6 cosas que hacer y no hacer en la planificación de piezas de repuesto

La gestión de inventarios de piezas de repuesto puede parecer imposible. No sabes qué se romperá y cuándo. Los comentarios de los departamentos mecánicos y los equipos de mantenimiento suelen ser inexactos. Los programas de mantenimiento planificados a menudo se modifican, lo que los convierte en cualquier cosa menos "planificados". Los patrones de uso (es decir, la demanda) suelen ser extremadamente intermitentes, es decir, la demanda salta aleatoriamente entre cero y algo más, a menudo un número sorprendentemente grande. La intermitencia, combinada con la falta de tendencias significativas o patrones estacionales, hace que los métodos tradicionales de pronóstico de series de tiempo sean inexactos. La gran cantidad de combinaciones parte por ubicación hace que sea imposible crear manualmente o incluso revisar pronósticos para partes individuales. Dados todos estos desafíos, pensamos que sería útil delinear una serie de cosas que se deben hacer (y sus correspondientes prohibiciones).

  1. Utilice métodos probabilísticos para calcular los puntos de pedido y los niveles mínimos y máximos.
    Basar las decisiones de almacenamiento en el uso diario promedio no es la respuesta correcta. Tampoco lo es la confianza en los métodos de pronóstico tradicionales como los modelos de suavizado exponencial. Ninguno de los enfoques funciona cuando la demanda es intermitente porque no tienen debidamente en cuenta la volatilidad de la demanda. métodos probabilísticos que simulan miles de posibles escenarios de demanda funcionan mejor. Proporcionan una estimación realista de la distribución de la demanda y pueden manejar todos los ceros y no ceros aleatorios. Esto garantizará que el nivel de inventario tenga el tamaño adecuado para alcanzar cualquier objetivo de nivel de servicio que elija.
     
  2. Use niveles de servicio en lugar de métodos de regla empírica para determinar los niveles de existencias
    Muchas organizaciones de planificación de piezas se basan en múltiplos de la demanda diaria y otros Reglas de juego para determinar las políticas de almacenamiento. Por ejemplo, los puntos de reorden a menudo se basan en la duplicación de la demanda promedio durante el tiempo de entrega o en la aplicación de algún otro múltiplo según la importancia del artículo. Sin embargo, los promedios no tienen en cuenta cuán volátil (o ruidosa) es una pieza y darán lugar a un exceso de existencias de piezas menos ruidosas y una escasez de piezas más ruidosas.
     
  3. Vuelva a calcular con frecuencia las políticas de almacenamiento
    El hecho de que la demanda sea intermitente no significa que nada cambie con el tiempo. Sin embargo, después de entrevistar a cientos de empresas que administran el inventario de piezas de repuesto, encontramos que menos de 10% vuelven a calcular las políticas de almacenamiento mensualmente. Muchos nunca vuelven a calcular las políticas de almacenamiento hasta que surge un “problema”. En miles de piezas, se garantiza que el uso aumentará o disminuirá en al menos algunas de las piezas. Los plazos de entrega de los proveedores también pueden cambiar. El uso de un punto de pedido desactualizado hará que los pedidos se activen demasiado pronto o demasiado tarde, lo que creará muchos problemas. Recálculo de políticas en cada ciclo de planificación asegura que el inventario tendrá el tamaño correcto. No sea reactivo y espere a que ocurra un problema antes de considerar si se debe modificar el valor mínimo o máximo. Para entonces ya es demasiado tarde, es como esperar a que los frenos fallen antes de repararlos. No se preocupe por el esfuerzo de volver a calcular los valores Mín./Máx. para una gran cantidad de SKU: el software moderno lo hace automáticamente. Recuerda: ¡La recalibración de sus políticas de almacenamiento es un mantenimiento preventivo contra el agotamiento de existencias!
     
  4. Obtenga aceptación en los niveles de servicio específicos
    El inventario es costoso y debe tener el tamaño correcto en función de lograr un equilibrio entre la disposición de la organización a agotarse y su disposición a presupuestar repuestos. Con demasiada frecuencia, los planificadores toman decisiones de forma aislada basándose en la evitación del dolor o en las solicitudes de los técnicos de mantenimiento sin tener en cuenta cómo el gasto en una parte afecta la capacidad de la organización para gastar en otra parte. El exceso de inventario en una parte perjudica los niveles de servicio en otras partes al consumir de manera desproporcionada el presupuesto de inventario. Asegúrese de que los objetivos de nivel de servicio y el inventario asociado costos de alcanzar los niveles de servicio son entendidos y aceptados.
     
  5. Ejecute un proceso de planificación separado para piezas reparables
    Algunas piezas son muy costosas de reemplazar, por lo que es preferible enviarlas a las instalaciones de reparación o de vuelta al OEM para su reparación. Tener en cuenta la aleatoriedad del lado del suministro de cuándo se devolverán las piezas reparables y saber si esperar una reparación o comprar un repuesto adicional son fundamentales para garantizar la disponibilidad de los artículos sin un aumento del inventario. Esto requiere informes especializados y el uso de modelos probabilísticos. No trate las piezas reparables como piezas consumibles cuando planifique.
     
  6. Cuente lo que se compra contra el presupuesto, no solo lo que se consume
    Muchas organizaciones asignan las compras totales de piezas a un presupuesto corporativo separado y asignan el presupuesto del equipo mecánico o de mantenimiento a las piezas que se utilizan. En la mayoría de las organizaciones de MRO, especialmente en el transporte público y los servicios públicos, los equipos de reparación dictan lo que se compra. Si lo que se compra no cuenta contra su presupuesto, comprarán en exceso para asegurarse de que nunca haya ninguna posibilidad de desabastecimiento. Literalmente no tienen ningún incentivo para hacerlo bien, por lo que se comprarán decenas de millones en exceso de inventario. Si lo que se compra se refleja en el presupuesto, se prestará mucha más atención a comprar solo lo que realmente se necesita. Reconociendo que el exceso de inventario perjudica el servicio Robar a la organización dinero en efectivo que, de lo contrario, podría usarse en repuestos insuficientes es un paso importante para garantizar una compra de inventario responsable.

Soluciones de software para la planificación de repuestos

El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

 

 

Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

 

Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

 

    ¿Sus pronósticos estadísticos sufren el efecto de oscilación?

     ¿Qué es el efecto de oscilación? 

    Es cuando su pronóstico estadístico predice incorrectamente los altibajos observados en su historial de demanda cuando realmente no hay un patrón. Es importante asegurarse de que sus pronósticos no cambien a menos que haya un patrón real.

    Aquí hay una transcripción de un cliente reciente donde se discutió este problema:

    Cliente: “El pronóstico no sigue los patrones que veo en el historial. ¿Por qué no?" 

    Inteligente: “Si miras de cerca, los altibajos que ves no son patrones. Es realmente ruido”.  

    Cliente: “Pero si no predecimos los máximos, nos agotamos”.

    Smart: “Si el pronóstico 'se moviera', sería mucho menos preciso. El sistema pronosticará cualquier patrón que sea evidente, en este caso una tendencia alcista muy leve. Protegeremos el ruido con existencias de seguridad. Los meneos se utilizan para establecer las existencias de seguridad”.

    Cliente: “Está bien. Tiene sentido ahora. 

    Do your statistical forecasts suffer from the wiggle effect graphic

    El movimiento parece tranquilizador pero, en este caso, está dando como resultado un pronóstico de demanda incorrecto. Los altibajos en realidad no ocurren a la misma hora cada mes. Un mejor pronóstico estadístico se muestra en verde claro.

     

     

    Amplíe Microsoft 365 F&SC y AX con Smart IP&O

    Microsoft Dynamics 365 F&SC y AX pueden administrar el reabastecimiento al sugerir qué ordenar y cuándo a través de políticas de inventario basadas en puntos de reorden. Un desafío que enfrentan los clientes es que los esfuerzos para mantener estos niveles están muy orientados a los detalles y que el sistema ERP requiere que el usuario especifique manualmente estos puntos de pedido y/o pronósticos. Como alternativa, muchas organizaciones terminan generando políticas de inventario a mano utilizando hojas de cálculo de Excel u otros enfoques ad hoc.

    Estos métodos consumen mucho tiempo y es probable que ambos den como resultado cierto nivel de inexactitud. Como resultado, la organización terminará con un exceso de inventario, escasez innecesaria y una desconfianza general en sus sistemas de software. En este artículo, revisaremos la funcionalidad de pedidos de inventario en AX / D365 F&SC, explicaremos sus limitaciones y resumiremos cómo la Planificación y optimización de inventario inteligente puede ayudar a mejorar la posición de efectivo de una empresa. Esto se logra mediante un inventario reducido y desabastecimientos minimizados y controlados. El uso de Smart Software ofrece una funcionalidad predictiva que falta en Dynamics 365.

    Políticas de reabastecimiento de Microsoft Dynamics 365 F&SC y AX

    En el módulo de gestión de inventario de AX y F&SC, los usuarios pueden ingresar manualmente los parámetros de planificación para cada artículo en existencia. Estos parámetros incluyen puntos de pedido, plazos de entrega de existencias de seguridad, cantidades de existencias de seguridad, ciclos de reorden y modificadores de pedidos, como cantidades de pedido mínimas y máximas impuestas por el proveedor y múltiplos de pedido. Una vez ingresado, el sistema ERP conciliará el suministro entrante, la disponibilidad actual, la demanda saliente y los pronósticos definidos por el usuario y las políticas de almacenamiento para calcular el plan de suministro o el cronograma de pedidos (es decir, qué ordenar y cuándo).

    Hay 4 opciones de política de reposición en F&SC y AX: Cantidad fija de reorden, Cantidad máxima, Lote por lote e Impulsada por pedido del cliente.

    • Cantidad de reorden fija y Máx. son métodos de reabastecimiento basados en puntos de pedido. Ambos sugieren pedidos cuando el inventario disponible alcanza el punto de reorden. Con ROQ fijo, el tamaño del pedido se especifica y no variará hasta que se cambie. Con Max, los tamaños de los pedidos variarán según la posición del stock en el momento del pedido y los pedidos se realizarán hasta el Max.
    • Lote por lote es un método de reabastecimiento basado en pronósticos que agrupa la demanda total pronosticada durante un marco de tiempo definido por el usuario (el "período de acumulación de lotes") y genera una sugerencia de pedido que totaliza la cantidad pronosticada. Entonces, si su demanda total pronosticada es de 100 unidades por mes y el período de acumulación del lote es de 3 meses, entonces su sugerencia de pedido sería igual a 300 unidades.
    • Impulsado por pedidos es un método de reabastecimiento basado en pedidos. No utiliza puntos de pedido ni pronósticos. Piense en ello como una lógica de "vender uno, comprar uno" que solo realiza pedidos después de que se ingresa la demanda.

     

    Limitaciones

    Cada una de las configuraciones de reabastecimiento de F&SC / AX debe ingresarse manualmente o importarse a través de cargas personalizadas creadas por los clientes. Simplemente no hay forma de que los usuarios generen entradas de forma nativa (especialmente las que no son óptimas). La falta de una funcionalidad creíble para la previsión a nivel de unidad y la optimización del inventario dentro del sistema ERP es la razón por la que tantos usuarios de AX y F&SC se ven obligados a confiar en hojas de cálculo para la planificación y luego establecer manualmente los parámetros que necesita el ERP. En realidad, la mayoría de los planificadores terminan configurando manualmente las previsiones de demanda y reordenando.

    Y cuando pueden usar hojas de cálculo, a menudo se basan en métodos generales generales que dan como resultado el uso de modelos estadísticos simplificados. Una vez calculados en la hoja de cálculo, estos deben cargarse en F&SC/AX. A menudo se cargan a través de engorrosas importaciones de archivos o se ingresan manualmente. Debido al tiempo y esfuerzo que se necesita para construirlos, las empresas no actualizan estos números con frecuencia.

    Una vez que se establecen, las organizaciones tienden a emplear un enfoque reactivo a los cambios. La única vez que un comprador/planificador revisa la política de inventario es anualmente o en el momento de las compras o la fabricación. Algunas empresas también reaccionarán después de encontrar problemas con niveles de inventario cortos (o demasiado altos). Gestionar esto en AX y F&AS requiere una interrogación manual para revisar el historial, calcular pronósticos, evaluar las posiciones del búfer y recalibrar.

    Microsoft reconoce estas limitaciones en sus ERP centrales y comprende los desafíos importantes para los clientes. En respuesta, Microsoft ha posicionado la previsión bajo su pila de AI Azure. Este método está fuera de los principales ERP. Se ofrece como un conjunto de herramientas para que los científicos de datos lo utilicen para definir estadísticas y cálculos complejos personalizados según los deseos de la empresa. Esto se suma a algunos cálculos simples básicos como punto de partida que se encuentran actualmente en sus fases iniciales de desarrollo. Si bien esto puede generar ganancias a largo plazo, actualmente este método significa que los clientes comienzan casi desde cero y definen lo que Microsoft actualmente llama "experimentos" para medir la planificación de la demanda.

    La conclusión es que los clientes se enfrentan a grandes desafíos para conseguir que la pila de Dynamics ayude a resolver estos problemas. El resultado es que los CFO tienen menos efectivo disponible para lo que necesitan y que los ejecutivos de ventas tienen oportunidades de ventas sin cubrir y una posible pérdida de ventas porque la empresa no puede enviar los productos que el cliente desea.

     

    Ser más inteligentes

    ¿No sería mejor simplemente aprovechar el mejor complemento de su clase para la planificación de la demanda? y la mejor solución de optimización de inventario de su clase para administrar y equilibrar los costos y los niveles de cumplimiento? ¿No sería mejor poder hacer esto diariamente o semanalmente para tomar sus decisiones lo más cerca posible de la necesidad, conservando efectivo mientras satisface la demanda de ventas?

    Imagine tener una integración bidireccional con AX y F&AS para que todo funcione fácil y rápidamente. Uno donde:

    • podría recalibrar automáticamente las políticas en ciclos de planificación frecuentes utilizando modelos estadísticos de vanguardia probados en el campo,
    • podría calcular pronósticos de demanda que tengan en cuenta la estacionalidad, la tendencia y los patrones cíclicos,
    • Aprovecharía automáticamente los métodos de optimización que prescriben las políticas de almacenamiento y los niveles de servicio más rentables que consideran los costos reales de mantener el inventario y las interrupciones de existencias, brindándole una imagen económica completa,
    • Puede liberar efectivo para usar dentro de la empresa y administrar sus niveles de inventario para mejorar el cumplimiento de pedidos al mismo tiempo que libera este efectivo.
    • tendría existencias de seguridad y niveles de inventario que darían cuenta de la variabilidad de la oferta y la demanda, las condiciones comerciales y las prioridades,
    • podría apuntar a niveles de servicio específicos por grupos de productos, clientes, almacenes o cualquier otra dimensión que haya seleccionado,
    • aumenta las ganancias generales de la empresa y la salud del balance general.

     

    Amplíe Microsoft 365 F&SC y AX con Smart IP&O

    Para ver una grabación del seminario web de Microsoft Dynamics Communities que muestra Smart IP&O, regístrese aquí:

    https://smartcorp.com/inventory-planning-with-microsoft-365-fsc-and-ax/

     

     

     

     

    Cómo manejar pronósticos estadísticos de cero

    Un pronóstico estadístico de cero puede causar mucha confusión a los pronosticadores, especialmente cuando la demanda histórica no es cero. Claro, es obvio que la demanda tiene una tendencia a la baja, pero ¿debería tener una tendencia a cero? Cuando la demanda anterior es mucho mayor que la demanda más reciente y la demanda más reciente tiene un volumen muy bajo (es decir, 1,2,3 unidades demandadas), la respuesta es, estadísticamente hablando, sí. Sin embargo, esto podría no coincidir con el conocimiento comercial del planificador y el nivel mínimo esperado de demanda. Entonces, ¿qué debe hacer un pronosticador para corregir esto? Aquí hay tres sugerencias:

     

    1. Limite los datos históricos alimentados al modelo. En una situación de tendencia a la baja, los datos más antiguos a menudo se mucho mayor que los datos recientes. Cuando se ignora la demanda de volumen mucho mayor anterior, la tendencia a la baja no será tan significativa. Todavía pronosticará una tendencia a la baja, pero es más probable que los resultados estén en línea con las expectativas comerciales.
    1. Pruebe la amortiguación de tendencias. Smart Demand Planner tiene una función llamada "cobertura de tendencias" que permite a los usuarios definir cómo una tendencia debe desaparecer con el tiempo. Cuanto mayor sea la cobertura de tendencia porcentual (0-100%), más pronunciada será la amortiguación de tendencia. Esto significa que una tendencia pronosticada no continuará durante todo el horizonte de pronóstico. Esto significa que el pronóstico de demanda comenzará a aplanarse antes de que llegue a cero en una tendencia bajista.
    1. Cambiar el modelo de pronóstico. Cambie de un método de tendencia, como Suavizado exponencial doble o Promedio móvil lineal, a un método sin tendencia, como Suavizado exponencial único o Promedio móvil simple. No pronosticará una tendencia a la baja, pero al menos su pronóstico no será cero y, por lo tanto, es más probable que la empresa lo acepte.

     

     

     

    Más allá del pronóstico: planificación de colaboración y consenso

    5 pasos para la planificación de la demanda por consenso

    El objetivo de la previsión de la demanda es establecer la mejor visión posible de la demanda futura. Esto requiere que recurramos a los mejores datos e insumos que podamos obtener, estadísticas de apalancamiento para capturar patrones subyacentes, unir nuestras cabezas para aplicar anulaciones basadas en el conocimiento comercial y acordar un plan de demanda de consenso que sirva como piedra angular para el plan de demanda general de la empresa.

    Paso 1: Desarrolle una señal de demanda precisa.   ¿Qué constituye la demanda? Considere cómo su organización define la demanda, por ejemplo, órdenes de venta confirmadas netas de cancelaciones o datos de envío ajustados para eliminar el impacto de los desabastecimientos históricos, y utilícelo de manera consistente. Esta es su medida de lo que el mercado le pide que entregue. No confunda esto con su capacidad de entrega, eso debe reflejarse en el plan de ingresos.

    Paso 2: generar un pronóstico estadístico. Planifique para miles de artículos con una aplicación de pronóstico comprobada que extrae automáticamente sus datos y produce pronósticos precisos de manera confiable para todos de tus artículos. Revise la primera pasada de su pronóstico, luego haga los ajustes. Es posible que una huelga o un choque de trenes hayan interrumpido el envío el mes pasado; no deje que eso cambie su pronóstico. Ajuste para estos y vuelva a pronosticar. Haz lo mejor que puedas, luego invita a otros a opinar.

    Paso 3: traiga a los expertos. Los gerentes de línea de productos, los líderes de ventas y los socios de distribución clave conocen sus mercados.  Comparte tu pronóstico con ellos. Smart utiliza el concepto de una "instantánea" para compartir un facsímil de su pronóstico, en cualquier nivel, para cualquier línea de productos, con personas que pueden saberlo mejor. Podría haber un pedido enorme que no ha llegado a la tubería, o un socio de canal está a punto de ejecutar su promoción anual. Ofrézcales una manera fácil de tomar su parte del pronóstico y cambiarlo. Arrastre este mes hacia arriba, ese hacia abajo...

    Paso 4: Mida la precisión y pronostique el valor agregado. Algunos de sus colaboradores pueden estar en lo correcto, otros tienden a tener un sesgo alto o bajo. Utilice los informes de previsión frente a datos reales y mida el análisis de valor agregado de previsión para medir los errores de previsión y si los cambios en la previsión están perjudicando o ayudando. Al informar el proceso con esta información, su empresa mejorará su capacidad para pronosticar con mayor precisión.

    Paso 5: Acordar el Pronóstico de Consenso.  Puede hacer esto una línea de productos o geografía a la vez, o negocio por negocio. Convoque al equipo, agrupe gráficamente sus entradas, revise el rendimiento de precisión anterior, discuta sus razones para aumentar o reducir el pronóstico y acuerde qué entradas usar. Esto se convierte en su plan de consenso. Finalice el plan y envíelo: cargue pronósticos en MRP, envíelos a finanzas y fabricación.  Acaba de iniciar su proceso de Ventas, Inventario y Planificación Operativa.

    Puedes hacerlo. Y podemos ayudar.  Si tiene alguna pregunta sobre la planificación colaborativa de la demanda, responda a este blog, haremos un seguimiento.