepteren, maar kunt u een weloverwogen beslissing nemen op basis van de voor- en nadelen van elke benadering.

      In de wereld van supply chain planning is de meest fundamentele beslissing hoe de beschikbaarheid van artikelen in evenwicht moet worden gebracht met de kosten om die beschikbaarheid in stand te houden (serviceniveaus en opvullingspercentages). Aan de ene kant kun je schromelijke overvoorraden hebben en nooit zonder raken totdat je failliet gaat en de winkel moet sluiten om al je geld in voorraad te stoppen die niet verkoopt. Aan het andere uiterste kunt u een grote ondervoorraad hebben en een bundel besparen op voorraadkosten, maar failliet gaan en uw winkel moeten sluiten omdat al uw klanten hun zaken elders hebben gedaan.

      Er is geen ontkomen aan deze fundamentele spanning. De manier om te overleven en te gedijen is het vinden van een productieve en duurzame balans. Om dat te doen, zijn op feiten gebaseerde afwegingen nodig op basis van de cijfers. Om de nummers te krijgen is software nodig.

      De algemene gang van zaken is duidelijk. Als u besluit meer voorraad aan te houden, heeft u meer voorraadkosten, lagere tekortkosten en mogelijk lagere bestelkosten. Of dit geld kost of bespaart, is onmogelijk te weten zonder een geavanceerde analyse, maar meestal is het resultaat dat de Totale Kosten omhoog gaan. Maar als u investeert in meer voorraad, levert dat iets op, omdat u uw klanten hogere serviceniveaus en opvulpercentages biedt. Hoeveel hoger vereist, zoals je misschien wel vermoedt, een geavanceerde analyse.

      Laat me de cijfers zien

      In deze blog leggen we uit hoe zo'n analyse eruit ziet. Er is geen universele oplossing die u naar de "juiste" beslissing wijst. U zou kunnen denken dat de juiste beslissing de beslissing is die het beste bij u past. Maar om die cijfers te krijgen, heb je iets nodig dat je zelden ziet: een nauwkeurig model van klantgedrag met betrekking tot serviceniveau (bekijk ons artikel “Hoe kies je een doelserviceniveau”) Wanneer zal een klant bijvoorbeeld weglopen en ergens anders heen gaan? Zal het zijn nadat je 1% van de tijd, 5% van de tijd, 10% van de tijd hebt opgeslagen? Blijft u hun bedrijf behouden zolang u snel nabestellingen uitvoert? Zal het zijn na een nabestelling van 1 dag, 2 dagen? 3 weken? Zal het zijn nadat dit één keer op een belangrijk onderdeel of vele malen op veel onderdelen is gebeurd? Hoewel het modelleren van het precieze serviceniveau waarmee u uw klant kunt behouden en tegelijkertijd de kosten kunt minimaliseren een ongenaakbaar ideaal lijkt, is een andere vorm van geavanceerde analyse meer pragmatisch. 

      Voorraadoptimalisatie- en prognosesoftware kan alle bijbehorende kosten in rekening brengen, zoals de kosten van bevoorrading, de kosten van het aanhouden van voorraden en de kosten van het bestellen van voorraden, om zo een optimaal serviceniveau voor te schrijven dat de laagste totale kosten oplevert. Maar zelfs dat "optimale" serviceniveau is gevoelig voor veranderingen in de kosten, waardoor de resultaten mogelijk twijfelachtig zijn. Als u bijvoorbeeld de exacte kosten niet nauwkeurig kunt inschatten (de kosten van een tekort zijn het moeilijkst), zal het moeilijk zijn om met zekerheid iets te zeggen als: "Als ik mijn voorhanden voorraad verhoog met gemiddeld één eenheid voor alle artikelen in een belangrijke productfamilie, zal mijn bedrijf een nettowinst van $170.500 zien. Die winst neemt toe totdat ik bij 4 eenheden kom. Bij 4 stuks en hoger daalt het rendement door te hoge bewaarkosten. Dus de beste beslissing om rekening te houden met verwachte voorraad, bestelling en voorraad is om de voorraad met 3 eenheden te verhogen om een nettowinst van meer dan $500.000 te zien.  

      Afgezien van dat ideaal, kunt u iets doen dat eenvoudiger maar toch uiterst waardevol is: kwantificeer de afwegingscurve tussen voorraadkosten en artikelbeschikbaarheid. Hoewel u niet noodzakelijkerwijs weet op welk serviceniveau u zich moet richten, kent u wel de kosten van verschillende serviceniveaus. Dan kunt u uw grote geld verdienen door een goede plek te vinden om op die afwegingscurve te zijn en te communiceren waar u risico loopt en waar niet, en verwachtingen te scheppen bij klanten en interne belanghebbenden. Zonder de afwegingscurve om u te leiden, vliegt u blind en kunt u uw voorraadbeleid niet rationeel wijzigen.

      Een scenario om van te leren

      Laten we een realistische afwegingscurve schetsen. We beginnen met een scenario dat een managementbeslissing vereist. Het scenario dat we zullen gebruiken en de bijbehorende veronderstellingen over vraag, doorlooptijden en kosten worden hieronder beschreven:

      Voorraadbeleid

      • Periodieke beoordeling – Beslissingen voor herbestellingen worden om de 30 dagen genomen
      • Order-Up-To-Level ("S") - Varieerde van 30 tot 60 eenheden
      • Tekortbeleid - Sta nabestellingen toe, geen verloren bestellingen

      Vraag naar

      • De vraag is intermitterend
      • Gemiddeld = 0,8 eenheden per dag
      • Standaarddeviatie = 1,2 eenheden per dag
      • Grootste vraag in een jaar ≈ 9
      • % dagen zonder vraag = 53%

      Lead Time

      • Willekeurig op 7, 14 of 21 dagen met waarschijnlijkheden respectievelijk 70%, 20% en 10%

      Kostenparameters

      • Bewaarkosten = $1 per dag
      • Bestelkosten = $10 per bestelling, ongeacht de grootte van de bestelling
      • Tekortkosten = $100 per eenheid niet onmiddellijk uit voorraad verzonden

      We stellen ons een beleid voor voorraadbeheer voor dat in de handel bekend staat als een "periodieke beoordeling" of (T,S) beleid. In dit geval is de Herzieningsperiode ("T") 30 dagen, wat betekent dat elke 30 dagen de voorraadpositie wordt gecontroleerd en een bestelbeslissing wordt genomen. De bestelhoeveelheid is het verschil tussen het waargenomen aantal beschikbare eenheden en de Order-Up-To Quantity ("S"). Dus als de voorraad aan het einde van de maand 12 eenheden is en S = 20, is de bestelhoeveelheid S – 12 = 20 -1 2 = 8. De volgende maand zal de bestelhoeveelheid waarschijnlijk anders zijn. Als de voorraad tijdens een beoordelingsperiode ooit negatief wordt (nabestellingen), probeert de volgende bestelling het evenwicht te herstellen door meer te bestellen om aan die nabestellingen te voldoen. Als de voorraad bijvoorbeeld -5 is (wat betekent dat 5 bestelde eenheden niet beschikbaar zijn voor verzending, is de volgende bestelling S – (-5) = S + 5. Details van de hypothetische vraagstroom, doorlooptijden van leveranciers en kostenelementen worden weergegeven in onderstaande afbeelding 1. Afbeelding 2 toont een voorbeeld van de dagelijkse vraag en dagelijkse voorraad gedurende vijf beoordelingsperioden. periodieke, zoals vaak het geval is voor reserveonderdelen, en daarom moeilijk te plannen.

      Figuur 1: Verschillende keuzes van voorraadbeleid (bestelling tot), bijbehorende kosten en serviceniveaus

      Afbeelding 2: Details van vijf maanden systeemwerking, gegeven een van de beleidsregels

       

      Software voor voorraadplanning is onze vriend

      Software codeert de logica van de werking van het (T,S)-systeem, genereert veel hypothetische maar realistische vraagscenario's, berekent hoe elk van die scenario's zich afspeelt en kijkt vervolgens terug op de gesimuleerde werking (hier, 10 jaar of 3.650 opeenvolgende dagen) om kosten- en prestatiestatistieken te berekenen.

      Om de afwegingscurve te onthullen, hebben we verschillende computationele experimenten uitgevoerd waarin we het Order-Up-To Level, S, varieerden. De grafieken Figuur 2 tonen het gedrag van de voorhanden inventaris in het "rijkste" alternatief met S = 60. In de fragment getoond in figuur 2, komt de voorhanden inventaris nooit in de buurt van uitvoorraden. Ook dat kun je lezen. Een, een beetje naïef, is om te zeggen: "Goed, we zijn goed beschermd." De andere, meer agressieve, is om te zeggen: “Oh nee, we zijn opgeblazen. Ik vraag me af wat er zou gebeuren als we S zouden verminderen.”

      De afwegingscurve onthuld

      Figuur 3 toont de resultaten van het verminderen van S van 60 naar 30 in stappen van 5 eenheden. De tabel laat zien dat Total Cost de som is van Holding Cost, Ordering Cost en Shortage Cost. Voor de (T,S) polis zijn de bestelkosten altijd hetzelfde, aangezien een bestelling elke 30 dagen als een uurwerk wordt geplaatst. Maar de andere kostencomponenten reageren op de veranderingen in S.

      Afbeelding 3: De experimentele resultaten en bijbehorende afwegingscurve die laten zien hoe het wijzigen van het Order-Up-To Level ("S") zowel het serviceniveau als de totale jaarlijkse kosten beïnvloedt

      Houd er rekening mee dat het serviceniveau in deze scenario's altijd lager is dan het opvullingspercentage. Als professor denk ik altijd aan dit verschil in termen van examenbeoordeling. Elke aanvullingscyclus is als een test. Serviceniveau gaat over de waarschijnlijkheid van een stockout, dus het is net als het cijfer voor een geslaagd/niet-geslaagd examen met één vraag die perfect moet worden beantwoord. Als er geen stockout is in een cyclus, is dat een A. Als er een stockout is, is dat een F. Het maakt niet uit of het één eenheid is die niet wordt geleverd of 50 - het is nog steeds een F. Maar Fill Rate is als een vraag dat wordt beoordeeld met deelpunten. Dus als je een van de tien eenheden te kort krijgt, krijg je 90% Fill Rate voor die cyclus, niet 0%. Het is belangrijk om het verschil te begrijpen tussen deze twee belangrijke statistieken voor voorraadplanning - bekijk deze vlog met een beschrijving serviceniveau versus opvullingspercentage via een interactieve oefening in Excel.

      De plot in figuur 3 is het echte nieuws. Het koppelt de totale kosten en het serviceniveau voor verschillende S-niveaus. Als u de grafiek van rechts naar links leest, vertelt het ons dat er enorme kostenbesparingen te behalen zijn door S te verlagen met zeer weinig nadelige gevolgen in termen van verminderde artikelbeschikbaarheid. Als u bijvoorbeeld S verlaagt van 60 naar 55, bespaart u bijna $800 per jaar op dit ene item, terwijl het serviceniveau slechts een klein beetje wordt verlaagd van (in wezen) 100% naar een nog steeds indrukwekkende 99%. S iets meer snijden doet hetzelfde, maar niet zo dramatisch. Als u de grafiek van links naar rechts leest, ziet u dat het omhoog gaan van S = 30 naar S = 35 ongeveer $1.000 per jaar kost, maar het serviceniveau verbetert van een F-klasse (45%) naar ten minste een C-klasse (71%). Daarna kost het steeds meer om S hoger te duwen, terwijl je steeds minder wint.

      De afwegingscurve geeft u geen antwoord op hoe u het Order-Up-To-niveau moet instellen, maar u kunt wel de kosten en baten van elk mogelijk antwoord evalueren. Neem even de tijd en doe alsof dit jouw probleem is: waar zou je langs de afwegingscurve willen zijn?

      U kunt bezwaar maken en zeggen dat u uw keuzes haat en het spel wilt veranderen. Is er ontsnapping uit de bocht? Niet van de algemene curve, maar misschien kun je een minder pijnlijke curve vormen. Hoe?

      Misschien heb je nog andere kaarten om te spelen. Een manier is om te proberen de vraag zo te 'vormen' dat deze minder variabel is. De vraaggrafiek in figuur 2 laat veel variabiliteit zien. Als je de vraag zou kunnen afvlakken, zou de hele afwegingscurve naar beneden verschuiven, waardoor elke keuze goedkoper zou worden. Een tweede manier is om te proberen de gemiddelde en variabiliteit van doorlooptijden van leveranciers te verminderen. Het bereiken van een van beide zou ook de curve naar beneden verschuiven om de keuze minder pijnlijk te maken. Bekijk ons artikel over hoe leveranciers beïnvloeden uw voorraadkosten

      Overzicht

      De afwegingscurve is altijd bij ons. Soms kunnen we het misschien vriendelijker maken, maar we kiezen altijd ons plekje erlangs. Het is beter om te weten wat u krijgt voor elke keuze van voorraadbeleid dan om te proberen te raden, en de curve geeft u dat. Wanneer u een nauwkeurige schatting van die curve heeft, vliegt u niet langer blind als het gaat om voorraadplanning. 

       

       

       

      Laat een reactie achter

      gerelateerde berichten

      Innovating the OEM Aftermarket with AI-Driven Inventory Optimization

      Innovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie

      De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten.

      Forecast-Based Inventory Management for Better Planning

      Op prognoses gebaseerd voorraadbeheer voor een betere planning

      Op prognoses gebaseerd voorraadbeheer, of MRP-logica (Material Needs Planning), is een methode voor vooruitplanning die bedrijven helpt aan de vraag te voldoen zonder dat er sprake is van over- of ondervoorraad. Door te anticiperen op de vraag en de voorraadniveaus aan te passen, wordt een evenwicht behouden tussen het voldoen aan de behoeften van de klant en het minimaliseren van overtollige voorraadkosten. Deze aanpak optimaliseert de bedrijfsvoering, vermindert verspilling en verbetert de klanttevredenheid.

      Make AI-Driven Inventory Optimization an Ally for Your Organization

      Maak van AI-gestuurde voorraadoptimalisatie een bondgenoot voor uw organisatie

      In deze blog onderzoeken we hoe organisaties uitzonderlijke efficiëntie en nauwkeurigheid kunnen bereiken met AI-gestuurde voorraadoptimalisatie. Traditionele methoden voor voorraadbeheer schieten vaak tekort vanwege hun reactieve karakter en hun afhankelijkheid van handmatige processen. Het handhaven van optimale voorraadniveaus is van fundamenteel belang om aan de vraag van de klant te voldoen en tegelijkertijd de kosten te minimaliseren. De introductie van AI-gestuurde voorraadoptimalisatie kan de last van handmatige processen aanzienlijk verminderen, waardoor supply chain-managers worden ontlast van vervelende taken.

      recente berichten

      • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
        In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
      • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
        De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
      • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
        Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
      • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
        Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
      • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
        Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

        Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

        • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
          In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
        • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
          De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
        • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
          Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
        • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
          In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

          De plaag van scheefheid

          De slimme voorspeller

           Het nastreven van best practices op het gebied van vraagplanning,

          prognoses en voorraadoptimalisatie

          Demand planners hebben te maken met meerdere problemen om hun werk gedaan te krijgen. Een daarvan is de irritatie van intermittency. Het "nu zie je het, nu niet meer" karakter van intermitterende vraag, met zijn zware mix van nulwaarden, dwingt het gebruik van geavanceerde statistische methoden, zoals het gepatenteerde Markov Bootstrap-algoritme van Smart Software. Maar zelfs binnen het duistere rijk van de intermitterende vraag zijn er moeilijkheidsgraden: planners moeten verder omgaan met de potentieel kostbare Scourge of Skewness.

          Scheefheid is een statistische term die de mate beschrijft waarin een vraagverdeling niet symmetrisch is. De klassieke (en grotendeels mythische) "klokvormige" curve is symmetrisch, met gelijke kansen dat de vraag in elke periode onder of boven het gemiddelde valt. Een scheve verdeling daarentegen is scheef, waarbij de meeste waarden boven of onder het gemiddelde vallen. In de meeste gevallen zijn de vraaggegevens positief scheef, met een lange staart van waarden die zich uitstrekken naar het hogere uiteinde van de vraagschaal.

          Staafdiagrammen van twee tijdreeksen
          Afbeelding 1: Twee intermitterende vraagreeksen met verschillende scheefheidsniveaus
          Figuur 1 toont twee tijdreeksen van 60 maanden intermitterende vraag. Beide zijn positief scheef, maar de gegevens in het onderste paneel zijn meer scheef. Beide series hebben bijna dezelfde gemiddelde vraag, maar de bovenste is een mix van 0-en, 1-en en 2-en, terwijl de onderste een mix is van 0-en, 1-en en 4-en.

          Wat positieve scheefheid een probleem maakt, is dat het de opvullingsgraad van een item verlaagt. Opvullingspercentage is belangrijk voorraadbeheer prestatiemaatstaf. Het meet het percentage van de vraag waaraan onmiddellijk wordt voldaan vanuit de voorhanden voorraad. Eventuele nabestellingen of verloren verkopen verminderen het opvullingspercentage (naast het verspillen van de goodwill van de klant).

          Het opvullingspercentage is een aanvulling op de andere belangrijke prestatiemaatstaf: serviceniveau. Serviceniveau meet de kans dat een artikel niet op voorraad is tijdens de doorlooptijd van de aanvulling. De doorlooptijd wordt gemeten vanaf het moment dat de voorraad daalt tot of onder het bestelpunt van een artikel, waardoor een aanvullingsorder wordt geactiveerd, tot de aankomst van de vervangende voorraad.

          Voorraadbeheersoftware, zoals SmartForecasts van Smart Software, kan vraagpatronen analyseren om het bestelpunt te berekenen dat nodig is om een bepaald serviceniveau te bereiken. Om een 95%-serviceniveau te bereiken voor het artikel in het bovenste paneel van Afbeelding 1, uitgaande van een doorlooptijd van 1 maand, is het vereiste bestelpunt 3; voor het onderste item is het bestelpunt 1. (Het eerste bestelpunt is 3 om rekening te houden met de duidelijke mogelijkheid dat toekomstige vraagwaarden hoger zullen zijn dan de grootste waarden, 2, die tot nu toe zijn waargenomen. In feite zijn waarden zo groot als 8 mogelijk .) Zie afbeelding 2.

          Histogrammen van twee tijdreeksen
          Figuur 2: Verdelingen van de totale vraag gedurende een doorlooptijd van aanvulling van 1 maand
          (Afbeelding 2 geeft de voorspelde verdeling van de vraag over de doorlooptijd weer. De groene balken vertegenwoordigen de waarschijnlijkheid dat een bepaalde vraag zich zal voordoen.)

          Met het vereiste bestelpunt van 3 eenheden is het opvullingspercentage voor het minder scheve artikel een gezonde 93%. Het opvullingspercentage voor het meer scheve item is echter een verontrustende 44%, hoewel ook dit item een serviceniveau van 95% behaalt. Dit is de plaag van scheefheid.

          De verklaring voor het verschil in opvullingspercentages is de mate van scheefheid. Het bestelpunt voor het meer scheve artikel is 1 eenheid. Het hebben van 1 eenheid bij de start van de doorlooptijd is voldoende om 95% van de aanvragen die binnenkomen tijdens een doorlooptijd van 1 maand te behandelen. De maandelijkse vraag kan echter oplopen tot meer dan 15 eenheden, dus wanneer de meer scheve eenheid op voorraad is, zal deze "grote voorraad opraken", waardoor een veel groter aantal eenheden verloren gaat.

          De meeste vraagplanners zouden er trots op zijn om een 95%-serviceniveau en een 93%-vulpercentage te behalen. De meesten zouden verontrust en verbaasd zijn door het 95%-serviceniveau te bereiken, maar slechts een 44%-vulpercentage. Deze gedeeltelijke storing zou niet hun schuld zijn: het kan rechtstreeks worden herleid tot de vervelende scheefheid in de verdeling van maandelijkse vraagwaarden.

          Er is geen pijnloze oplossing voor dit probleem. De enige manier om het opvullingspercentage in deze situatie te verhogen, is door het serviceniveau te verhogen, wat op zijn beurt het bestelpunt zal verhogen, wat uiteindelijk zowel de frequentie van stockouts als hun omvang zal verminderen wanneer ze zich voordoen. In dit voorbeeld zal het verhogen van het bestelpunt van 1 eenheid naar 3 eenheden een 99%-serviceniveau bereiken en het opvullingspercentage verhogen tot een respectabele, maar niet uitstekende, 84%. Deze verbetering zou ten koste gaan van in wezen een verdrievoudiging van de dollars die vastzitten aan het beheer van dit meer scheve item.

          Thomas Willemain, PhD, was medeoprichter van Smart Software en is momenteel Senior Vice President for Research. Dr. Willemain is ook emeritus hoogleraar Industrial and Systems Engineering aan het Rensselear Polytechnic Institute en als lid van de onderzoeksstaf van het Centre for Computing Sciences, Institute for Defence Analyses.

          Laat een reactie achter

          gerelateerde berichten

          Forecast-Based Inventory Management for Better Planning

          Op prognoses gebaseerd voorraadbeheer voor een betere planning

          Op prognoses gebaseerd voorraadbeheer, of MRP-logica (Material Needs Planning), is een methode voor vooruitplanning die bedrijven helpt aan de vraag te voldoen zonder dat er sprake is van over- of ondervoorraad. Door te anticiperen op de vraag en de voorraadniveaus aan te passen, wordt een evenwicht behouden tussen het voldoen aan de behoeften van de klant en het minimaliseren van overtollige voorraadkosten. Deze aanpak optimaliseert de bedrijfsvoering, vermindert verspilling en verbetert de klanttevredenheid.

          Future-Proofing Utilities: Advanced Analytics for Supply Chain Optimization

          Toekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain

          Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert.

          Leveraging Epicor Kinetic Planning BOMs with Smart IP&O to Forecast Accurately

          Gebruikmaken van Epicor Kinetic Planning BOM's met Smart IP&O voor nauwkeurige prognoses

          In deze blog onderzoeken we hoe het gebruik van Epicor Kinetic Planning BOM's met Smart IP&O uw benadering van forecasting in een zeer configureerbare productieomgeving kan transformeren. Ontdek hoe Smart, een geavanceerde AI-gestuurde oplossing voor vraagplanning en voorraadoptimalisatie, de complexiteit van het voorspellen van de vraag naar eindproducten kan vereenvoudigen, vooral als het om verwisselbare componenten gaat. Ontdek hoe het plannen van stuklijsten en geavanceerde prognosetechnieken bedrijven in staat stelt nauwkeuriger te anticiperen op de behoeften van klanten, waardoor de operationele efficiëntie wordt gewaarborgd en een voorsprong behouden in een concurrerende markt.

          recente berichten

          • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
            In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
          • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
            De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
          • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
            Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
          • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
            Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
          • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
            Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

            Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

            • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
              In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
            • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
              De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
            • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
              Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
            • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
              In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

              Een controle op prognoseautomatisering met de aandachtsindex

              De slimme voorspeller

              Het nastreven van best practices op het gebied van vraagplanning,

              prognoses en voorraadoptimalisatie

              Een nieuwe maatstaf die we de "Attentie-index" noemen, helpt voorspellers situaties te identificeren waarin "gegevens die zich slecht gedragen" automatische statistische voorspellingen kunnen verstoren (zie hiernaast). Het identificeert snel die items die waarschijnlijk de meeste kans hebben om prognoses te negeren, wat een efficiëntere manier biedt om zakelijke ervaring en andere menselijke intelligentie aan het werk te zetten om de nauwkeurigheid van prognoses te maximaliseren. Hoe werkt het?

              Klassiek voorspellingsmethoden, zoals de verschillende smaken van exponentiële afvlakking en voortschrijdende gemiddelden, dringen aan op een sprong in het diepe. Ze vereisen dat we erop vertrouwen dat de huidige omstandigheden in de toekomst blijven bestaan. Als de huidige omstandigheden aanhouden, is het verstandig om deze extrapolatieve methoden te gebruiken - methoden die het huidige niveau, de trend, de seizoensgebondenheid en "ruis" van een tijdreeks kwantificeren en projecteren in de toekomst.

              Maar als ze niet aanhouden, kunnen extrapolatieve methoden ons in de problemen brengen. Wat omhoog ging, kan ineens omlaag gaan. Wat vroeger rond het ene niveau was gecentreerd, kan plotseling naar een ander niveau springen. Of er kan iets heel vreemds gebeuren dat volledig uit het patroon is. In deze verrassende omstandigheden verslechtert de nauwkeurigheid van de prognoses, gaan voorraadberekeningen verkeerd en ontstaat er algemene onvrede.

              Een manier om met dit probleem om te gaan, is te vertrouwen op complexere voorspellingsmodellen die rekening houden met externe factoren die de variabele bepalen die wordt voorspeld. Verkooppromoties proberen bijvoorbeeld kooppatronen te verstoren en in een positieve richting te bewegen, dus het opnemen van promotieactiviteiten in het prognoseproces kan de verkoopprognoses verbeteren. Soms kunnen macro-economische indicatoren, zoals het starten van huizen of inflatiepercentages, worden gebruikt om de nauwkeurigheid van prognoses te verbeteren. Maar complexere modellen vereisen meer gegevens en meer expertise, en ze zijn misschien niet bruikbaar voor sommige problemen, zoals het beheer van onderdelen of subsystemen, in plaats van afgewerkte goederen.

              Als iemand vastloopt met behulp van eenvoudige extrapolatieve methoden, is het handig om een manier te hebben om items te markeren die moeilijk te voorspellen zijn. Dit is de Aandachtsindex. Zoals de naam al doet vermoeden, vereisen items die moeten worden voorspeld met een hoge Attention Index een speciale behandeling - op zijn minst een beoordeling en meestal een soort van prognoseaanpassing.

               

               

              De Aandachtsindex detecteert drie soorten problemen:

              Een uitbijter in de vraaggeschiedenis van een artikel.
              Een abrupte verandering in het niveau van een item.
              Een abrupte verandering in de trend van een artikel.
              Met behulp van software zoals SmartForecasts™ kan de voorspeller omgaan met een uitbijter door deze te vervangen door een meer typische waarde.

              Een abrupte verandering in niveau of trend kan worden verholpen door alle gegevens van vóór de "breuk" in het vraagpatroon uit de prognoseberekeningen weg te laten, ervan uitgaande dat het item is overgeschakeld naar een nieuw regime dat de oudere gegevens irrelevant maakt.

              Hoewel geen enkele index perfect is, slaagt de Aandachtsindex er goed in om de aandacht te vestigen op de meest problematische vraaggeschiedenissen. Dit wordt aangetoond in de twee onderstaande figuren, die zijn gemaakt met gegevens van de M3 Competition, bekend in de prognosewereld. Figuur 1 toont de 20 items (van de 3.003 van de wedstrijd) met de hoogste Attention Index-scores; al deze hebben groteske uitschieters en breuken. Figuur 2 toont de 20 items met de laagste Attention Index-scores; de meeste (maar niet alle) items met lage scores hebben relatief goedaardige patronen.

              Als u duizenden items te voorspellen heeft, zal de nieuwe Aandachtsindex zeer nuttig zijn om uw aandacht te richten op die items die het meest waarschijnlijk problematisch zijn.

              Thomas Willemain, PhD, was mede-oprichter van Smart Software en is momenteel Senior Vice President for Research. Dr. Willemain is ook emeritus hoogleraar Industrial and Systems Engineering aan het Rensselaer Polytechnic Institute en als lid van de onderzoeksstaf van het Centre for Computing Sciences, Institute for Defence Analyses.

              Laat een reactie achter

              gerelateerde berichten

              Daily Demand Scenarios

              Dagelijkse vraagscenario's

              In deze videoblog leggen we uit hoe tijdreeksvoorspellingen naar voren zijn gekomen als een cruciaal hulpmiddel, vooral op dagelijks niveau, waarmee Smart Software sinds de oprichting ruim veertig jaar geleden pionierde. De evolutie van bedrijfspraktijken van jaarlijkse naar meer verfijnde temporele stappen zoals maandelijkse en nu dagelijkse data-analyse illustreert een significante verschuiving in operationele strategieën.

              The Methods of Forecasting

              De methoden voor voorspelling

              Software voor vraagplanning en statistische prognoses speelt een cruciale rol in effectief bedrijfsbeheer door functies te integreren die de nauwkeurigheid van prognoses aanzienlijk verbeteren. Een belangrijk aspect is het gebruik van op afvlakking gebaseerde of extrapolatieve modellen, waardoor bedrijven snel voorspellingen kunnen doen die uitsluitend op historische gegevens zijn gebaseerd. Deze basis, geworteld in prestaties uit het verleden, is cruciaal voor het begrijpen van trends en patronen, vooral in variabelen zoals verkoop of productvraag. Voorspellingssoftware gaat verder dan louter data-analyse door de combinatie van professioneel oordeel met statistische voorspellingen mogelijk te maken, waarbij wordt erkend dat prognoses geen one-size-fits-all-proces zijn. Deze flexibiliteit stelt bedrijven in staat menselijke inzichten en sectorkennis in het voorspellingsmodel op te nemen, waardoor een genuanceerdere en nauwkeurigere voorspelling wordt gegarandeerd.

              Can Randomness be an Ally in the Forecasting Battle?

              Kan willekeur een bondgenoot zijn in de voorspellingsstrijd?

              Wanneer we de complexe wereld van de logistiek proberen te begrijpen, speelt willekeur een cruciale rol. Dit introduceert een interessante paradox: in een realiteit waarin precisie en zekerheid worden gewaardeerd, zou de onvoorspelbare aard van vraag en aanbod daadwerkelijk als een strategische bondgenoot kunnen dienen?
              De zoektocht naar nauwkeurige voorspellingen is niet alleen een academische oefening; het is een cruciaal onderdeel van operationeel succes in tal van sectoren. Voor vraagplanners die moeten anticiperen op de productvraag zijn de gevolgen van het goed of fout doen van de vraag van cruciaal belang. Daarom is het herkennen en benutten van de kracht van willekeur niet slechts een theoretische oefening; het is een noodzaak voor veerkracht en aanpassingsvermogen in een steeds veranderende omgeving.

              recente berichten

              • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
                In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
              • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
                De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
              • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
                Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
              • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
                Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
              • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
                Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

                Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

                • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
                  In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
                • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
                  De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
                • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
                  Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
                • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
                  In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]