El Blog de Smart

  Siguiendo las mejores prácticas en la planificación de la demanda,

previsión y optimización de inventario

Intermittent, lumpy or uneven demand —particularly for low-demand items like service and spare parts — is especially difficult to predict with any accuracy. Smart Software’s proprietary probabilistic forecasting dramatically improves precisión del nivel de servicio.  If any of these scenarios apply to your company then probabilistic forecasting will help improve your bottom line.

  • Do you have intermittent or lumpy demand with large, infrequent spikes that are many times the average demand?
  • Is it hard to obtain business information about when demand is likely to spike again?
  • Do you miss out on business opportunities because you can’t accurately forecast demand and estimate inventory requirements for certain unpredictable products?
  • Are you required to hold inventory on many items even if they are infrequently demanded in order to differentiate vs. the competition by providing high service levels?
  • Do you have to make unnecessarily large investments in inventory to cover unexpected orders and materials requirements?
  • Do you have to deliver to customers right away despite long supplier lead times?

If you’ve answered yes to some or all of the questions above, you aren’t alone. Intermittent demand —also known as irregular, sporadic, lumpy, or slow-moving demand — affects industries of all types and sizes: capital goods and equipment sectors, automotive, aviation, public transit, industrial tools, specialty chemicals, utilities and high tech, to name just a few. And it makes demand forecasting and planning extremely difficult. It can be much more than a headache; it can be a multi-million-dollar problem, especially for MRO businesses and others who manage and distribute spare and service parts.

Identifying intermittent demand data isn’t hard. It typically contains a large percentage of zero Save & Exit values, with non-zero values mixed in randomly. But few forecasting solutions have yielded satisfactory results even in this era of Big Data Analysis, Predictive Analytics, Machine Learning, and Artificial Intelligence.



Traditional Approaches and their Reliance on an Assumed Demand Distribution

Traditional statistical forecasting methods, like exponential smoothing and moving averages, work well when product demand data is normal, or smooth, but it doesn’t give accurate results with intermittent data. Many automated forecasting tools fail because they work by identifying patterns in demand history data, such as trend and seasonality. But with intermittent demand data, patterns are especially difficult to recognize. These methods also tend to ignore the special role of zero values in analyzing and forecasting demand.Even so, some conventional statistical forecasting methods can produce credible forecasts of the average demand per period.  However, when demand is intermittent, a forecast of the average demand is not nearly sufficient for inventory planning.  Accurate estimates of the entire distribution (i.e., complete set) of all possible lead-time demand values is needed. Without this, these methods produce misleading inputs to inventory control models — with costly consequences.

Collague with gears ans statistical forecast modeling


To produce reorder points, order-up-to levels, and safety stocks for inventory planning, many forecasting approaches rely on assumptions about the demand and lead time distribution.  Some assume that the probability distribution of total demand for a particular product item over a lead time (lead-time demand) will resemble a normal, classic bell-shaped curve. Other approaches might rely on a Poisson distribution or some other textbook distribution.  With intermittent demand, a one-sized fits all approach is problematic because the actual distribution will often not match the assumed distribution.  When this occurs, estimates of the buffer stock will be wrong.  This is especially the case when managing spare parts (Table 1).

For each intermittently demanded item, the importance of having an accurate forecast of the entire distribution of all possible lead time demand values — not just one number representing the average or most likely demand per period — cannot be overstated. These forecasts are key inputs to the inventory control models that recommend correct procedures for the timing and size of replenishment orders (reorder points and order quantities). They are particularly essential in spare parts environments, where they are needed to accurately estimate customer service level inventory requirements (e.g., a 95 or 99 percent likelihood of not stocking out of an item) for satisfying total demand over a lead time.  Inventory planning departments must be confident that when they target a desired service level that they will achieve that target.  If the forecasting model consistently yields a different service level than targeted, inventory will be mismanaged and confidence in the system will erode.

Faced with this challenge, many organizations rely on applying rule of thumb based approaches to determine stocking levels or will apply judgmental adjustments to their statistical forecasts, which they hope will more accurately predict future activity based on past business experience. But there are several problems with these approaches, as well.

Rule of thumb approaches ignore variability in demand and lead time. They also do not update for changes in demand patterns and don’t provide critical trade-off information about the relationship between service levels and inventory costs.

Judgmental forecasting is not feasible when dealing with large numbers (thousands and tens of thousands) of items. Furthermore, most judgmental forecasts provide a single-number estimate instead of a forecast of the full distribution of lead-time demand values. Finally, it is easy to inadvertently but incorrectly predict a downward (or upward) trend in demand, based on expectations, resulting in understocking (or over-stocking) inventory.


How does Probabilistic Demand Forecasting Work in Practice?

Although the full architecture of this technology includes additional proprietary features, a simple example of the approach demonstrates the usefulness of the technique. See Table 1.

intermittently demanded product items spreedsheet

Table 1. Monthly demand values for a service part item.

The 24 monthly demand values for a service part itemare typical of intermittent demand. Let’s say you need forecasts of total demand for this item over the next three months because your parts supplier needs three months to fill an order to replenish inventory. The probabilistic approach is to sample from the 24 monthly values, with replacement, three times, creating a scenario of total demand over the three-month lead time.

How does the new method of forecasting intermittent demand work

Figure 1. The results of 25,000 scenarios.


You might randomly select months 6, 12 and 4, which gives you demand values of 0, 6 and 3, respectively, for a total lead-time demand (in units) of 0 + 6 + 3 = 9. You then repeat this process, perhaps randomly selecting months 19, 8 and 14, which gives a lead-time demand of 0 + 32 + 0 = 32 units. Continuing this process, you can build a statistically rigorous picture of the entire distribution of possible lead-time demand values for this item. Figure 1 shows the results of 25,000 such scenarios, indicating (in this example) that the most likely value for lead-time demand is zero but that lead-time demand could be as great as 70 or more units. It also reflects the real-life possibility that nonzero demand values for the part item occurring in the future could differ from those that have occurred in the past.

With the high-speed computational resources available in the cloud today, probabilistic forecasting methods can provide fast and realistic forecasts of total lead-time demand for thousands or tens of thousands of intermittently demanded product items. These forecasts can then be entered directly into inventory control models to insure that enough inventory is available to satisfy customer demand. This also ensures that no more inventory than necessary is maintained, minimizing costs.


A Field Proven Method That Works

Customers that have implemented the technology have found that it increases customer service level accuracy and significantly reduces inventory costs.

Warehouse or storage getting inventory optimization

A nationwide hardware retailer’s warehousing operation forecasted inventory requirements for 12,000 intermittently demanded SKUs at 95 and 99 percent service levels. The forecast results were almost 100 percent accurate. At the 95 percent service level, 95.23 percent of the items did not stock out (95 percent would have been perfect). At the 99 percent service level, 98.66 percent of the items did not stock out (99 percent would have been perfect).

The aircraft maintenance operation of a global company got similar service level forecasting results with 6,000 SKUs. Potential annual savings in inventory carrying costs were estimated at $3 million. The aftermarket business unit of an automotive industry supplier, two-thirds of whose 7,000 SKUs demonstrate highly intermittent demand, also projected $3 million in annual cost savings.

That the challenge of forecasting intermittent product demand has indeed been met is good news for manufacturers, distributors, and spare parts/MRO businesses.  With cloud computing, Smart Software’s field-proven probabilistic method is now accessible to the non-statistician and can be applied at scale to tens of thousands of parts.  Demand data that was once un-forecastable no longer poses an obstacle to achieving the highest customer service levels with the lowest possible investment in inventory.


Mano colocando piezas para construir una flecha


Deja un comentario

Artículos Relacionados

El juego de la culpa de la cadena de suministro: las 3 principales excusas para la escasez y el exceso de inventario

El juego de la culpa de la cadena de suministro: las 3 principales excusas para la escasez y el exceso de inventario

La cadena de suministro se ha convertido en el juego de la culpa de casi cualquier problema industrial o minorista. La escasez en la variabilidad del tiempo de entrega, los malos pronósticos y los problemas con datos incorrectos son hechos de la vida, sin embargo, las organizaciones que manejan inventarios a menudo se sorprenden cuando surge cualquiera de estas dificultades. Entonces, de nuevo, ¿quién tiene la culpa del caos de la cadena de suministro? Siga leyendo este blog e intentaremos mostrarle cómo evitar la escasez y el exceso de productos.

Mensajes recientes

  • Supply Chain Math large-scale decision-making analyticsSupply Chain Math: Don’t Bring a Knife to a Gunfight
    Math and the supply chain go hand and hand. As supply chains grow, increasing complexity will drive companies to look for ways to manage large-scale decision-making. Math is a fact of life for anyone in inventory management and demand forecasting who is hoping to remain competitive in the modern world. Read our article to learn more. […]
  • Mecánico barbudo maduro en uniforme examinando la máquina y reparándola en fábricaPlanificación de consumibles frente a piezas reparables
    Al decidir los parámetros correctos de almacenamiento de repuestos y piezas de repuesto, es importante distinguir entre piezas consumibles y reparables. Estas diferencias a menudo se pasan por alto por el software de planificación de inventario y pueden dar lugar a estimaciones incorrectas de lo que hay que almacenar. Se requieren diferentes enfoques al planificar consumibles frente a reparables. […]
  • Cuatro errores comunes al planificar los objetivos de reposiciónCuatro errores comunes al planificar los objetivos de reposición
    ¿Con qué frecuencia recalibra sus políticas de almacenamiento? ¿Por qué? Aprenda a evitar errores clave al planificar objetivos de reabastecimiento mediante la automatización del proceso, la recalibración de piezas, el uso de métodos de previsión de objetivos y la revisión de excepciones. […]
  • Smart Software se complace en presentar nuestra serie de seminarios web, ofrecidos exclusivamente para usuarios de Epicor.Amplíe el pronóstico y la planificación mínima/máxima de Epicor Kinetic con Smart IP&O
    Epicor Kinetic puede administrar el reabastecimiento al sugerir qué ordenar y cuándo a través de políticas de inventario basadas en puntos de reorden. El problema es que el sistema ERP requiere que el usuario especifique manualmente estos puntos de pedido o use un enfoque rudimentario de "regla general" basado en promedios diarios. En este artículo, revisaremos la funcionalidad de pedido de inventario en Epicor Kinetic, explicaremos sus limitaciones y resumiremos cómo reducir el inventario y minimizar los desabastecimientos al proporcionar la sólida funcionalidad predictiva que falta en Epicor. […]
  • Pronóstico basado en escenarios vs EcuacionesPronóstico basado en escenarios versus ecuaciones
    Tradicionalmente, el software ha servido como vehículo de entrega de ecuaciones. Esto está bien, hasta donde llega. Pero en Smart Software creemos que le iría mejor cambiando sus ecuaciones por escenarios. Descubra por qué la planificación basada en escenarios ayuda a los planificadores a gestionar mejor el riesgo y crear mejores resultados. […]

    Optimización de inventario para fabricantes, distribuidores y MRO

    • Pedidos generales Software inteligente Demanda y planificación de inventario HDÓrdenes generales
      Nuestros clientes son grandes maestros que siempre nos han ayudado a cerrar la brecha entre la teoría de los libros de texto y la aplicación práctica. Un excelente ejemplo sucedió hace más de veinte años, cuando nos presentaron el fenómeno de la demanda intermitente, que es común entre las piezas de repuesto pero poco común entre los productos terminados administrados por nuestros clientes originales que trabajan en ventas y marketing. Esta revelación pronto llevó a nuestra posición preeminente como proveedores de software para la gestión de inventarios de piezas de repuesto. Nuestra última parte de la educación se refiere a las "órdenes generales". […]
    • Mano colocando piezas para construir una flechaPronóstico Probabilístico para Demanda Intermitente
      La nueva tecnología de pronóstico se deriva del pronóstico probabilístico, un método estadístico que pronostica con precisión tanto la demanda promedio de productos por período como los requisitos de inventario del nivel de servicio al cliente. […]
    • Ingeniería bajo pedido en Kratos Space: hacer que la disponibilidad de piezas sea una ventaja estratégica
      El grupo Kratos Space dentro del innovador en tecnología de seguridad nacional Kratos Defense & Security Solutions, Inc., produce el software COTS y los productos de componentes para las comunicaciones espaciales: hacer de la disponibilidad de piezas una ventaja estratégica […]
    • figuras-de-madera-de-personas-y-un-iman-equipo-gestion-almacen inventarioGestión del inventario de artículos promocionados
      En una publicación anterior, analicé uno de los problemas más espinosos que a veces enfrentan los planificadores de demanda: trabajar con datos de demanda de productos caracterizados por lo que los estadísticos llaman asimetría, una situación que puede requerir costosas inversiones en inventario. Este tipo de datos problemáticos se encuentran en varios escenarios diferentes. En al menos uno, la combinación de demanda intermitente y promociones de ventas muy efectivas, el problema se presta a una solución efectiva. […]