Problemas de las empresas eléctricas con repuestos

Todas las organizaciones que utilizan equipos necesitan piezas de repuesto. Todos ellos deben hacer frente a cuestiones que son genéricas sin importar cuál sea su negocio. Sin embargo, algunos de los problemas son específicos de la industria. Esta publicación analiza un problema universal que se manifiesta en una planta nuclear y que es especialmente grave para cualquier empresa de servicios eléctricos.

El problema universal de la calidad de los datos

A menudo publicamos sobre los beneficios de convertir los datos de uso de piezas en decisiones inteligentes de gestión de inventario. El modelado de probabilidad avanzado admite la generación de escenarios de demanda realistas que se integran en simulaciones detalladas de Monte Carlo que exponen las consecuencias de decisiones como las elecciones de Min y Max que rigen la reposición de repuestos.

Sin embargo, toda esa tecnología analítica nueva y brillante requiere datos de calidad como combustible para el análisis. Para algunos servicios públicos de todo tipo, el mantenimiento de registros no es un punto fuerte, por lo que la materia prima que se analiza puede corromperse y ser engañosa. Recientemente nos topamos con la documentación de un claro ejemplo de este problema en una planta de energía nuclear (ver Scala, Needy y Rajgopal: Toma de decisiones y compensaciones en la gestión del inventario de piezas de repuesto en las empresas de servicios públicos. Asociación Estadounidense de Gestión de Ingeniería, 30.ª Conferencia Nacional ASEM, Springfield, MO. octubre de 2009). Scala et al. documentó el historial de uso de una pieza crítica cuya ausencia resultaría en una reducción de la potencia de la instalación o en un cierre. El registro de uso de la planta para esa parte abarcó más de ocho años de datos. Durante ese tiempo, el historial de uso oficial reportó nueve eventos en los que se produjo una demanda positiva con tamaños que oscilaban entre una y seis unidades cada uno. También hubo cinco eventos marcados por demandas negativas (es decir, devoluciones a almacén) que oscilaron entre una y tres unidades cada uno. La investigación cuidadosa descubrió que el verdadero uso ocurrió en solo dos eventos, ambos con una demanda de dos unidades. Obviamente, calcular los mejores valores Mín./Máx. para este artículo requiere datos de demanda precisos.

El problema especial de la salud y la seguridad

En el contexto de negocios “normales”, la escasez de piezas de repuesto puede dañar tanto los ingresos actuales como los ingresos futuros (relacionados con la reputación como proveedor confiable). Sin embargo, para una empresa de servicios eléctricos, Scala et al. observó un nivel mucho mayor de consecuencias asociadas a los desabastecimientos de piezas de repuesto. Estos incluyen no solo un mayor riesgo financiero y de reputación, sino también riesgos para la salud y la seguridad: Las ramificaciones de no tener una pieza en stock incluyen la posibilidad de tener que reducir la producción o, muy posiblemente, incluso el cierre de una planta. Desde una perspectiva a más largo plazo, hacerlo podría interrumpir el servicio crítico de energía para los clientes residenciales, comerciales y/o industriales, al tiempo que daña la reputación, la confiabilidad y la rentabilidad de la empresa. Una empresa de servicios eléctricos fabrica y vende un solo producto: electricidad. Perder la capacidad de vender electricidad puede dañar gravemente los resultados de la empresa, así como su viabilidad a largo plazo”.

Razón de más para que las empresas eléctricas sean líderes y no rezagadas en el despliegue de los modelos de probabilidad más avanzados para la previsión de la demanda y la optimización del inventario.

 

Soluciones de software para la planificación de repuestos

El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

 

 

Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

 

Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

 

    Cómo Pronosticar Repuestos con Bajo Uso

    ¿Qué hace cuando pronostica un artículo con demanda intermitente, como una pieza de repuesto, con una demanda promedio de menos de una unidad por mes? La mayor parte del tiempo la demanda es cero, pero la parte es significativa en un sentido comercial; no se puede ignorar y se debe pronosticar para asegurarse de tener el stock adecuado.

    Tus elecciones tienden a centrarse en algunas opciones:

    Opción 1: Redondea a 1 cada mes, por lo que tu pronóstico anual es 12.

    Opción 2: Redondee a 0 cada mes, de modo que su pronóstico anual sea 0.

    Opción 3: método de pronóstico "igual que el mismo mes del año pasado" para que el pronóstico coincida con el real del año pasado.

    Hay desventajas obvias para cada opción y no mucha ventaja para ninguna de ellas. La opción 1 a menudo resulta en un sobre pronóstico significativo. La opción 2 a menudo da como resultado una previsión significativamente inferior a la esperada. La opción 3 da como resultado un pronóstico que casi garantiza que perderá significativamente el real, ya que no es probable que la demanda aumente exactamente en el mismo período. Si DEBE pronosticar el artículo, normalmente recomendaríamos la opción 3, ya que es la respuesta más probable que el resto de la empresa entendería. 

    Pero una mejor manera es no pronosticarlo en absoluto en el sentido habitual y, en su lugar, utilizar un "punto de reorden predictivo" relacionado con el nivel de servicio deseado. Para calcular un punto de reorden predictivo, puede usar el algoritmo de arranque de Markov patentado de Smart Software para simular todas las demandas posibles que podrían ocurrir durante el tiempo de entrega, luego identifique el punto de reorden que producirá su nivel de servicio objetivo.

    Luego, puede configurar su sistema ERP para pedir más cuando el inventario disponible supere el punto de reorden en lugar de cuando se pronostique que llegará a cero (o cualquier reserva de existencias de seguridad que se ingrese). 

    Esto hace que los pedidos tengan más sentido común sin las suposiciones innecesarias que se requieren para pronosticar una pieza de bajo volumen demandada intermitentemente.

     

    Soluciones de software para la planificación de repuestos

    El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

    Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

     

     

    Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

     

    Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

     

      Repuestos, repuestos OEM, rotables y repuestos inmediatos

      ¿Cuál es la diferencia y por qué es importante para la planificación del inventario?

      Aquellos que son nuevos en el juego de planificación de piezas a menudo se confunden con las muchas variaciones en los nombres de las piezas. Este blog señala distinciones que tienen o no importancia operativa para alguien que administra una flota de piezas de repuesto y cómo esas diferencias afectan la planificación del inventario.

      Por ejemplo, ¿cuál es la diferencia entre piezas de "repuesto" y piezas de "reemplazo"? En este caso, la diferencia es su origen. Se compraría una pieza de repuesto al fabricante del equipo, mientras que una pieza de repuesto se compraría a otra empresa. Para alguien que administra una flota de repuestos, la diferencia sería dos entradas diferentes en su base de datos de piezas: la fuente sería diferente y el precio unitario probablemente sería diferente. Es posible que también haya una diferencia en la vida útil de las piezas de las dos fuentes. Las piezas "OEM" pueden ser más duraderas que las piezas más baratas del "mercado de accesorios". (Ahora tenemos cuatro términos diferentes que describen estas piezas). Estas distinciones serían importantes para optimizar un inventario de repuestos. El software que calcula los puntos de pedido óptimos y las cantidades de los pedidos llegaría a diferentes respuestas para piezas con diferentes costos unitarios y diferentes tasas de reemplazo.

      Quizás la distinción más grande es entre partes "consumibles" y "reparables" o "giratorias". La distinción clave entre ellos es su costo. Es una tontería tratar de reparar un tornillo desgastado; simplemente tíralo y usa otro. Pero también es una tontería tirar un componente de $50,000 si se puede reparar por $5,000. Optimizar la gestión de inventario para flotas de cada tipo de pieza requiere matemáticas muy diferentes. Con los consumibles, las partes pueden considerarse anónimas e intercambiables. Con los “giratorios”, cada parte debe modelarse esencialmente de forma individual. Tratamos a cada uno como un ciclo a través de estados de "operativo", "en reparación" y "en espera/repuesto". Las decisiones sobre piezas reparables a menudo se manejan mediante un proceso de presupuesto de capital, y la pregunta analítica más destacada es "¿cuál debería ser el tamaño de nuestro grupo de repuestos?"

      Hay otras distinciones que se pueden hacer entre las partes. La criticidad es un atributo importante. Las consecuencias de la falla de una pieza pueden variar desde “podemos tomarnos nuestro tiempo para obtener un reemplazo” hasta “esto es una emergencia; que esas máquinas vuelvan a funcionar pronto”. Al determinar cómo administrar las piezas, siempre debemos lograr un equilibrio entre los beneficios de tener un mayor stock de piezas y los costos en dólares. La criticidad cambia el equilibrio hacia ir a lo seguro con inventarios más grandes. A su vez, esto dicta objetivos de planificación más altos para las métricas de disponibilidad de piezas, como los niveles de servicio y las tasas de llenado, lo que conducirá a mayores puntos de pedido y/o cantidades de pedidos.

      Si buscas en Google “tipos de repuestos”, descubrirás otras clasificaciones y distinciones. Desde nuestra perspectiva en Smart Software, las palabras importan menos que los números asociados con las piezas: costos unitarios, tiempo medio antes de la falla, tiempo medio de reparación y otros aportes técnicos a nuestros productos que resuelven cómo administrar las piezas para obtener el máximo beneficio.

       

      Soluciones de software para la planificación de repuestos

      El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

      Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

       

       

      Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

       

      Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

       

        Las 3 razones principales por las que su hoja de cálculo no funcionará para optimizar los puntos de pedido de piezas de repuesto

        A menudo nos encontramos con métodos de planificación de puntos de pedido basados en Excel. En esta publicación, detallamos un enfoque que utilizó un cliente antes de continuar con Smart. Describimos cómo funcionaba su hoja de cálculo, los enfoques estadísticos en los que se basaba, los pasos que los planificadores siguieron en cada ciclo de planificación y sus motivaciones declaradas para usar (y realmente gustarles) esta hoja de cálculo desarrollada internamente.

        Su proceso mensual consistía en actualizar un nuevo mes de datos reales en la "hoja de puntos de pedido". Una fórmula incrustada volvió a calcular el punto de pedido (ROP) y el nivel de pedido hasta (máx.). Funcionó así:

        • ROP = Demanda LT + Stock de Seguridad
        • Demanda LT = demanda diaria promedio x días de tiempo de entrega (se supone constante para simplificar las cosas)
        • Inventario de seguridad para piezas con plazos de entrega prolongados = Desviación estándar x 2,0
        • Stock de seguridad para piezas con plazos de entrega cortos = Desviación estándar x 1,2
        • Max = ROP + cantidad mínima de pedido dictada por el proveedor

        Los promedios históricos y las desviaciones estándar utilizaron 52 semanas de historial continuo (es decir, la semana más nueva reemplazó a la semana más antigua en cada período). La desviación estándar de la demanda se calculó utilizando la función "stdevp" en Excel.

        Cada mes, se volvió a calcular un nuevo ROP. Tanto la demanda promedio como la desviación estándar fueron modificadas por la demanda de la nueva semana, que a su vez actualizó la ROP.

        El ROP predeterminado siempre se basa en la lógica anterior. Sin embargo, los planificadores harían cambios bajo ciertas condiciones:

        1. Los planificadores aumentarían el Min para piezas económicas para reducir el riesgo de recibir un golpe de entrega a tiempo (OTD) en una pieza económica.

        2. La hoja de Excel identificó cualquier parte con una ROP recién calculada que era ± 20% diferente de la ROP actual.

        3. Los planificadores revisaron las piezas que superaban el umbral de excepción, propusieron cambios y obtuvieron la aprobación de un gerente.

        4. Los planificadores revisaron los elementos con aciertos OTD y aumentaron el ROP en función de su intuición. Los planificadores continuaron monitoreando esas partes durante varios períodos y bajaron el ROP cuando sintieron que era seguro.

        5. Una vez que se determinaron el ROP y la cantidad máxima, el archivo de resultados revisados se envió a TI, quien lo cargó en su ERP.

        6. El sistema ERP luego gestionaba el reabastecimiento diario y la gestión de pedidos.

        Objetivamente, este fue quizás un enfoque superior al promedio para la gestión de inventario. Por ejemplo, algunas empresas desconocen el vínculo entre la variabilidad de la demanda y los requisitos de existencias de seguridad y confían exclusivamente en la regla de los métodos o la intuición. Sin embargo, hay problemas con su enfoque:

        1. Actualizaciones manuales de datos
        Las hojas de cálculo requerían actualización manual. Para volver a calcular, se requerían varios pasos, cada uno con su propia dependencia. Primero, era necesario ejecutar un volcado de datos desde el sistema ERP. En segundo lugar, un planificador necesitaría abrir la hoja de cálculo y revisarla para asegurarse de que los datos se hayan importado correctamente. En tercer lugar, necesitaban revisar el resultado para asegurarse de que se calculó como se esperaba. En cuarto lugar, se requerían pasos manuales para devolver los resultados al sistema ERP.

        2. Talla única para todas las existencias de seguridad
        O en este caso, “una de dos tallas sirve para todos”. La elección de utilizar una desviación estándar de 2x y 1,2x para artículos con plazos de entrega largos y cortos, respectivamente, equivale a niveles de servicio de 97,71 TP3T y 88,41 TP3T. Este es un gran problema ya que es lógico que no todas las partes de cada grupo requieran el mismo nivel de servicio. Algunas partes tendrán un mayor dolor por falta de existencias que otras y viceversa. Por lo tanto, los niveles de servicio deben especificarse en consecuencia y ser proporcionales a la importancia del artículo. Descubrimos que estaban experimentando golpes OTD en aproximadamente 20% de sus piezas de repuesto críticas, lo que requería anulaciones manuales del ROP. La causa raíz fue que en todos los artículos con plazos de entrega cortos estaban planificando un objetivo de nivel de servicio de 88.4%. Por lo tanto, lo mejor que pudieron haber obtenido fue almacenar 12% de ese momento, incluso si "según el plan". Hubiera sido mejor planificar objetivos de nivel de servicio de acuerdo con la importancia de la pieza.

        3. El inventario de seguridad es inexacto.  Los artículos que se planean para esta empresa son repuestos para apoyar equipos de diagnóstico. La demanda en la mayoría de estas partes es muy intermitente y esporádica. Por lo tanto, la elección de usar un promedio para calcular la demanda de tiempo de entrega no era irrazonable si acepta la necesidad de ignorar la variabilidad en los tiempos de entrega. Sin embargo, la confianza en un Distribución normal determinar el inventario de seguridad fue un gran error que resultó en inventarios de seguridad inexactos. La empresa declaró que sus niveles de servicio para artículos con plazos de entrega prolongados se encontraban en el rango de 90% en comparación con su objetivo de 97,7%, y que compensaron la diferencia con los envíos urgentes. Los niveles de servicio logrados para artículos con plazos de entrega más cortos fueron de aproximadamente 80%, a pesar de que el objetivo era 88,4%. Calcularon las existencias de seguridad de forma incorrecta porque su demanda no tiene "forma de campana", pero eligieron las existencias de seguridad asumiendo que así era. Esta simplificación da como resultado la falta de objetivos de nivel de servicio, lo que obliga a la revisión manual de muchos elementos que luego deben ser "supervisados manualmente durante varios períodos" por un planificador. ¿No sería mejor asegurarse de que el punto de reorden cumpliera con el nivel de servicio exacto que deseaba desde el principio? Esto garantizaría que alcance sus niveles de servicio y minimice la intervención manual innecesaria.

        Hay un cuarto problema que no está en la lista pero que vale la pena mencionar. La hoja de cálculo no pudo rastrear tendencias o patrones estacionales. Los promedios históricos ignoran la tendencia y la estacionalidad, por lo que la demanda acumulada durante el tiempo de entrega utilizada en el ROP será sustancialmente menos precisa para las piezas de tendencia o estacionales. El equipo de planificación reconoció esto pero no sintió que fuera un problema legítimo, razonando que la mayor parte de la demanda era intermitente y no tenía estacionalidad. Es importante que el modelo detecte la tendencia y la estacionalidad de los datos intermitentes, si existen, pero no encontramos que sus datos exhiban estos patrones. Entonces, acordamos que esto no era un problema. para ellos. Pero a medida que el ritmo de planificación aumenta hasta el punto de que la demanda se reparte a diario, incluso la demanda intermitente muy a menudo resulta tener una estacionalidad de día de la semana y, a veces, de semana del mes. Si no corre a una frecuencia más alta ahora, tenga en cuenta que puede verse obligado a hacerlo pronto para mantenerse al día con una competencia más ágil. En ese momento, el procesamiento basado en hojas de cálculo simplemente no podrá mantenerse al día.

        En conclusión, no use hojas de cálculo. No conducen a análisis hipotéticos significativos, requieren demasiado trabajo y la lógica subyacente debe simplificarse para que el proceso sea lo suficientemente rápido como para que sea útil. En resumen, opte por soluciones especialmente diseñadas. Y asegúrese de que se ejecuten en la nube.

         

        Soluciones de software para la planificación de repuestos

        El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

        Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

         

         

        Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

         

        Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

         

          La planificación de piezas de repuesto no es tan difícil como cree

          Al administrar piezas de servicio, no sabe qué fallará y cuándo porque las fallas de las piezas son aleatorias y repentinas. Como resultado, los patrones de demanda suelen ser extremadamente intermitentes y carecen de una tendencia significativa o una estructura estacional. El número de combinaciones de pieza por ubicación suele ser de cientos de miles, por lo que no es factible revisar manualmente la demanda de piezas individuales. No obstante, es mucho más sencillo implementar un sistema de planificación y previsión para respaldar la planificación de repuestos de lo que podría pensar.

          Esta conclusión se basa en cientos de implementaciones de software que hemos dirigido a lo largo de los años. Los clientes que gestionan repuestos y piezas de servicio (estas últimas para consumo interno/MRO) y, en menor medida, piezas del mercado de accesorios (para reventa a bases instaladas), han implementado constantemente nuestro software de planificación de piezas más rápido que sus pares en fabricación y distribución.

          La razón principal es el papel en la fabricación y distribución del conocimiento comercial sobre lo que podría suceder en el futuro. En un entorno tradicional de fabricación y distribución B2B, hay clientes y equipos de ventas y marketing que venden a esos clientes. Hay objetivos de ventas, expectativas de ingresos y presupuestos. Esto significa que hay mucho conocimiento comercial sobre lo que se comprará, lo que se promocionará, cuyas opiniones deben tenerse en cuenta. Se requiere un ciclo de planificación complejo. En cambio, a la hora de gestionar repuestos, cuentas con un equipo de mantenimiento que repara los equipos cuando se estropean. Aunque a menudo hay programas de mantenimiento como guía, lo que se necesita más allá de una lista estándar de piezas consumibles a menudo se desconoce hasta que una persona de mantenimiento está en el sitio. En otras palabras, simplemente no hay el mismo tipo de conocimiento comercial disponible para los planificadores de piezas cuando toman decisiones de almacenamiento.

          Sí, eso es una desventaja, pero también tiene una ventaja: no hay necesidad de producir un pronóstico de demanda consensuado período por período con todo el trabajo que requiere. Al planificar las piezas de repuesto, normalmente puede omitir muchos de los pasos necesarios para un fabricante, distribuidor o minorista típico. Estos pasos saltables incluyen:  

          1. Creación de pronósticos en diferentes niveles del negocio, como familia de productos o región.
          2. Compartir el pronóstico de la demanda con ventas, marketing y clientes.
          3. Revisar anulaciones de pronósticos de ventas, marketing y clientes.
          4. Acordar una previsión consensuada que combine estadística y conocimiento empresarial.
          5. Medir el “valor agregado de pronóstico” para determinar si las anulaciones hacen que el pronóstico sea más preciso.
          6. Ajuste de la previsión de demanda para futuras promociones conocidas.
          7. Contabilización de la canibalización (es decir, si vendo más del producto A, venderé menos del producto B).

          Liberados de un proceso de creación de consenso, los planificadores de repuestos y los administradores de inventario pueden confiar directamente en su software para predecir el uso y las políticas de almacenamiento requeridas. Si tienen acceso a un solución probada en el campo que aborda la demanda intermitente, pueden "ponerse en marcha" rápidamente con pronósticos de demanda más precisos y estimaciones de puntos de pedido, existencias de seguridad y sugerencias de pedidos. Su atención se puede centrar en obtener datos precisos sobre el uso y el tiempo de entrega del proveedor. La parte "política" del trabajo puede limitarse a obtener el consenso de la organización sobre los objetivos de nivel de servicio y los presupuestos de inventario.

          Soluciones de software para la planificación de repuestos

          El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

          Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

           

           

          Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

           

          Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

           

            Planificación basada en el nivel de servicio para empresas de repuestos

            La planificación de piezas de servicio impulsada por el nivel de servicio es un proceso de cuatro pasos que se extiende más allá de la previsión simplificada y las existencias de seguridad de regla empírica. Proporciona a los planificadores de piezas de servicio un soporte de decisiones basado en datos y ajustado al riesgo.

            Paso 1. Asegúrese de que todas las partes interesadas estén de acuerdo con las métricas que importan. Todos los participantes en el proceso de planificación del inventario de piezas de servicio deben ponerse de acuerdo sobre las definiciones y qué métricas son más importantes para la organización. Niveles de servicio detalle el porcentaje de tiempo que puede satisfacer completamente el uso requerido sin agotar existencias. Tasas de relleno detallar el porcentaje del uso solicitado que se completa inmediatamente con el stock. (Para obtener más información sobre las diferencias entre los niveles de servicio y la tasa de llenado, vea esta lección de 4 minutos aquí.) Disponibilidad detalla el porcentaje de repuestos activos que tienen un inventario disponible de al menos una unidad. Costos de mantenimiento son los costos anualizados de tenencia de existencias teniendo en cuenta la obsolescencia, los impuestos, los intereses, el almacenamiento y otros gastos. costos de escasez son el costo de quedarse sin existencias, incluido el tiempo de inactividad del vehículo/equipo, expediciones, pérdida de ventas y más. gastos de pedido son los costos asociados con la colocación y recepción de pedidos de reabastecimiento.

            Paso 2. Compare el rendimiento del nivel de servicio actual histórico y previsto. Todos los participantes en el proceso de planificación del inventario de piezas de servicio deben tener una comprensión común de los niveles de servicio futuros previstos, las tasas de llenado y los costos y sus implicaciones para sus operaciones de piezas de servicio. Es crítico medir tanto la historia Indicadores clave de rendimiento (KPI) y sus equivalentes predictivos, Predicciones clave de rendimiento (KPP). Al aprovechar el software moderno, puede comparar el rendimiento anterior y aprovechar los métodos de pronóstico probabilístico para simular el rendimiento futuro. Por pruebas de estrés sus políticas actuales de almacenamiento de inventario frente a todos los escenarios plausibles de demanda futura, sabrá de antemano cómo es probable que funcionen las políticas de almacenamiento actuales y propuestas.

            Paso 3. Acuerde los niveles de servicio específicos para cada pieza de repuesto y tome medidas correctivas proactivas cuando se prevea que no cumplirán los objetivos. Los planificadores de piezas, el liderazgo de la cadena de suministro y los equipos mecánicos/de mantenimiento deben acordar los objetivos de nivel de servicio deseados con una comprensión completa de las compensaciones entre el riesgo de falta de existencias y el costo del inventario. Mediante el aprovechamiento escenarios hipotéticos en el software moderno de planificación de piezas, es posible comparar políticas de almacenamiento alternativas e identificar aquellas que mejor cumplen con los objetivos comerciales. Acuerde qué grado de riesgo de desabastecimiento es aceptable para cada pieza o clase de piezas. Asimismo, determine los presupuestos de inventario y otras restricciones de costos. Una vez que se acuerden estos límites, tome medidas inmediatas para evitar desabastecimientos y exceso de inventario antes de que ocurran. Utilice su software para cargar automáticamente puntos de pedido modificados, niveles de existencias de seguridad y/o parámetros mínimos/máximos en su sistema de planificación de recursos empresariales (ERP) o gestión de activos empresariales (EAM) para ajustar la compra diaria de piezas.

            Paso 4. Hazlo así y mantenlo así. Capacite al equipo de planificación con el conocimiento y las herramientas que necesita para garantizar que logre el equilibrio acordado entre los niveles de servicio y los costos impulsando su proceso de pedido utilizando entradas optimizadas (pronósticos, puntos de pedido, cantidades de pedido, existencias de seguridad). Realice un seguimiento de sus KPI y use su software para identificar y abordar las excepciones. No permita que los puntos de pedido se vuelvan obsoletos y obsoletos.  recalibrar las políticas de almacenamiento en cada ciclo de planificación (al menos una vez al mes) utilizando el historial de uso actualizado, los plazos de entrega de los proveedores y los costos. Recuerde: la recalibración de su política de inventario de piezas de servicio es un mantenimiento preventivo tanto contra los desabastecimientos como contra el exceso de existencias.