Vraagplanning met raamcontracten

Klant als leraar

Onze klanten zijn geweldige docenten die ons altijd hebben geholpen om de kloof te overbruggen tussen de leerboektheorie en de praktische toepassing van prognoses en vraagplanning. Ons laatste stukje scholing gaat over "algemene bestellingen" en hoe deze te verantwoorden als onderdeel van het vraagplanningsproces. 

Uitbreiding van het leerboek inventarisatietheorie

De leerboekinventarisatietheorie richt zich op de drie meest gebruikte aanvullingsbeleidslijnen: (1) Periodieke herziening order-up-to-beleid, aangeduid (T, S) in de boeken (2) Continu herzieningsbeleid met vaste bestelhoeveelheid, aangeduid (R, Q) en (3) beleid voor continue beoordeling van bestelling tot en met, aangeduid met (s, S) maar gewoonlijk "Min/Max" genoemd. Onze klanten hebben erop gewezen dat hun eigenlijke bestelproces vaak gepaard gaat met veelvuldig gebruik van "algemene bestellingen". Deze blog richt zich op het opnemen van raamcontracten in het vraagplanningsproces en beschrijft hoe de voorraaddoelen dienovereenkomstig kunnen worden aangepast.

Vraagplanning met raamcontracten is anders

Raamcontracten zijn contracten met leveranciers voor vaste aanvullingshoeveelheden die met vaste tussenpozen aankomen. U kunt bijvoorbeeld met uw leverancier overeenkomen om elke 7 dagen 20 eenheden te ontvangen via een algemene bestelling in plaats van 60 tot 90 eenheden elke 28 dagen volgens het beleid voor periodieke evaluatie. Raamcontracten contrasteren zelfs nog meer met het beleid voor continue beoordeling, waarbij zowel bestelschema's als bestelhoeveelheden willekeurig zijn. Over het algemeen is het efficiënt om flexibiliteit in te bouwen in het herbevoorradingsproces, zodat u alleen bestelt wat u nodig heeft en alleen bestelt wanneer u het nodig heeft. Volgens die norm zou Min/Max het meest logisch moeten zijn en algemeen beleid het minst logisch.

De zaak voor algemeen beleid

Hoewel efficiëntie belangrijk is, is het nooit de enige overweging. Een van onze klanten, laten we ze bedrijf X noemen, legde uit hoe aantrekkelijk algemene polissen in hun omstandigheden zijn. Bedrijf X maakt hoogwaardige onderdelen voor motorfietsen en ATV's. Ze veranderen ruw staal in coole dingen. Maar ze moeten omgaan met het staal. Staal is duur. Staal is omvangrijk en zwaar. Staal wordt niet van de ene op de andere dag op speciale bestelling gemaakt. De voorraadbeheerder van bedrijf X wil geen grote maar willekeurige bestellingen plaatsen op willekeurige tijdstippen. Hij wil niet op een berg van staal passen. Zijn leveranciers willen geen bestellingen voor willekeurige hoeveelheden op willekeurige tijdstippen ontvangen. En Bedrijf X geeft er de voorkeur aan zijn betalingen te spreiden. Het resultaat: algemene bestellingen.

De fatale fout in algemeen beleid

Voor Bedrijf X zijn raamcontracten bedoeld om de aankoop van aanvullingen gelijk te maken en om onpraktische stapels staal te voorkomen voordat ze klaar zijn voor gebruik. Maar de logica achter het voorraadbeleid voor continue beoordeling is nog steeds van toepassing. Pieken in de vraag, anders welkom, zullen optreden en kunnen leiden tot stockouts. Evenzo kunnen pauzes in de vraag een vraagoverschot creëren. Naarmate de tijd verstrijkt, wordt het duidelijk dat een algemeen beleid een fatale fout heeft: alleen als de raamorders exact overeenkomen met de gemiddelde vraag, kunnen ze op hol geslagen voorraad in beide richtingen, omhoog of omlaag, vermijden. In de praktijk zal het onmogelijk zijn om de gemiddelde vraag exact te matchen. Bovendien is de gemiddelde vraag een bewegend doel en kan deze stijgen of dalen.

Raamcontracten opnemen bij vraagplanning 

Een algemeen beleid heeft wel voordelen, maar rigiditeit is de achilleshiel. Vraagplanners zullen vaak improviseren door toekomstige bestellingen aan te passen om veranderingen in de vraag aan te kunnen, maar dit is niet schaalbaar voor duizenden artikelen. Om het voorraadaanvulbeleid robuust te maken tegen willekeur in de vraag, stellen we een hybride beleid voor dat begint met algemene bestellingen, maar de flexibiliteit behoudt om automatisch (niet handmatig) extra voorraad te bestellen wanneer dat nodig is. Door de algemene polis aan te vullen met een Min/Max back-up is het mogelijk om aanpassingen te doen zonder handmatige tussenkomst. Deze combinatie zal enkele van de voordelen van raamcontracten vastleggen, terwijl de klantenservice wordt beschermd en op hol geslagen voorraad wordt vermeden.

Het ontwerpen van een vraagplanningsproces dat rekening houdt met raamcontracten, vereist de keuze uit vier besturingsparameters. Twee parameters zijn de vaste omvang en vaste timing van de algemene polis. Twee andere zijn de waarden van Min en Max. Hierdoor wordt de voorraadbeheerder geconfronteerd met een vierdimensionaal optimalisatieprobleem. Geavanceerde voorraadoptimalisatiesoftware maakt het mogelijk om keuzes voor de waarden van de vier parameters te evalueren en om onderhandelingen met leveranciers te ondersteunen bij het opstellen van raamcontracten.

 

 

Een beginnershandleiding voor uitvaltijd en wat u eraan kunt doen

Deze blog geeft een overzicht van dit onderwerp, geschreven voor niet-experts. Het

  • legt uit waarom je deze blog zou willen lezen.
  • somt de verschillende soorten "machine-onderhoud" op.
  • legt uit wat 'probabilistische modellering' is.
  • beschrijft modellen voor het voorspellen van uitvaltijd.
  • legt uit wat deze modellen voor u kunnen betekenen.

Belang van uitvaltijd

Als je dingen voor de verkoop maakt, heb je machines nodig om die dingen te maken. Als uw machines in bedrijf zijn, heeft u een goede kans om geld te verdienen. Als uw machines niet werken, verliest u kansen om geld te verdienen. Omdat downtime zo fundamenteel is, is het de moeite waard om geld te investeren en de downtime te minimaliseren. Met denken bedoel ik kansberekening, aangezien stilstandtijd van de machine is inherent een willekeurig fenomeen. Waarschijnlijkheidsmodellen kan het onderhoudsbeleid sturen.

Beleid voor machineonderhoud

Onderhoud is uw verdediging tegen uitvaltijd. Er zijn meerdere soorten onderhoudsbeleid, variërend van "Niets doen en wachten op falen" tot geavanceerde analytische benaderingen met sensoren en faalkansmodellen.

Een handige lijst met onderhoudsbeleid is:

  • Achterover leunen en wachten op problemen, en dan nog wat rondhangen en afvragen wat te doen als er onvermijdelijk problemen optreden. Dit is zo dwaas als het klinkt.
  • Hetzelfde als hierboven, behalve dat u zich voorbereidt op het falen om de uitvaltijd te minimaliseren, bijvoorbeeld door reserveonderdelen op te slaan.
  • Periodiek controleren op dreigende problemen in combinatie met interventies zoals het smeren van bewegende onderdelen of het vervangen van versleten onderdelen.
  • De timing van onderhoud baseren op gegevens over de machineconditie in plaats van te vertrouwen op een vast schema; vereist voortdurende gegevensverzameling en -analyse. Dit wordt conditiegestuurd onderhoud genoemd.
  • Gegevens over de machineconditie agressiever gebruiken door deze om te zetten in voorspellingen van uitvaltijd en suggesties voor te nemen stappen om uitval te vertragen. Dit wordt voorspellend onderhoud genoemd.

De laatste drie soorten onderhoud zijn afhankelijk van kansberekening om een onderhoudsschema op te stellen, of om te bepalen wanneer gegevens over de machineconditie moeten worden ingegrepen, of om te berekenen wanneer een storing kan optreden en hoe deze het beste kan worden uitgesteld.

 

Waarschijnlijkheidsmodellen van machinestoring

Hoe lang een machine zal draaien voordat deze uitvalt, is een willekeurige variabele. Zo is de tijd die het zal besteden naar beneden. Kansrekening is het deel van de wiskunde dat zich bezighoudt met willekeurige variabelen. Willekeurige variabelen worden beschreven door hun kansverdelingen, bijvoorbeeld, wat is de kans dat de machine 100 uur zal draaien voordat hij uitvalt? 200 uur? Of wat is de kans dat de machine na 100 uur of 200 uur nog steeds werkt?

Een subveld genaamd "betrouwbaarheidstheorie" beantwoordt dit soort vragen en behandelt verwante concepten zoals Mean Time Before Failure (MTBF), wat een verkorte samenvatting is van de informatie die is gecodeerd in de kansverdeling van tijd vóór mislukking.

Figuur 1 toont gegevens over de tijd vóór uitval van airconditioningunits. Dit type plot geeft de cumulatieve kansverdeling en toont de kans dat een eenheid na enige tijd is uitgevallen. Figuur 2 toont a betrouwbaarheidsfunctie:, het plotten van hetzelfde type informatie in een omgekeerd formaat, dat wil zeggen, het weergeven van de kans dat een eenheid na verloop van tijd nog steeds functioneert.

In figuur 1 geven de blauwe vinkjes naast de x-as de tijdstippen weer waarop individuele airconditioners faalden; dit zijn de basisgegevens. De zwarte curve toont het cumulatieve aandeel van eenheden die in de loop van de tijd zijn mislukt. De rode curve is een wiskundige benadering van de zwarte curve – in dit geval een exponentiële verdeling. De grafieken laten zien dat ongeveer 80 procent van de units zal uitvallen voordat ze 100 uur in bedrijf zijn.

Figuur 1 Cumulatieve distributiefunctie van uptime voor airconditioners

Figuur 1 Cumulatieve distributiefunctie van uptime voor airconditioners

 

Waarschijnlijkheidsmodellen kunnen worden toegepast op een afzonderlijk onderdeel of component of subsysteem, op een verzameling gerelateerde onderdelen (bijv. "het hydraulische systeem") of op een volledige machine. Elk van deze kan worden beschreven door de kansverdeling van de tijd voordat ze falen.

Figuur 2 toont de betrouwbaarheidsfunctie van zes subsystemen in een machine voor het graven van tunnels. De plot laat zien dat het meest betrouwbare subsysteem de snijarmen zijn en het minst betrouwbare het watersubsysteem. De betrouwbaarheid van het hele systeem kan worden benaderd door alle zes curven te vermenigvuldigen (omdat het systeem als geheel werkt, moet elk subsysteem functioneren), wat zou resulteren in een zeer korte interval voordat er iets misgaat.

Figuur 2 Voorbeelden van kansverdelingen van subsystemen in een tunnelmachine

Figuur 2 Voorbeelden van kansverdelingen van subsystemen in een tunnelmachine

 

Verschillende factoren zijn van invloed op de verdeling van de tijd voor falen. Investeren in betere onderdelen verlengt de levensduur van het systeem. Investeren in redundantie ook. Dat geldt ook voor het vervangen van gebruikte paren door nieuwe.

Zodra een kansverdeling beschikbaar is, kan deze worden gebruikt om een willekeurig aantal wat-als-vragen te beantwoorden, zoals hieronder wordt geïllustreerd in het gedeelte over de voordelen van modellen.

 

Benaderingen voor het modelleren van machinebetrouwbaarheid

Waarschijnlijkheidsmodellen kunnen ofwel de meest elementaire eenheden beschrijven, zoals individuele systeemcomponenten (Figuur 2), of verzamelingen van basiseenheden, zoals volledige machines (Figuur 1). In feite kan een hele machine worden gemodelleerd als een enkele eenheid of als een verzameling componenten. Als een hele machine als een enkele eenheid wordt behandeld, vertegenwoordigt de kansverdeling van de levensduur een samenvatting van het gecombineerde effect van de levensduurverdelingen van elk onderdeel.

Als we een model van een hele machine hebben, kunnen we naar modellen van verzamelingen machines springen. Als we in plaats daarvan beginnen met modellen van de levensduur van individuele componenten, dan moeten we die individuele modellen op de een of andere manier combineren tot een algemeen model van de hele machine.

Dit is waar de wiskunde harig kan worden. Modellering vereist altijd een verstandig evenwicht tussen vereenvoudiging, zodat sommige resultaten mogelijk zijn, en complicaties, zodat alle resultaten die naar voren komen realistisch zijn. De gebruikelijke truc is om aan te nemen dat storingen van de afzonderlijke onderdelen van het systeem onafhankelijk van elkaar optreden.

Als we ervan uit kunnen gaan dat storingen onafhankelijk optreden, is het meestal mogelijk om verzamelingen van machines te modelleren. Stel bijvoorbeeld dat een productielijn vier machines heeft die hetzelfde product produceren. Met een betrouwbaarheidsmodel voor één machine (zoals in figuur 1) kunnen we bijvoorbeeld voorspellen hoe groot de kans is dat over een week nog maar drie van de machines werken. Ook hier kan zich een complicatie voordoen: de kans dat een machine die vandaag werkt, morgen nog werkt, hangt vaak af van hoe lang het geleden is sinds de laatste storing. Als de tijd tussen storingen een exponentiële verdeling heeft zoals in figuur 1, dan blijkt dat het tijdstip van de volgende storing niet afhangt van hoe lang het geleden is sinds de laatste storing. Helaas hebben veel of zelfs de meeste systemen geen exponentiële distributies van uptime, dus de complicatie blijft.

Erger nog, als we beginnen met modellen van veel individuele componentbetrouwbaarheid, kan het bijna onmogelijk zijn om ons op te werken tot het voorspellen van uitvaltijden voor de hele complexe machine als we rechtstreeks met alle relevante vergelijkingen proberen te werken. In dergelijke gevallen is de enige praktische manier om resultaten te krijgen het gebruik van een andere stijl van modelleren: Monte Carlo-simulatie.

Monte Carlo-simulatie is een manier om berekening te vervangen door analyse wanneer het mogelijk is om willekeurige scenario's van systeemwerking te creëren. Het gebruik van simulatie om machinebetrouwbaarheid te extrapoleren uit de betrouwbaarheid van componenten werkt als volgt.

  1. Begin met de cumulatieve distributiefuncties (Figuur 1) of betrouwbaarheidsfuncties (Figuur 2) van elk machineonderdeel.
  2. Maak een willekeurig voorbeeld van de levensduur van elke component om een set voorbeeldfouten te krijgen die consistent zijn met de betrouwbaarheidsfunctie.
  3. Gebruik de logica van hoe componenten aan elkaar gerelateerd zijn, bereken de uitvaltijd van de hele machine.
  4. Herhaal stap 1-3 vele malen om het volledige scala aan mogelijke levensduur van de machine te zien.
  5. U kunt desgewenst het gemiddelde van de resultaten van stap 4 nemen om de levensduur van de machine samen te vatten met metrische gegevens zoals de MTBF of de kans dat de machine meer dan 500 uur zal draaien voordat deze defect raakt.

Stap 1 zou een beetje ingewikkeld zijn als we geen mooi kansmodel hebben voor de levensduur van een component, bijvoorbeeld zoiets als de rode lijn in figuur 1.

Stap 2 kan een zorgvuldige boekhouding vereisen. Naarmate de tijd verstrijkt in de simulatie, zullen sommige componenten defect raken en worden vervangen, terwijl andere door blijven gaan. Tenzij de levensduur van een component een exponentiële verdeling heeft, zal de resterende levensduur afhangen van hoe lang de component continu in gebruik is geweest. Dus deze stap moet rekening houden met de verschijnselen van branden in of verslijten.

Stap 3 verschilt van de andere doordat er wat achtergrondwiskunde voor nodig is, zij het van een eenvoudig type. Als Machine A alleen werkt als beide componenten 1 en 2 werken, dan (ervan uitgaande dat een storing van de ene component geen invloed heeft op de storing van de andere)

Kans [A werkt] = Kans [1 werkt] x Kans [2 werkt].

Als in plaats daarvan Machine A werkt als component 1 werkt of component 2 werkt of beide werken, dan

Waarschijnlijkheid [A faalt] = Waarschijnlijkheid [1 faalt] x Waarschijnlijkheid [2 faalt]

dus Waarschijnlijkheid [A werkt] = 1 – Waarschijnlijkheid [A faalt].

Stap 4 kan het creëren van duizenden scenario's omvatten om het volledige scala aan willekeurige uitkomsten te tonen. Berekenen is snel en goedkoop.

Stap 5 kan variëren, afhankelijk van de doelen van de gebruiker. Het berekenen van de MTBF is standaard. Kies andere die bij het probleem passen. Naast de samenvattende statistieken die in stap 5 worden geleverd, kunnen individuele simulatieruns worden uitgezet om intuïtie op te bouwen over de willekeurige dynamiek van machine-uptime en downtime. Afbeelding 3 toont een voorbeeld van een enkele machine met afwisselende cycli van uptime en downtime, resulterend in 85% uptime.

Afbeelding 3 Een voorbeeldscenario voor een enkele machine

Afbeelding 3 Een voorbeeldscenario voor een enkele machine

 

Voordelen van machinebetrouwbaarheidsmodellen

In afbeelding 3 is de machine 85% van de tijd in gebruik. Dat is misschien niet goed genoeg. U heeft misschien ideeën over hoe u de betrouwbaarheid van de machine kunt verbeteren. U kunt bijvoorbeeld de betrouwbaarheid van component 3 verbeteren door een nieuwere, betere versie van een andere leverancier te kopen. Hoeveel zou dat helpen? Dat is moeilijk te raden: component 3 is misschien maar een van de vele en misschien niet de zwakste schakel, en hoeveel de verandering loont, hangt af van hoeveel beter de nieuwe zou zijn. Misschien moet je een specificatie voor component 3 ontwikkelen die je vervolgens kunt kopen bij potentiële leveranciers, maar hoe lang moet component 3 meegaan om een materiële impact te hebben op de MTBF van de machine?

Dit is waar het hebben van een model loont. Zonder model vertrouw je op giswerk. Met een model kunt u speculaties over wat-als-situaties omzetten in nauwkeurige schattingen. U kunt bijvoorbeeld analyseren hoe een toename van 10% in MTBF voor component 3 zich zou vertalen in een verbetering van MTBF voor de hele machine.

Een ander voorbeeld: stel dat u zeven machines heeft die een belangrijk product produceren. U berekent dat u zes van de zeven moet inzetten om een grote order van uw ene grote klant te vervullen, zodat er één machine overblijft om de vraag van een aantal diverse kleine klanten af te handelen en als reserve te dienen. Een betrouwbaarheidsmodel voor elke machine zou kunnen worden gebruikt om de waarschijnlijkheid van verschillende onvoorziene omstandigheden in te schatten: alle zeven machines werken en de levensduur is goed; zes machines werken, zodat u in ieder geval uw belangrijkste klant tevreden kunt houden; slechts vijf machines werken, dus u moet iets onderhandelen met uw belangrijkste klant, enz.

Samengevat kunnen waarschijnlijkheidsmodellen van machine- of componentstoringen de basis vormen voor het omzetten van faaltijdgegevens in slimme zakelijke beslissingen.

 

Lees meer over  Maximaliseer machine-uptime met probabilistische modellering

 

Lees meer over   Probabilistische prognoses voor intermitterende vraag

 

 

Laat een reactie achter
gerelateerde berichten
Je moet samenwerken met de algoritmen

Je moet samenwerken met de algoritmen

Dit artikel gaat over de echte kracht die voortkomt uit de samenwerking tussen u en onze software die binnen handbereik plaatsvindt. We schrijven vaak over de software zelf en wat er ‘onder de motorkap’ gebeurt. Deze keer is het onderwerp hoe je het beste met de software kunt samenwerken.

Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen

Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen

In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren.

Gedachten over de planning van reserveonderdelen voor het openbaar vervoer

De pandemie van Covid19 heeft ongebruikelijke druk gelegd op openbaarvervoersbedrijven. Deze stress dwingt agentschappen om opnieuw te kijken naar hun planningsprocessen voor reserveonderdelen, wat een belangrijke drijfveer is voor het waarborgen van uptime en het balanceren van de voorraadkosten van serviceonderdelen.

Deze blog richt zich op bussystemen en hun praktijken voor het beheer en de planning van reserveonderdelen. Er zijn hier echter lessen voor andere soorten openbaar vervoer, waaronder spoor en lightrail.

In 1995 publiceerde de Transportation Research Board (TRB) van de National Research Council een rapport dat nog steeds relevant is. Systeemspecifieke reservebusverhoudingen: een synthese van de transitpraktijk verklaarde:

Het doel van deze studie was het documenteren en onderzoeken van de kritieke locatiespecifieke variabelen die van invloed zijn op het aantal reservevoertuigen dat bussystemen nodig hebben om aan de maximale servicevereisten te voldoen. … Hoewel transitmanagers over het algemeen erkenden dat het juiste formaat van de vloot de operaties daadwerkelijk verbetert en de kosten verlaagt, meldden velen problemen bij het bereiken en consistent handhaven van een reserveratio van 20 procent, zoals aanbevolen door FTA… De respondenten van de enquête pleitten ervoor om meer nadruk te leggen op de ontwikkeling van verbeterde en innovatieve busonderhoudstechnieken, die hen zouden helpen de uitvaltijd te minimaliseren en de beschikbaarheid van voertuigen te verbeteren, wat uiteindelijk zou leiden tot minder reservevoertuigen en arbeids- en materiaalkosten.

Grof vereenvoudigde richtlijnen zoals "houd 20% reservebussen" zijn gemakkelijk te begrijpen en te meten, maar maskeren grovelijk meer gedetailleerde tactieken die een meer op maat gemaakt beleid kunnen bieden dat het geld van de belastingbetaler dat aan reserveonderdelen wordt uitgegeven, beter kan beheren en tegelijkertijd de hoogste niveaus van beschikbaarheid garandeert. Als de bedrijfszekerheid per bus kan worden verbeterd, zijn er minder reserveonderdelen nodig.

Een manier om elke bus vaker aan de praat te houden, is door het beheer van voorraden reserveonderdelen te verbeteren, met name door het gebruik van serviceonderdelen en het vereiste bevoorradingsbeleid nauwkeuriger te voorspellen. Hier kan modern supply chain management een belangrijke bijdrage leveren. De TRB merkte dit op in hun rapport:

Veel agentschappen zijn erin geslaagd de afhankelijkheid van overtollige reservevoertuigen te beperken. Die transitambtenaren zijn het erover eens dat verschillende factoren en initiatieven tot hun succes hebben geleid en van cruciaal belang zijn voor het succes van elk programma [inclusief] … Effectief gebruik van geavanceerde technologie om kritieke onderhoudsfuncties te beheren, inclusief de ordelijke en tijdige vervanging van onderdelen… Het niet beschikbaar hebben van service-onderdelen en andere componenten wanneer ze nodig zijn, heeft een negatieve invloed op elk onderhoudsprogramma.

Zolang managers op de hoogte zijn van de problemen en waakzaam zijn over welke hulpmiddelen voor hen beschikbaar zijn, zal de kans dat bussen 'geen voorraad hebben' sterk afnemen."

Effectief voorraadbeheer van reserveonderdelen vereist een balans tussen "genoeg hebben" en "te veel hebben". Wat moderne planningssoftware voor serviceonderdelen kan doen, is de wisselwerking tussen deze twee doelen zichtbaar maken, zodat transportmanagers op feiten gebaseerde beslissingen kunnen nemen over voorraden reserveonderdelen.

Er zijn genoeg complicaties bij het vinden van de juiste balans om verder te gaan dan simpele vuistregels zoals "houd tien dagen aan vraag bij de hand" of "bestel opnieuw wanneer u nog maar vijf stuks op voorraad hebt". Factoren die deze beslissingen sturen, zijn onder meer de gemiddelde vraag naar een onderdeel, de volatiliteit van die vraag, de gemiddelde doorlooptijd voor bevoorrading (wat een probleem kan zijn wanneer het onderdeel per slow boat uit Duitsland aankomt), de variabiliteit in doorlooptijd en verschillende kostenfactoren: aanhoudingskosten, bestelkosten en tekortkosten (bijv. verloren tarieven, verlies van publieke goodwill).

Innovatieve software voor supply chain-analyse en planning van reserveonderdelen maakt gebruik van geavanceerde probabilistische prognoses en stochastische optimalisatiemethoden om deze complexiteit te beheersen en een grotere beschikbaarheid van onderdelen tegen lagere kosten te bieden. Metro Transit in Minnesota documenteerde bijvoorbeeld een 4x hogere ROI in de eerste zes maanden na de implementatie van een nieuw systeem. Om meer te lezen over hoe openbaarvervoersbedrijven innovatieve supply chain-analyses benutten, zie:

 

 

Laat een reactie achter
gerelateerde berichten
Je moet samenwerken met de algoritmen

Je moet samenwerken met de algoritmen

Dit artikel gaat over de echte kracht die voortkomt uit de samenwerking tussen u en onze software die binnen handbereik plaatsvindt. We schrijven vaak over de software zelf en wat er ‘onder de motorkap’ gebeurt. Deze keer is het onderwerp hoe je het beste met de software kunt samenwerken.

Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen

Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen

In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren.

Een inleiding op probabilistische prognoses

De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Als je op de hoogte blijft van het nieuws over supply chain-analyse, u komt vaker de uitdrukking "probabilistische prognoses" tegen. Als deze zin raadselachtig is, lees dan verder.

U weet waarschijnlijk al wat 'voorspelling' betekent. En je weet waarschijnlijk ook dat er veel verschillende manieren lijken te zijn om het te doen. En je hebt waarschijnlijk scherpe kleine zinnen gehoord als 'elke voorspelling is verkeerd'. Dus je weet dat een soort van wiskundige zou kunnen berekenen dat "de voorspelling is dat u volgende maand 100 eenheden zult verkopen", en dan zou u 110 eenheden kunnen verkopen, in welk geval u een 10%-voorspellingsfout heeft.

Je weet misschien niet dat wat ik zojuist heb beschreven een bepaald soort voorspelling is, een 'puntvoorspelling'. Een puntenvoorspelling wordt zo genoemd omdat deze uit slechts een enkel getal bestaat (dwz één punt op de getallenlijn, als je je de getallenlijn herinnert uit je jeugd).

Punt voorspellingen hebben één deugd: ze zijn eenvoudig. Ze hebben ook een fout: ze geven aanleiding tot snauwende uitspraken als 'elke voorspelling is verkeerd'. Dat wil zeggen, in de meeste realistische gevallen is het onwaarschijnlijk dat de werkelijke waarde exact gelijk zal zijn aan de voorspelling. (Wat niet zo erg is als de voorspelling dichtbij genoeg is.)

Dit brengt ons bij 'probabilistische voorspellingen'. Deze aanpak is een stap verder, want in plaats van een voorspelling met één cijfer (punt) te produceren, levert het een kansverdeling op voor de voorspelling. En in tegenstelling tot traditionele extrapolatieve modellen die puur op historische gegevens vertrouwen, hebben probabilistische voorspellingen de mogelijkheid om toekomstige waarden te simuleren die niet verankerd zijn in het verleden.

"Waarschijnlijkheidsverdeling" is een verbiedende uitdrukking, die wat mysterieuze wiskunde oproept waar je misschien van hebt gehoord maar nooit hebt bestudeerd. Gelukkig hebben de meeste volwassenen genoeg levenservaring om het concept intuïtief te begrijpen. Wanneer afgebroken, is het vrij eenvoudig te begrijpen.

Stel je de simpele handeling voor van het opgooien van twee munten. Je zou dit onschuldig plezier kunnen noemen, maar ik noem het een 'probabilistisch experiment'. Het totale aantal kop dat op de twee munten verschijnt, is nul, één of twee. Het opgooien van twee munten is een 'willekeurig experiment'. Het resulterende aantal koppen is een "willekeurige variabele". Het heeft een "kansverdeling", wat niets meer is dan een tabel van hoe waarschijnlijk het is dat de willekeurige variabele een van zijn mogelijke waarden zal blijken te hebben. De kans om twee kop te krijgen als de munten eerlijk zijn, is ¼, net als de kans op geen kop. De kans op één kop is ½.

Dezelfde benadering kan een interessantere willekeurige variabele beschrijven, zoals de dagelijkse vraag naar een reserveonderdeel. Figuur 2 toont een dergelijke kansverdeling. Het werd berekend door drie jaar dagelijkse vraaggegevens te verzamelen over een bepaald onderdeel dat wordt gebruikt in een wetenschappelijk instrument dat aan ziekenhuizen wordt verkocht.

 

Probabilistische vraagvoorspelling 1

Figuur 1: De kansverdeling van de dagelijkse vraag naar een bepaald reserveonderdeel

 

De verdeling in figuur 1 kan worden gezien als een probabilistische voorspelling van de vraag op één dag. Voor dit specifieke onderdeel zien we dat de voorspelling zeer waarschijnlijk nul zal zijn (97% kans), maar soms voor een handvol eenheden, en eens in de drie jaar twintig eenheden. Hoewel de meest waarschijnlijke voorspelling nul is, zou je er een paar bij de hand willen houden als dit onderdeel van cruciaal belang zou zijn ("... bij gebrek aan een spijker ...")

Laten we deze informatie nu gebruiken om een meer gecompliceerde probabilistische voorspelling te maken. Stel dat je drie eenheden bij de hand hebt. Hoeveel dagen duurt het voordat je er geen hebt? Er zijn veel mogelijke antwoorden, variërend van een enkele dag (als u onmiddellijk een vraag krijgt voor drie of meer) tot een zeer groot aantal (aangezien 97% dagen geen vraag ziet). De analyse van deze vraag is een beetje ingewikkeld vanwege de vele manieren waarop deze situatie zich kan voordoen, maar het uiteindelijke antwoord dat het meest informatief is, is een kansverdeling. Het blijkt dat het aantal dagen totdat er geen eenheden meer in voorraad zijn de verdeling heeft zoals weergegeven in figuur 2.

Probabilistische vraagvoorspelling 2

Figuur 2: Verdeling van het aantal dagen totdat alle drie de units op zijn

 

Het gemiddelde aantal dagen is 74, wat een puntvoorspelling zou zijn, maar er is veel variatie rond het gemiddelde. Vanuit het perspectief van voorraadbeheer valt op dat er een kans van 25% is dat alle units na 32 dagen op zijn. Dus als u besluit om meer te bestellen terwijl er nog maar drie in het schap liggen, zou het goed zijn als de leverancier ze u bezorgt voordat er een maand is verstreken. Als ze dat niet konden, zou je een kans van 75% hebben om de voorraad op te slaan - niet goed voor een cruciaal onderdeel.

De analyse achter figuur 2 omvatte het maken van enkele aannames die handig waren, maar niet nodig als ze niet waar waren. De resultaten kwamen van een methode genaamd "Monte Carlo-simulatie", waarin we beginnen met drie eenheden, een willekeurige vraag kiezen uit de verdeling in figuur 1, deze aftrekken van de huidige voorraad en doorgaan totdat de voorraad op is, waarbij wordt geregistreerd hoeveel dagen gingen voorbij voordat je op was. Herhaling van dit proces 100.000 keer geproduceerd Figuur 2.

Toepassingen van Monte Carlo-simulatie strekken zich uit tot problemen met een nog grotere reikwijdte dan het bovenstaande voorbeeld "wanneer zijn we op". Vooral belangrijk zijn Monte Carlo-voorspellingen van de toekomstige vraag. Hoewel het gebruikelijke voorspellingsresultaat een reeks puntvoorspellingen is (bijvoorbeeld de verwachte vraag per eenheid in de komende twaalf maanden), weten we dat er een aantal manieren zijn waarop de werkelijke vraag zich zou kunnen voordoen. Simulatie zou kunnen worden gebruikt om bijvoorbeeld duizend mogelijke sets van 365 dagelijkse vraagbehoeften te produceren.

Deze reeks vraagscenario's zou het scala aan mogelijke situaties waarmee een voorraadsysteem het hoofd zou moeten bieden, vollediger blootleggen. Dit gebruik van simulatie wordt "stresstesten" genoemd, omdat het een systeem blootstelt aan een reeks gevarieerde maar realistische scenario's, waaronder enkele vervelende. Die scenario's worden vervolgens ingevoerd in wiskundige modellen van het systeem om te zien hoe goed het zal omgaan, zoals weerspiegeld in key performance indicators (KPI's). Hoeveel stockouts zijn er bijvoorbeeld in die duizend gesimuleerde jaren van werking in het slechtste jaar? het gemiddelde jaar? het beste jaar? Wat is in feite de volledige kansverdeling van het aantal stockouts in een jaar, en wat is de verdeling van hun omvang?

Figuren 3 en 4 illustreren probabilistische modellering van een voorraadbeheersysteem dat stockouts omzet in backorders. Het gesimuleerde systeem gebruikt een Min/Max-regelbeleid met Min = 10 eenheden en Max = 20 eenheden.

Figuur 3 toont een gesimuleerd jaar van dagelijkse operaties in vier plots. De eerste grafiek toont een bepaald patroon van willekeurige dagelijkse vraag waarin de gemiddelde vraag gestaag toeneemt van maandag tot vrijdag, maar in het weekend verdwijnt. De tweede grafiek toont het aantal eenheden dat elke dag voorhanden is. Merk op dat er tijdens dit gesimuleerde jaar een tiental keren is dat de voorraad negatief wordt, wat wijst op stockouts. De derde grafiek toont de omvang en timing van aanvullingsorders. De vierde grafiek toont de omvang en timing van backorders. De informatie in deze plots kan worden vertaald in schattingen van voorraadinvesteringen, gemiddelde eenheden voorhanden, houdkosten, bestelkosten en tekortkosten.

Probabilistische vraagvoorspelling 3

Figuur 3: Een gesimuleerd jaar van werking van het voorraadsysteem

 

Figuur 3 toont één van duizend gesimuleerde jaren. Elk jaar zal verschillende dagelijkse eisen hebben, wat resulteert in verschillende waarden van statistieken, zoals beschikbare eenheden en de verschillende componenten van de bedrijfskosten. Figuur 4 geeft de verdeling weer van 1.000 gesimuleerde waarden van vier KPI's. Door 1000 jaar ingebeelde werking te simuleren, wordt het bereik van mogelijke resultaten blootgelegd, zodat planners niet alleen rekening kunnen houden met gemiddelde resultaten, maar ook de best-case en worst-case-waarden kunnen zien.

Probabilistische vraagvoorspelling 4

Figuur 4: Verdelingen van vier KPI's op basis van 1.000 simulaties

 

Monte Carlo-simulatie is een benadering met weinig wiskunde en hoge resultaten voor probabilistische prognoses: zeer praktisch en gemakkelijk uit te leggen. Geavanceerde probabilistische voorspellingsmethoden die door Smart Software worden gebruikt, breiden uit op de standaard Monte Carlo-simulatie en leveren uiterst nauwkeurige schattingen van de vereiste voorraadniveaus op.

 

Laat een reactie achter

gerelateerde berichten

Het probleem met bochten

Het probleem met bochten

Tijdens onze reizen door de industriële scene merken we dat veel bedrijven meer aandacht besteden aan inventarisatiebeurten dan zou moeten. We willen een deel van deze aandacht verleggen naar meer consequente prestatiestatistieken.

De plaag van scheefheid

De plaag van scheefheid

Demand planners hebben te maken met meerdere problemen om hun werk gedaan te krijgen. Een daarvan is de irritatie van intermittency. Het "nu zie je het, nu niet meer" karakter van intermitterende vraag, met zijn zware mix van nulwaarden, dwingt het gebruik van geavanceerde statistische methoden, zoals het gepatenteerde Markov Bootstrap-algoritme van Smart Software. Maar zelfs binnen het duistere rijk van de intermitterende vraag zijn er moeilijkheidsgraden: planners moeten verder omgaan met de potentieel kostbare Scourge of Skewness.

Vraagprognose in een "Build to Order"-bedrijf

Vraagprognose in een "Build to Order"-bedrijf

We komen vaak in contact met potentiële klanten die beweren dat ze geen prognosesysteem kunnen gebruiken omdat ze een "build-to-order" productiebedrijf zijn. Ik vind dit een raadselachtig perspectief, want wat deze organisaties ook bouwen, er zijn grondstoffen of tussenproducten van een lager niveau nodig. Als die invoer op een lager niveau niet beschikbaar is wanneer een bestelling voor het afgewerkte product wordt ontvangen, kan de bestelling niet worden gebouwd. Bijgevolg kan de bestelling worden geannuleerd en de bijbehorende inkomsten verloren gaan.

recente berichten

  • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
    In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
  • 5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
    De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
  • Twee werknemers controleren de voorraad in de tijdelijke opslag van een distributiecentrum.12 Oorzaken van Overstocking en Praktische Oplossingen
    Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
  • FAQ: Slimme IP&O onder de knie krijgen voor beter voorraadbeheerFAQ: Slimme IP&O voor beter voorraadbeheer.
    Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
  • 7 belangrijke trends in vraagplanning die de toekomst vormgeven7 belangrijke trends in vraagplanning die de toekomst vormgeven
    Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
      In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
    • Innovatie van de OEM-aftermarket met AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
      De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
    • Toekomstbestendige hulpprogramma's. Geavanceerde analyses voor supply chain-optimalisatieToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
    • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

      Blijf bij de les

       

      Ik heb voor duizenden studenten gestaan. Ze zijn min of meer jong, min of meer technisch, min of meer ervaren – en min of meer geïnteresseerd. Ik heb dit gedaan als lid van de universiteitsfaculteit sinds 1972, eerst aan het Massachusetts Institute of Technology, daarna aan de Harvard University en ten slotte aan de School of Engineering aan het Rensselaer Polytechnic Institute. Tussen Harvard en RPI stopte ik tijdelijk met de academische wereld om mede-oprichter van Smart Software met Charlie Smart en Nelson Hartunian. Sindsdien ben ik ook bezig met het trainen van zakelijke gebruikers om de kracht van geavanceerde analyses voor prognoses en voorraadoptimalisatie te benutten.

      Op het moment dat ik dit schrijf, ben ik net terug op mijn kantoor bij RPI, nadat ik eerstejaars studenten Technische Bedrijfskunde kennis heb laten maken met de basisconcepten van voorraadbeheer. Als ze zich aan het programma houden, zullen ze de vereiste cursussen volgen in supply chain, systeemsimulatie, statistische analyse en optimalisatie. Ik vertelde ze verhalen over hoe nuttig ze zullen zijn voor hun bedrijven als ze besluiten om carrière te maken in de wereld van de toeleveringsketen. Als ik meer tijd had gehad, had ik gezegd hoe capabel ze zullen zijn als ze afstuderen in vergelijking met veel van hun collega's in het bedrijfsleven. Deze eerstejaars zijn klaar en bereid om bij de les te blijven, ze nemen alle technieken en theorieën in zich op die we ze kunnen geven, en verbeteren hun praktische vaardigheden in zomerbanen of coop-opdrachten.

      Wat ik ze niet heb verteld, is dat velen van hen zullen moeten werken om hun intensiteit te behouden als ze aan het werk zijn. Het is een trieste waarheid dat, om welke reden dan ook, veel voorraadbeoefenaars in een soort stilstand komen te zitten die het vermogen van hun bedrijf belemmert om gebruik te maken van de nieuwste technologieën, zoals cloudgebaseerde geavanceerde vraagvoorspelling en voorraadoptimalisatie. Verzamel genoeg van zulke mensen op één plek en behendigheid en verbeterde efficiëntie verdwijnen uit het raam.

      Ik denk dat een van de factoren die mensen afstompt, is dat het implementatieproces vaak pijnlijk stapsgewijs en langdurig aanvoelt. Het begint vaak met een ontnuchterende inventarisatie van relevante gegevens, de juistheid en de actualiteit ervan. Dan gaat het naar een vaak lastige ontdekking dat er echt geen systematisch proces is en de daaropvolgende noodzaak om in de toekomst een goed proces te ontwerpen. Het volgende is de noodzaak om te leren een nieuwe softwaresuite te gebruiken. Die stap omvat het leren van nieuwe woordenschat, een bepaald niveau van probabilistisch denken, het vermogen om nieuwe grafieken en tabellen te interpreteren, om nog maar te zwijgen van een nieuwe software-interface. Dit alles kost tijd en moeite.

       

      De nauwkeurigheid van de voorspelling geeft een statistisch verantwoorde

       

      We hebben ontdekt dat een paar dingen nieuwe klanten helpen om op koers te blijven. Een daarvan is het hebben van een kampioen onder het management, een executive sponsor, die kan instaan voor het commerciële belang van een succesvolle implementatie en ervoor zorgt dat de gebruikers worden ondersteund met permanente educatie. Een tweede is het identificeren en trainen van een of twee supergebruikers met ongebruikelijke combinaties van technische en communicatieve vaardigheden. Een derde is het opbreken van de training in hapklare brokken en testen op begrip na elk stuk en dit proces herhalen totdat het duidelijk is dat de nieuwe concepten, woordenschat en proces volledig zijn opgenomen. Maar al die manoeuvres zullen op niets uitlopen zonder dat het management all-in is en klaar is om op koers te blijven. Voorraadplanningspraktijken die al vele jaren bestaan, zullen niet volledig worden vervangen gedurende een implementatieproces van drie maanden. Je moet het willen om het te krijgen.

       

       

      Laat een reactie achter
      gerelateerde berichten
      Je moet samenwerken met de algoritmen

      Je moet samenwerken met de algoritmen

      Dit artikel gaat over de echte kracht die voortkomt uit de samenwerking tussen u en onze software die binnen handbereik plaatsvindt. We schrijven vaak over de software zelf en wat er ‘onder de motorkap’ gebeurt. Deze keer is het onderwerp hoe je het beste met de software kunt samenwerken.

      Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen

      Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen

      In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren.