Smart Software anuncia patente de próxima generación

Belmont, MA, junio de 2023 – Smart Software, Inc., proveedor de soluciones de optimización de inventario, planificación y pronóstico de la demanda líderes en la industria, anunció hoy la concesión de la patente estadounidense 11,656,887, “SISTEMA Y MÉTODO PARA SIMULAR LA DEMANDA Y OPTIMIZAR LOS PARÁMETROS DE CONTROL PARA UNA PLATAFORMA TECNOLÓGICA”.

La patente dirige “soluciones técnicas para analizar datos históricos de demanda de recursos en una plataforma tecnológica para facilitar la gestión de un proceso automatizado en la plataforma”. Una aplicación importante es la optimización de los inventarios de piezas.

Los aspectos de la invención incluyen: un proceso de arranque avanzado que convierte una única serie temporal observada de demanda de artículos en un número ilimitado de escenarios de demanda realistas; a proceso de predicción del rendimiento que ejecuta simulaciones Monte Carlo de una política de control de inventario propuesta para evaluar su desempeño; y un proceso de mejora del desempeño que utiliza el proceso de predicción del rendimiento para explorar automáticamente el espacio de diseños de sistemas alternativos para identificar valores óptimos de los parámetros de control, seleccionando aquellos que minimicen el costo operativo y al mismo tiempo garanticen un nivel objetivo de disponibilidad del artículo.

La nueva tecnología analítica descrita en la patente formará la base para el próximo lanzamiento de la próxima generación ("Gen2") de Planificador de demanda inteligente™ y Smart IP&O™. Los clientes y revendedores actuales pueden obtener una vista previa de Gen2 comunicándose con su representante de ventas de Smart Software.

La investigación subyacente a la patente fue autofinanciada por Smart, complementada con subvenciones competitivas para investigación de innovación en pequeñas empresas de la Fundación Nacional de Ciencias de EE. UU.

 

Acerca de Smart Software, Inc.
Fundada en 1981, Smart Software, Inc. es líder en brindar a las empresas soluciones de optimización de inventario, planificación y previsión de la demanda para toda la empresa. Las soluciones de optimización de inventario y previsión de la demanda de Smart Software han ayudado a miles de usuarios en todo el mundo, incluidos clientes como Disney, Arizona Public Service, Ameren y la Cruz Roja Americana. La plataforma de optimización y planificación de inventario de Smart, Smart IP&O, brinda a los planificadores de la demanda las herramientas para manejar la estacionalidad de las ventas, las promociones, los productos nuevos y antiguos, las jerarquías multidimensionales y las piezas de servicio y bienes de capital con demanda intermitente. También proporciona a los administradores de inventario estimaciones precisas del inventario óptimo y del stock de seguridad necesarios para cumplir con los pedidos futuros y lograr los niveles de servicio deseados. Smart Software tiene su sede en Belmont, Massachusetts, y nuestro sitio web es www.smartcorp.com.

 

 

Correlación frente a causalidad: ¿es esto relevante para su trabajo?

Fuera del trabajo, es posible que haya escuchado el famoso dicho "Correlación no es causalidad". Puede sonar como una tontería teórica que, aunque involucrada en un Premio Noble reciente en economía, no es relevante para su trabajo como planificador de la demanda. De ser así, es posible que solo tengas razón en parte.

Modelos extrapolativos vs causales

La mayoría de los pronósticos de demanda utilizan modelos extrapolativos. También llamados modelos de series de tiempo, estos pronostican la demanda usando solo los valores pasados de la demanda de un artículo. Los gráficos de valores pasados revelan la tendencia, la estacionalidad y la volatilidad, por lo que son buenos para muchas cosas. Pero existe otro tipo de modelo, los modelos causales, que potencialmente pueden mejorar la precisión de los pronósticos más allá de lo que puede obtener de los modelos extrapolativos.

Los modelos causales aportan más datos de entrada a la tarea de previsión: información sobre supuestos "impulsores" de previsión externos al historial de demanda de un artículo. Los ejemplos de factores causales potencialmente útiles incluyen variables macroeconómicas como la tasa de inflación, la tasa de crecimiento del PIB y los precios de las materias primas. Los ejemplos que no están vinculados a la economía nacional incluyen las tasas de crecimiento específicas de la industria y el gasto publicitario propio y de la competencia. Estas variables generalmente se utilizan como entradas para los modelos de regresión, que son ecuaciones con la demanda como salida y variables causales como entradas.

Pronóstico utilizando modelos causales

Muchas empresas tienen un proceso S&OP que implica una revisión mensual de pronósticos estadísticos (extrapolativos) en los que la gerencia ajusta los pronósticos según su criterio. A menudo, esta es una forma indirecta y subjetiva de trabajar con modelos causales en el proceso sin hacer el modelo de regresión.

Para hacer realmente un modelo de regresión causal, primero debe designar una lista de variables predictoras causales potencialmente útiles. Estos pueden provenir de su experiencia en la materia. Por ejemplo, suponga que fabrica vidrio para ventanas. Gran parte de su vidrio puede terminar en casas nuevas y edificios de oficinas nuevos. Por lo tanto, la cantidad de casas y oficinas nuevas que se están construyendo son variables predictoras plausibles en una ecuación de regresión.

Aquí hay una complicación: si está usando la ecuación para predecir algo, primero debe predecir los predictores. Por ejemplo, las ventas de vidrio del próximo trimestre pueden estar fuertemente relacionadas con el número de viviendas nuevas y edificios de oficinas nuevos el próximo trimestre. Pero, ¿cuántas casas nuevas habrá el próximo trimestre? Ese es su propio problema de pronóstico. Entonces, tiene un modelo de pronóstico potencialmente poderoso, pero tiene trabajo adicional que hacer para que sea utilizable.

Hay una forma de simplificar las cosas: si las variables predictoras son versiones "retrasadas" de sí mismas. Por ejemplo, la cantidad de nuevos permisos de construcción emitidos hace seis meses puede ser un buen predictor de las ventas de vidrio el próximo mes. No tiene que predecir los datos del permiso de construcción, solo tiene que buscarlos.

¿Es una relación causal o simplemente una correlación espuria?

Los modelos causales son el verdadero negocio: hay un mecanismo real que relaciona la variable predictora con la variable predicha. El ejemplo de predecir las ventas de vidrio a partir de los permisos de construcción es un ejemplo.

Una relación de correlación es más dudosa. Existe una asociación estadística que puede o no proporcionar una base sólida para la previsión. Por ejemplo, suponga que vende un producto que atrae más a los holandeses pero no se da cuenta. Los holandeses son, en promedio, las personas más altas de Europa. Si sus ventas están aumentando y la altura promedio de los europeos está aumentando, puede usar esa relación con buenos resultados. Sin embargo, si la proporción de holandeses en la zona euro está disminuyendo mientras que la estatura promedio está aumentando porque la mezcla de hombres versus mujeres se está desplazando hacia los hombres, ¿qué puede salir mal? Esperará que las ventas aumenten porque la estatura promedio está aumentando. Pero sus ventas son principalmente a los holandeses, y su proporción relativa de la población se está reduciendo, por lo que sus ventas realmente van a disminuir. En este caso, la asociación entre las ventas y la altura del cliente es una correlación espuria.

¿Cómo se puede saber la diferencia entre relaciones verdaderas y espurias? El estándar de oro es hacer un experimento científico riguroso. Pero no es probable que esté en condiciones de hacerlo. En cambio, debe confiar en su “modelo mental” personal de cómo funciona su mercado. Si sus corazonadas son correctas, entonces sus modelos causales potenciales se correlacionarán con la demanda y los modelos causales le darán sus frutos, ya sea para complementar los modelos extrapolables o para reemplazarlos.

 

 

 

 

El papel de la confianza en el proceso de pronóstico de la demanda Parte 2: ¿En qué confías?

“Independientemente de cuánto esfuerzo se invierta en capacitar a los pronosticadores y desarrollar sistemas elaborados de apoyo a los pronósticos, los tomadores de decisiones modificarán o descartarán las predicciones si no confían en ellas”. — Dilek Onkal, International Journal of Forecasting 38:3 (julio-septiembre de 2022), p.802.

Las palabras citadas arriba me llamaron la atención y provocaron esta publicación. Aquellos con una persuasión geek, como su blogger, se inclinan a pensar en los pronósticos como un problema estadístico. Si bien eso es obviamente cierto, aquellos de cierta edad, como tu blogger, entienden que la previsión también es una actividad social y, por lo tanto, tiene un gran componente humano.

¿En qué confías?

Hay una dimensión relacionada con la confianza: no en quién confías sino en qué confías. Con esto me refiero tanto a los datos como al software.

Confianza en los datos

La confianza en los datos sustenta la confianza en el pronosticador que utiliza los datos. La mayoría de nuestros clientes tienen sus datos en un sistema ERP. Estos datos deben entenderse como un activo corporativo clave. Para que los datos sean confiables, deben tener las “tres C”, es decir, deben ser correctos, completos y actuales.

La corrección es obviamente fundamental. Una vez tuvimos un cliente que estaba implementando un proceso de pronóstico nuevo y sólido, pero encontró que los resultados estaban completamente en desacuerdo con su sentido de lo que estaba sucediendo en el negocio. Resultó que varios de sus flujos de datos eran incorrectos por un factor de dos, lo cual es un gran error. Por supuesto, esto retrasó el proceso de implementación hasta que pudieron identificar y corregir todos los errores graves en sus datos de demanda.

Hay un punto menos obvio que hacer sobre la corrección. Es decir, los datos son aleatorios, por lo que lo que ve ahora no es probable que sea lo que verá a continuación. Planificar la producción basándose en la suposición de que la demanda de la próxima semana será exactamente la misma que la demanda de esta semana es claramente una tontería, pero los modelos clásicos de pronóstico basados en fórmulas, como el suavizado exponencial mencionado anteriormente, proyectarán el mismo número a lo largo del horizonte de pronóstico. Aquí es donde planificación basada en escenarios es esencial para hacer frente a las inevitables fluctuaciones de variables clave como las demandas de los clientes y los plazos de reposición de los proveedores.

La integridad es el segundo requisito para que los datos sean confiables. En última instancia, nuestro software obtiene gran parte de su valor al exponer los vínculos entre las decisiones operativas (p. ej., seleccionar los puntos de pedido que rigen la reposición de existencias) y las métricas relacionadas con el negocio, como los costos de inventario. Sin embargo, a menudo la implementación del software de pronóstico se retrasa porque la información sobre la demanda de artículos está disponible en algún lugar, pero no así los costos de mantenimiento, pedido y/o escasez. O, para citar otro ejemplo reciente, un cliente pudo dimensionar adecuadamente solo la mitad de su inventario de repuestos para piezas reparables porque nadie había estado rastreando cuándo se averiaba la otra mitad, lo que significa que no había información sobre el tiempo medio antes de la falla (MTBF) , por lo que no fue posible modelar el comportamiento ante averías de la mitad de la flota de repuestos reparables.

Finalmente, la vigencia de los datos es importante. A medida que aumenta la velocidad de los negocios y los ciclos de planificación de la empresa pasan de un ritmo trimestral o mensual a un ritmo semanal o diario, se vuelve deseable explotar la agilidad que brindan las cargas nocturnas de datos transaccionales diarios en la nube. Esto permite ajustes de alta frecuencia de pronósticos y/o parámetros de control de inventario para artículos que experimentan alta volatilidad y cambios repentinos en la demanda. Cuanto más frescos sean los datos, más fiable será el análisis.

Confíe en el software de previsión de la demanda

Incluso con datos de alta calidad, los pronosticadores aún deben confiar en el software analítico que procesa los datos. Esta confianza debe extenderse tanto al propio software como al entorno informático en el que funciona.

Si los pronosticadores usaron software local, deben confiar en sus propios departamentos de TI para salvaguardar los datos y mantenerlos disponibles para su uso. Si, en cambio, desean explotar el poder de los análisis basados en la nube, los clientes deben confiar su información confidencial a sus proveedores de software. El software de nivel profesional, como el nuestro, justifica la confianza de los clientes a través de la certificación SOC 2. La certificación SOC 2 fue desarrollada por el Instituto Americano de CPA y define los criterios para administrar los datos de los clientes en función de cinco "principios de servicio de confianza": seguridad, disponibilidad, integridad de procesamiento, confidencialidad y privacidad.

¿Qué pasa con el software en sí? ¿Qué se necesita para que sea confiable? Los criterios principales aquí son la corrección de los algoritmos y la fiabilidad funcional. Si el proveedor tiene un proceso de desarrollo de programas profesional, habrá pocas posibilidades de que el software termine calculando los números incorrectos debido a un error de programación. Y si el proveedor tiene un riguroso proceso de aseguramiento de la calidad, habrá pocas posibilidades de que el software se bloquee justo cuando el pronosticador tiene una fecha límite o debe lidiar con un análisis emergente para una situación especial.

Resumen

Para ser útiles, los responsables de la toma de decisiones deben confiar en los pronosticadores y sus pronósticos. Esa confianza depende de las características de los pronosticadores y sus procesos y comunicación. También depende de la calidad de los datos y el software utilizado para crear los pronósticos.

 

Lee la 1ra parte de este Blog “En quién confías” aquí: https://smartcorp.com/forecasting/the-role-of-trust-in-the-demand-forecasting-process-part-1-who/

 

 

 

Planificación basada en el nivel de servicio para empresas de piezas de servicio en el espacio de Dynamics 365

La planificación de piezas de servicio impulsada por el nivel de servicio para Microsoft Dynamics BC o F&SC es un proceso de cuatro pasos que se extiende más allá de la previsión simplificada y las existencias de seguridad de la regla empírica. Proporciona a los planificadores de piezas de servicio un soporte de decisiones basado en datos y ajustado al riesgo.

 

Las matemáticas para determinar este nivel de planificación simplemente no existen en la funcionalidad D365. Requiere matemáticas e inteligencia artificial que pasan miles de veces a través de cálculos para cada parte y centro de parte (ubicaciones). Las matemáticas y la IA como esta son exclusivas de Smart. Para entender más, por favor sigue leyendo. 

 

Paso 1. Asegúrese de que todas las partes interesadas estén de acuerdo con las métricas que importan. 

Todos los participantes en el proceso de planificación del inventario de piezas de servicio deben ponerse de acuerdo sobre las definiciones y qué métricas son más importantes para la organización. Niveles de servicio detalle el porcentaje de tiempo que puede satisfacer completamente el uso requerido sin agotar existencias. Tasas de relleno detallar el porcentaje del uso solicitado que se completa inmediatamente con el stock. (Para obtener más información sobre las diferencias entre los niveles de servicio y la tasa de llenado, vea esta lección de 4 minutos aquí.) Disponibilidad detalla el porcentaje de repuestos activos con un inventario disponible de al menos una unidad. Costos de mantenimiento son los costos anualizados de tenencia de existencias teniendo en cuenta la obsolescencia, los impuestos, los intereses, el almacenamiento y otros gastos. costos de escasez son el costo de quedarse sin existencias, incluido el tiempo de inactividad del vehículo/equipo, expediciones, pérdida de ventas y más. gastos de pedido son los costos asociados con la colocación y recepción de pedidos de reabastecimiento.

 

Paso 2. Compare el rendimiento del nivel de servicio actual histórico y previsto.

Todos los participantes en el proceso de planificación del inventario de piezas de servicio deben tener una comprensión común de los niveles de servicio futuros previstos, las tasas de llenado y los costos y sus implicaciones para las operaciones de piezas de servicio. Es crítico medir tanto la historia Indicadores clave de rendimiento (KPI) y sus equivalentes predictivos, Predicciones clave de rendimiento (KPP). Al aprovechar el software moderno, puede comparar el rendimiento anterior y aprovechar los métodos de pronóstico probabilístico para simular el rendimiento futuro. Prácticamente todas las soluciones de planificación de la demanda se detienen aquí. Smart va más allá pruebas de estrés sus políticas actuales de almacenamiento de inventario frente a todos los escenarios plausibles de demanda futura. Son estos miles de cálculos los que construyen nuestros KPP. La precisión de esto mejora la capacidad de D365 para equilibrar los costos de tener demasiado con los costos de no tener suficiente. Sabrá de antemano cómo es probable que funcionen las políticas de existencias actuales y propuestas.

 

Paso 3. Acuerde los niveles de servicio específicos para cada pieza de repuesto y tome medidas correctivas proactivas cuando se prevea que no cumplirán los objetivos. 

Los planificadores de piezas, el liderazgo de la cadena de suministro y los equipos mecánicos/de mantenimiento deben acordar los objetivos de nivel de servicio deseados con una comprensión completa de las compensaciones entre el riesgo de falta de existencias y el costo del inventario. Una llamada aquí es que nuestros clientes de D365 casi siempre están sorprendidos por la diferencia de niveles de existencias entre la disponibilidad de 100% y 99.5%. Con la lógica de casi 10,000 escenarios, ese medio por ciento de interrupción casi nunca se alcanza. Usted logra una política de almacenamiento completo con costos mucho más bajos. Encuentra las piezas que no tienen suficientes existencias y las corrige. El punto de equilibrio suele ser una reducción de 7-12% en los costos de inventario. 

Este aprovechamiento de escenarios hipotéticos en nuestro software de planificación de piezas brinda a la gerencia y a los compradores la capacidad de comparar fácilmente políticas de almacenamiento alternativas e identificar aquellas que mejor cumplen con los objetivos comerciales. Para algunas piezas, un pequeño desabastecimiento está bien. Para otros, necesitamos esa disponibilidad de piezas 99.5%. Una vez que se acuerdan estos límites, usamos el Poder de D365 para optimizar el inventario utilizando el ERP principal de D365 como debe ser. La planificación se carga automáticamente para involucrar a Dynamics con puntos de reorden modificados, niveles de existencias de seguridad y/o parámetros Mín./Máx. Esto admite un único punto central empresarial y las personas no utilizan múltiples sistemas para la gestión y compra diaria de piezas.

 

Paso 4. Hazlo así y mantenlo así. 

Capacite al equipo de planificación con el conocimiento y las herramientas que necesita para asegurarse de lograr el equilibrio acordado entre los niveles de servicio y los costos. Esto es crítico e importante. También es importante usar Dynamics F&SC o BC para ejecutar sus transacciones de ERP. Estos dos Dynamics ERP tienen el nivel más alto de crecimiento de nuevos ERP en el planeta. Usarlos como están destinados a ser utilizados tiene sentido. También tiene sentido llenar el espacio en blanco para los cálculos matemáticos y de inteligencia artificial para la gestión de mantenimiento y piezas. Esto requiere una solución más compleja y específica para ayudar. Smart Software Inventory Optimization para EAM y Dynamics ERP tiene la respuesta.    

Recuerde: la recalibración de su política de inventario de piezas de servicio es un mantenimiento preventivo tanto contra los desabastecimientos como contra el exceso de existencias. Ayuda con los costos, libera capital para otros usos y respalda las mejores prácticas para su equipo. 

 

Amplíe Microsoft 365 F&SC y AX con Smart IP&O

Para ver una grabación del seminario web de Microsoft Dynamics Communities que muestra Smart IP&O, regístrese aquí:

https://smartcorp.com/inventory-planning-with-microsoft-365-fsc-and-ax/

 

 

 

 

El papel de la confianza en el proceso de previsión de la demanda Parte 1: En quién confiar

 

“Independientemente de cuánto esfuerzo se invierta en capacitar a los pronosticadores y desarrollar sistemas elaborados de apoyo a los pronósticos, los tomadores de decisiones modificarán o descartarán las predicciones si no confían en ellas”. — Dilek Onkal, International Journal of Forecasting 38:3 (julio-septiembre de 2022), p.802.

Las palabras citadas arriba me llamaron la atención y provocaron esta publicación. Aquellos con una persuasión geek, como su blogger, se inclinan a pensar en los pronósticos como un problema estadístico. Si bien eso es obviamente cierto, aquellos de cierta edad, como tu blogger, entienden que la previsión también es una actividad social y, por lo tanto, tiene un gran componente humano.

¿En quién confías?

La confianza es siempre una calle de doble sentido, pero permanezcamos del lado del pronosticador de la demanda. ¿Qué características y acciones de los pronosticadores y planificadores de la demanda generan confianza en su trabajo? La profesora Onkal citada anteriormente revisó la investigación académica sobre este tema que se remonta a 2006. Resumió los resultados de encuestas a profesionales que identificaron factores clave de confianza relacionados con las características del pronosticador, el proceso de pronóstico y la comunicación del pronóstico.

Características del pronosticador

La clave para generar confianza entre los usuarios de los pronósticos son las percepciones de la competencia y objetividad del pronosticador y del planificador de la demanda. La competencia tiene un componente matemático, pero muchos gerentes confunden las habilidades informáticas con las habilidades analíticas, por lo que los usuarios de software de pronóstico generalmente pueden superar este obstáculo. Sin embargo, dado que los dos no son lo mismo, vale la pena absorber la capacitación de su proveedor y aprender no solo las matemáticas sino también la jerga de su software de pronóstico. En mi observación, la confianza también puede incrementarse mostrando conocimiento del negocio de la empresa.

La objetividad es también una clave para la confiabilidad. Puede ser incómodo para el pronosticador estar en medio de disputas departamentales ocasionales, pero surgirán y deben manejarse con tacto. ¿Peleas? Bueno, los silos existen y se inclinan en diferentes direcciones. Los departamentos de ventas favorecen las previsiones de demanda más altas que impulsan los aumentos de producción, de modo que nunca tengan que decir "Lo siento, acabamos de salir de eso". Los gerentes de inventario desconfían de los pronósticos de alta demanda, porque el "exceso de entusiasmo" puede dejarlos con la bolsa en la mano, sentados sobre un inventario inflado.

A veces el pronosticador se convierte en un de facto árbitro, y en este papel debe mostrar signos evidentes de objetividad. Eso puede significar primero reconocer que cada decisión de gestión implica compensaciones de cosas buenas contra otras cosas buenas, por ejemplo, disponibilidad del producto versus operaciones ajustadas, y luego ayudar a las partes a lograr un equilibrio doloroso pero tolerable al mostrar los vínculos entre las decisiones operativas y las métricas clave de rendimiento. que le importan a personas como los directores financieros.

El proceso de previsión

Se puede pensar que el proceso de pronóstico tiene tres fases: entradas de datos, cálculos y salidas. Se pueden tomar acciones para aumentar la confianza en cada fase.

 

En cuanto a las entradas:

La confianza se puede aumentar si las entradas obviamente relevantes se reconocen al menos si no se usan directamente en los cálculos. Por lo tanto, factores como el sentimiento de las redes sociales y los instintos de los gerentes de ventas regionales pueden ser partes legítimas de un proceso de consenso de pronóstico. Sin embargo, la objetividad requiere que estos predictores putativos de ganancias sean probados objetivamente. Por ejemplo, un proceso de pronóstico de nivel profesional bien puede incluir un ajuste subjetivo a los pronósticos estadísticos, pero luego también debe evaluar si los ajustes realmente terminan mejorando la precisión, no solo haciendo que algunas personas se sientan escuchadas.

En cuanto a la segunda fase, los cálculos:

Se confiará en el pronosticador en la medida en que pueda implementar más de una forma de calcular los pronósticos y luego articular una buena razón por la que eligió el método finalmente utilizado. Además, el pronosticador debe ser capaz de explicar en un lenguaje accesible cómo funcionan incluso las técnicas más complicadas. Es difícil confiar en un método de “caja negra” tan opaco que resulta inescrutable. La importancia de la explicabilidad se amplifica por el hecho de que el superior del pronosticador debe ser capaz de justificar la elección de la técnica para su supervisor.

Por ejemplo, el suavizado exponencial usa esta ecuación: S(t) = αX(t)+(1-α)S(t-1). Muchos pronosticadores están familiarizados con esta ecuación, pero muchos usuarios de pronósticos no. Hay una historia que explica la ecuación en términos de promediar el "ruido" irrelevante en el historial de demanda de un artículo y la necesidad de lograr un equilibrio entre suavizar el ruido y ser capaz de reaccionar ante cambios repentinos en el nivel de demanda. El pronosticador que pueda contar esa historia será más creíble. (Mi propia versión de esa historia usa frases de los deportes, es decir, "falsificaciones de cabeza" y "jukes". Encontrar análogos campechanos apropiados para su audiencia específica siempre paga dividendos).

Un punto final: las mejores prácticas exigen que cualquier pronóstico vaya acompañado de una evaluación honesta de su incertidumbre. Un pronosticador que trata de generar confianza siendo demasiado específico ("Las ventas del próximo trimestre serán de 12,184 unidades") siempre fallará. Un pronosticador que dice "Las ventas del próximo trimestre tendrán una probabilidad de 90% de caer entre 12,000 y 12,300 unidades" será correcto con más frecuencia y también más útil para los tomadores de decisiones. Después de todo, la previsión es esencialmente un trabajo de gestión de riesgos, por lo que la mejor forma de tomar decisiones es conocer los riesgos.

Comunicación de previsión:

Finalmente, considere la tercera fase, la comunicación de los resultados del pronóstico. La investigación sugiere que la comunicación continua con los usuarios del pronóstico genera confianza. Evita esos horribles y desalentadores momentos en los que un informe con un buen formato es derribado debido a algún defecto fatal que podría haberse previsto: "Esto no es bueno porque no tuvo en cuenta X, Y o Z" o "Realmente queríamos presentar los resultados acumulados en la parte superior de las jerarquías de productos (o por región de ventas o por línea de productos o…)”.

Incluso cuando todos están alineados en cuanto a lo que se espera, la confianza aumenta al presentar los resultados mediante gráficos bien elaborados, con tablas numéricas masivas proporcionadas como respaldo, pero no como la forma principal de comunicar los resultados. Mi experiencia ha sido que, al igual que un dispositivo de control de reuniones, un gráfico suele ser mucho mejor que una gran tabla numérica. Con un gráfico, la atención de todos se centra en lo mismo y muchos aspectos del análisis son inmediatamente (y literalmente) visibles. Con una tabla de resultados, la mesa de participantes a menudo se divide en conversaciones paralelas en las que cada voz se enfoca en diferentes piezas de la mesa.

Onkal resume la investigación de esta manera: "Las conclusiones para quienes hacen pronósticos y quienes los utilizan convergen en torno a la claridad de la comunicación, así como a las percepciones de competencia e integridad".

¿En qué confías?

Hay una dimensión relacionada con la confianza: no en quién confías sino en qué confías. Con esto me refiero tanto a los datos como al software….  Lee la 2da parte de este Blog “En qué Confías” aquí  https://smartcorp.com/forecasting/the-role-of-trust-in-the-demand-forecasting-process-part-2-what/