Dominar el pronóstico automático para datos de series temporales

En este blog, analizaremos el pronóstico automático para proyecciones de demanda de series temporales, centrándonos en técnicas, desafíos y mejores prácticas clave. Existen múltiples métodos para predecir la demanda futura de un artículo, y esto se vuelve complejo cuando se trata de miles de artículos, cada uno de los cuales requiere una técnica de pronóstico diferente debido a sus patrones de demanda únicos. Algunos artículos tienen una demanda estable, otros tienen una tendencia al alza o a la baja y algunos presentan estacionalidad. Seleccionar el método correcto para cada elemento puede resultar abrumador. Aquí exploraremos cómo la previsión automática simplifica este proceso.

La previsión automática se vuelve fundamental en la gestión de proyecciones de demanda a gran escala. Con miles de elementos, no resulta práctico seleccionar manualmente un método de pronóstico para cada uno. La previsión automática utiliza software para tomar estas decisiones, garantizando precisión y eficiencia en el proceso de previsión. Su importancia radica en su capacidad para manejar de manera eficiente necesidades de pronóstico complejas y a gran escala. Elimina la necesidad de selección manual, ahorrando tiempo y reduciendo errores. Este enfoque es particularmente beneficioso en entornos con diversos patrones de demanda, donde cada artículo puede requerir un método de pronóstico diferente.

 

Consideraciones clave para una previsión eficaz

  1. Desafíos de la previsión manual:
    • Inviabilidad: Elegir manualmente métodos de pronóstico para miles de artículos es inmanejable.
    • Inconsistencia: el error humano puede generar pronósticos inconsistentes e inexactos.
  2. Criterios para la selección del método:
    • Medición de errores: el criterio principal para seleccionar un método de pronóstico es el error de pronóstico típico, definido como la diferencia entre los valores previstos y reales. Este error se promedia a lo largo del horizonte de pronóstico (por ejemplo, pronósticos mensuales durante un año).
    • Análisis de reserva: esta técnica simula el proceso de esperar a que transcurra un año ocultando algunos datos históricos, haciendo pronósticos y luego revelando los datos ocultos para calcular errores. Esto ayuda a elegir el mejor método en tiempo real.
  3. Torneo de pronóstico:
    • Comparación de métodos: diferentes métodos compiten para pronosticar cada elemento, ganando el método que produce el error promedio más bajo.
    • Ajuste de parámetros: cada método se prueba con varios parámetros para encontrar la configuración óptima. Por ejemplo, se puede intentar un suavizado exponencial simple con diferentes factores de ponderación.

 

Los algoritmos detrás de la previsión automática eficaz

La previsión automática es altamente computacional pero factible con tecnología moderna. El proceso implica:

  • Segmentación de datos: Dividir los datos históricos en segmentos ayuda a gestionar y aprovechar diferentes aspectos de los datos históricos para realizar pronósticos más precisos. Por ejemplo, para un producto con demanda estacional, los datos pueden segmentarse por temporadas para capturar tendencias y patrones específicos de cada temporada. Esta segmentación permite a los pronosticadores hacer y probar pronósticos de manera más efectiva.
  • Simulaciones repetidas: El uso de simulaciones deslizantes implica probar y refinar pronósticos repetidamente durante diferentes períodos. Este método valida la precisión de los métodos de pronóstico aplicándolos a diferentes segmentos de datos. Un ejemplo es el método de ventana deslizante, donde una ventana de tamaño fijo se mueve a través de los datos de la serie temporal, generando pronósticos para cada posición para evaluar el desempeño.
  • Optimización de parámetros: La optimización de parámetros implica probar múltiples variantes de cada método de pronóstico para encontrar el que tenga mejor rendimiento. Al ajustar parámetros, como el factor de suavizado en los métodos de suavizado exponencial o el número de observaciones pasadas en los modelos ARIMA, los pronosticadores pueden ajustar los modelos para mejorar el rendimiento.

Por ejemplo, en nuestro software permitimos que varios métodos de pronóstico compitan por el mejor desempeño en un elemento determinado. El conocimiento de la previsión automática se traslada inmediatamente a la media móvil simple, la media móvil lineal, el suavizado exponencial único, el suavizado exponencial doble, el suavizado exponencial de Winters y el pronóstico promocional. Esta competencia garantiza que se seleccione el método más adecuado basándose en evidencia empírica, no en juicios subjetivos. El ganador del torneo es el método más cercano a predecir valores de datos nuevos a partir de los antiguos. La precisión se mide mediante el error absoluto promedio (es decir, el error promedio, ignorando los signos menos). El promedio se calcula sobre un conjunto de pronósticos, cada uno usando una porción de los datos, en un proceso conocido como simulación deslizante, que hemos explicado anteriormente en un blog anterior.

 

Métodos utilizados en la previsión automática

Normalmente, hay seis métodos de pronóstico extrapolativo que compiten en el torneo de pronóstico automático:

  • media móvil simple
  • Media móvil lineal
  • Suavizado exponencial simple
  • Suavizado exponencial doble
  • Versión aditiva del suavizado exponencial de Winters
  • Versión multiplicativa del suavizado exponencial de Winters

Los dos últimos métodos son apropiados para series estacionales; sin embargo, quedan automáticamente excluidos del torneo si hay menos de dos ciclos estacionales completos de datos (por ejemplo, menos de 24 períodos de datos mensuales u ocho períodos de datos trimestrales). Estos seis métodos clásicos basados en suavizado han demostrado ser fáciles de entender, fáciles de calcular y precisos. Puedes excluir cualquiera de estos métodos del torneo si tienes preferencia por algunos de los competidores y no por otros.

La previsión automática de datos de series temporales es esencial para gestionar proyecciones de demanda a gran escala de manera eficiente y precisa. Las empresas pueden lograr una mayor precisión de los pronósticos y optimizar sus procesos de planificación automatizando la selección de métodos de pronóstico y utilizando técnicas como el análisis de reservas y los torneos de pronóstico. Adoptar estas técnicas avanzadas de pronóstico garantiza que las empresas se mantengan a la vanguardia en entornos de mercado dinámicos y tomen decisiones informadas basadas en proyecciones de datos confiables.

 

 

 

¿Puede la aleatoriedad ser un aliado en la batalla de los pronósticos?

La perspectiva de Feynman ilumina nuestro viaje: “En sus esfuerzos por aprender todo lo posible sobre la naturaleza, la física moderna ha descubierto que ciertas cosas nunca pueden “saberse” con certeza. Gran parte de nuestro conocimiento debe permanecer siempre incierto. Lo máximo que podemos saber es en términos de probabilidades”. - Richard Feynman, Las conferencias Feynman sobre física.

Cuando intentamos comprender el complejo mundo de la logística, la aleatoriedad juega un papel fundamental. Esto introduce una paradoja interesante: en una realidad donde se valoran la precisión y la certeza, ¿podría la naturaleza impredecible de la oferta y la demanda servir realmente como un aliado estratégico?

La búsqueda de pronósticos precisos no es sólo un ejercicio académico; es un componente crítico del éxito operativo en numerosas industrias. Para los planificadores de la demanda que deben anticipar la demanda de un producto, las ramificaciones de hacerlo bien (o mal) son fundamentales. Por lo tanto, reconocer y aprovechar el poder de la aleatoriedad no es simplemente un ejercicio teórico; es una necesidad de resiliencia y adaptabilidad en un entorno en constante cambio.

Aceptando la incertidumbre: métodos dinámicos, estocásticos y de Monte Carlo

Modelado dinámico: la búsqueda de una precisión absoluta en los pronósticos ignora la imprevisibilidad intrínseca del mundo. Los métodos de pronóstico tradicionales, con sus marcos rígidos, no logran adaptarse al dinamismo de los fenómenos del mundo real. Al aceptar la incertidumbre, podemos girar hacia modelos más ágiles y dinámicos que incorporen la aleatoriedad como componente fundamental. A diferencia de sus rígidos predecesores, estos modelos están diseñados para evolucionar en respuesta a nuevos datos, garantizando resiliencia y adaptabilidad. Este cambio de paradigma de un enfoque determinista a uno probabilístico permite a las organizaciones navegar la incertidumbre con mayor confianza, tomando decisiones informadas incluso en entornos volátiles.

Los modelos estocásticos guían a los pronosticadores a través de la niebla de la imprevisibilidad con los principios de probabilidad. Lejos de intentar eliminar la aleatoriedad, los modelos estocásticos la adoptan. Estos modelos evitan la noción de un futuro singular y predeterminado, presentando en cambio una serie de resultados posibles, cada uno con su probabilidad estimada. Este enfoque ofrece una representación más matizada y realista del futuro, reconociendo la variabilidad inherente de los sistemas y procesos. Al trazar un espectro de futuros potenciales, el modelado estocástico proporciona a quienes toman decisiones una comprensión integral de la incertidumbre, lo que permite una planificación estratégica informada y flexible.

Las simulaciones de Monte Carlo, que llevan el nombre del centro histórico del azar y la fortuna, aprovechan el poder de la aleatoriedad para explorar el vasto panorama de posibles resultados. Esta técnica implica la generación de miles, si no millones, de escenarios a través de un muestreo aleatorio, cada escenario pinta una imagen diferente del futuro basada en las incertidumbres inherentes del mundo real. Los tomadores de decisiones, armados con conocimientos de las simulaciones de Monte Carlo, pueden medir el rango de posibles impactos de sus decisiones, lo que la convierte en una herramienta invaluable para la evaluación de riesgos y la planificación estratégica en entornos inciertos.

Éxitos del mundo real: aprovechar la aleatoriedad

La estrategia de integrar la aleatoriedad en los pronósticos ha demostrado ser invaluable en diversos sectores. Por ejemplo, las principales empresas de inversión y bancos dependen constantemente de modelos estocásticos para hacer frente al comportamiento volátil del mercado de valores. Un ejemplo notable es cómo los fondos de cobertura emplean estos modelos para predecir los movimientos de precios y gestionar el riesgo, lo que lleva a opciones de inversión más estratégicas.

De manera similar, en la gestión de la cadena de suministro, muchas empresas confían en las simulaciones de Monte Carlo para abordar la imprevisibilidad de la demanda, especialmente durante las temporadas altas como las vacaciones. Al simular varios escenarios, pueden prepararse para una variedad de resultados, asegurándose de tener niveles de existencias adecuados sin comprometer demasiado los recursos. Este enfoque minimiza el riesgo de desabastecimiento y exceso de inventario.

Estos éxitos del mundo real resaltan el valor de integrar la aleatoriedad en los esfuerzos de pronóstico. Lejos de ser el adversario que a menudo se percibe, la aleatoriedad emerge como un aliado indispensable en el intrincado ballet de la previsión. Al adoptar métodos que respetan la incertidumbre inherente del futuro (reforzados por herramientas avanzadas como Smart IP&O), las organizaciones pueden navegar lo impredecible con confianza y agilidad. Por lo tanto, en el gran esquema de la previsión, puede ser prudente abrazar la noción de que, si bien no podemos controlar la tirada de los dados, ciertamente podemos elaborar estrategias en torno a ella.

 

 

 

Repensar la precisión del pronóstico: un cambio de la precisión a las métricas de error

Sin lugar a dudas, medir la precisión de los pronósticos es una parte importante del proceso de planificación de la demanda. Este cuadro de mando de pronóstico podría construirse basándose en uno de dos puntos de vista contrastantes para calcular métricas. El punto de vista del error pregunta: "¿a qué distancia estaba el pronóstico de lo real?" El punto de vista de la precisión pregunta: "¿Qué tan cerca estuvo el pronóstico de lo real?" Ambas son válidas, pero las métricas de error proporcionan más información.

La precisión se representa como un porcentaje entre cero y 100, mientras que los porcentajes de error comienzan en cero pero no tienen límite superior. Los informes de MAPE (error porcentual absoluto medio) u otras métricas de error pueden denominarse informes de “precisión del pronóstico”, lo que desdibuja la distinción. Por lo tanto, es posible que desee saber cómo pasar del punto de vista del error al punto de vista de la precisión que defiende su empresa. Este blog describe cómo con algunos ejemplos.

Las métricas de precisión se calculan de manera que cuando lo real es igual al pronóstico, la precisión es 100% y cuando el pronóstico es el doble o la mitad de lo real, entonces la precisión es 0%. Los informes que comparan el pronóstico con el real a menudo incluyen lo siguiente:

  • El actual
  • La previsión
  • Error unitario = Pronóstico – Real
  • Error absoluto = Valor absoluto del error unitario
  • Error absoluto % = Error Abs / Real, como %
  • Precisión % = 100% – Error absoluto %

Mire un par de ejemplos que ilustran la diferencia en los enfoques. Digamos que Real = 8 y el pronóstico es 10.

El error de unidad es 10 – 8 = 2

Error absoluto de % = 2/8, como % = 0,25 * 100 = 25%

Precisión = 100% – 25% = 75%.

Ahora digamos que el real es 8 y el pronóstico es 24.

El error de unidad es 24– 8 = 16

Error absoluto de % = 16/8 como % = 2 * 100 = 200%

Precisión = 100% – 200% = negativo se establece en 0%.

En el primer ejemplo, las mediciones de precisión proporcionan la misma información que las mediciones de error, ya que el pronóstico y lo real ya están relativamente cerca. Pero cuando el error es más del doble del real, las mediciones de precisión llegan a cero. Indica correctamente que el pronóstico no era del todo exacto. Pero el segundo ejemplo es más preciso que el tercero, donde el valor real es 8 y el pronóstico es 200. Esa es una distinción que un rango de precisión de 0 a 100% no registra. En este último ejemplo:

El error de unidad es 200 – 8 = 192

Error absoluto de % = 192/8, como % = 24 * 100 = 2,400%

Precisión = 100% – 2,400% = negativo se establece en 0%.

Las métricas de error continúan proporcionando información sobre qué tan lejos está el pronóstico de lo real y posiblemente representan mejor la precisión del pronóstico.

Alentamos a adoptar el punto de vista del error. Simplemente espera que un pequeño porcentaje de error indique que el pronóstico no estuvo lejos de lo real, en lugar de esperar un gran porcentaje de precisión para indicar que el pronóstico estuvo cerca de lo real. Este cambio de mentalidad ofrece los mismos conocimientos y al mismo tiempo elimina las distorsiones.

 

 

 

 

La función de previsión automática

La previsión automática es la característica más popular y más utilizada de SmartForecasts y Smart Demand Planner. Crear pronósticos automáticos es fácil. Pero, la simplicidad del Pronóstico Automático enmascara una poderosa interacción de varios métodos altamente efectivos de pronóstico. En este blog, discutimos parte de la teoría detrás de esta característica principal. Nos enfocamos en el pronóstico automático, en parte debido a su popularidad y en parte porque muchos otros métodos de pronóstico producen resultados similares. El conocimiento de la previsión automática se traslada inmediatamente a la media móvil simple, la media móvil lineal, el suavizado exponencial único, el suavizado exponencial doble, el suavizado exponencial de Winters y la previsión promocional.

 

Torneo de pronóstico

El pronóstico automático funciona mediante la realización de un torneo entre un conjunto de métodos competitivos. Debido a que las computadoras personales y la computación en la nube son rápidas, y debido a que hemos codificado algoritmos muy eficientes en el motor de pronóstico automático de SmartForecasts, es práctico adoptar un enfoque puramente empírico para decidir qué método de pronóstico extrapolativo usar. Esto significa que puede darse el lujo de probar una serie de enfoques y luego quedarse con el que mejor pronostique la serie de datos particular en cuestión. SmartForecasts automatiza completamente este proceso al probar los diferentes métodos de pronóstico en un torneo de pronóstico simulado. El ganador del torneo es el método que más se acerca a predecir nuevos valores de datos a partir de los antiguos. La precisión se mide por el error absoluto promedio (es decir, el error promedio, ignorando cualquier signo menos). El promedio se calcula sobre un conjunto de pronósticos, cada uno de los cuales utiliza una parte de los datos, en un proceso conocido como simulación deslizante.

 

Simulación deslizante

La simulación deslizante recorre repetidamente porciones cada vez más largas de los datos históricos, en cada caso pronosticando con anticipación el número deseado de períodos en su horizonte de pronóstico. Suponga que hay 36 valores de datos históricos y necesita pronosticar seis períodos por delante. Imagine que desea evaluar la precisión del pronóstico de algún método en particular, digamos un promedio móvil de cuatro observaciones, en la serie de datos en cuestión.

En un punto de la simulación deslizante, los primeros 24 puntos (solo) se utilizan para pronosticar los valores de datos históricos del 25 al 30, que consideramos temporalmente como desconocidos. Decimos que los puntos 25-30 están “retenidos” del análisis. Calcular los valores absolutos de las diferencias entre los seis pronósticos y los valores históricos reales correspondientes proporciona una instancia de cada pronóstico absoluto de 1 paso, 2 pasos, 3 pasos, 4 pasos, 5 pasos y 6 pasos. error. Repetir este proceso usando los primeros 25 puntos proporciona más instancias de errores de 1 paso, 2 pasos, 3 pasos adelante, etc. El promedio de todas las estimaciones de error absoluto obtenidas de esta manera proporciona un resumen de precisión de un solo número.

 

Métodos utilizados en la previsión automática

Normalmente, hay seis métodos de pronóstico extrapolativo que compiten en el torneo de pronóstico automático:

  • media móvil simple
  • Media móvil lineal
  • Suavizado exponencial simple
  • Suavizado exponencial doble
  • Versión aditiva del suavizado exponencial de Winters
  • Versión multiplicativa del suavizado exponencial de Winters

 

Los dos últimos métodos son apropiados para series estacionales; sin embargo, se excluyen automáticamente del torneo si hay menos de dos ciclos estacionales completos de datos (por ejemplo, menos de 24 períodos de datos mensuales u ocho períodos de datos trimestrales).

Estos seis métodos clásicos basados en el suavizado han demostrado ser fáciles de entender, fáciles de calcular y precisos. Puede excluir cualquiera de estos métodos del torneo si tiene preferencia por algunos de los competidores y no por otros.

 

 

 

 

6 observaciones sobre los procesos exitosos de pronóstico de la demanda

1. Pronosticar es un arte que requiere una combinación de juicio profesional y análisis estadístico objetivo. Los pronósticos de demanda exitosos requieren una predicción de referencia que aproveche los métodos de pronóstico estadístico. Una vez establecido, el proceso puede centrarse en la mejor manera de ajustar los pronósticos estadísticos en función de sus propios conocimientos y conocimientos comerciales.

2. El proceso de pronóstico suele ser iterativo. Es posible que deba realizar varios ajustes a su pronóstico inicial antes de estar satisfecho. Es importante poder generar y comparar pronósticos alternativos de forma rápida y sencilla. El seguimiento de la precisión de estos pronósticos a lo largo del tiempo, incluidas las alternativas que no se utilizaron, ayuda a informar y mejorar el proceso.

3. La credibilidad de los pronósticos depende en gran medida de las comparaciones gráficas con datos históricos. Una imagen vale más que mil palabras, por lo tanto, muestre siempre los pronósticos a través de pantallas gráficas disponibles al instante con informes numéricos de apoyo.

4. Una de las principales tareas técnicas en el pronóstico es hacer coincidir la elección de la técnica de pronóstico con la naturaleza de los datos. Los procesos efectivos de previsión de la demanda emplean capacidades que identifican el método correcto a utilizar. Las características de una serie de datos como tendencia, estacionalidad o cambios abruptos en el nivel sugieren ciertas técnicas en lugar de otras. Una selección automática, que selecciona y utiliza automáticamente el método de previsión adecuado, ahorra tiempo y garantiza que su previsión de referencia sea lo más precisa posible.

5. Los procesos exitosos de pronóstico de la demanda funcionan en conjunto con otros procesos comerciales. Por ejemplo, la previsión puede ser un primer paso esencial en el análisis financiero. Además, las previsiones precisas de demanda de productos y ventas son entradas fundamentales para los procesos de control de inventario y planificación de la producción de una empresa de fabricación.

6. Un buen proceso de planificación reconoce que los pronósticos nunca son exactamente correctos. Debido a que algunos errores se infiltran incluso en el mejor proceso de pronóstico, uno de los complementos más útiles para un pronóstico son las estimaciones honestas de su margen de error y sesgo de pronóstico.