El proceso de previsión para los responsables de la toma de decisiones

En casi todos los negocios e industrias, quienes toman decisiones necesitan pronósticos confiables de variables críticas, como ventas, ingresos, demanda de productos, niveles de inventario, participación de mercado, gastos y tendencias de la industria.

Hay muchos tipos de personas que hacen estos pronósticos. Algunos son analistas técnicos sofisticados, como economistas de negocios y estadísticos. Muchos otros consideran que los pronósticos son una parte importante de su trabajo general: gerentes generales, planificadores de producción, especialistas en control de inventarios, analistas financieros, planificadores estratégicos, investigadores de mercado y gerentes de productos y ventas. Aún así, otros rara vez se consideran pronosticadores, sino que a menudo tienen que hacer pronósticos sobre una base intuitiva y crítica.

Debido a la forma en que diseñamos Smart Demand Planner, tiene algo que ofrecer a todo tipo de pronosticadores. Este diseño surge de varias observaciones sobre el proceso de pronóstico. Debido a que diseñamos Smart Demand Planner con estas observaciones en mente, creemos que tiene un estilo y contenido especialmente adecuados para convertir su navegador en una herramienta eficaz de previsión y planificación:

La previsión es un arte que requiere una combinación de juicio profesional y análisis estadístico objetivo.

A menudo resulta eficaz comenzar con un pronóstico estadístico objetivo que tenga en cuenta automáticamente las tendencias, la estacionalidad y otros patrones. Luego, aplique ajustes o anulaciones de pronósticos según su criterio comercial. Smart Demand Planner facilita la ejecución de ajustes gráficos y tabulares a los pronósticos estadísticos.

El proceso de pronóstico suele ser iterativo.

Es probable que decida hacer varios ajustes a su pronóstico inicial antes de estar satisfecho. Es posible que desee excluir datos históricos más antiguos que considere que ya no son relevantes. Se podrían aplicar diferentes ponderaciones al modelo de pronóstico que pongan distinto énfasis en los datos más recientes. Podría aplicar atenuación de tendencias para aumentar o disminuir los pronósticos estadísticos de tendencias agresivas. Puede permitir que los modelos de aprendizaje automático ajusten la selección de pronóstico por usted y seleccionen el modelo ganador automáticamente. La velocidad de procesamiento de Smart Demand Planner le brinda suficiente tiempo para realizar varias pasadas y guarda múltiples versiones de los pronósticos como “instantáneas” para que pueda comparar la precisión del pronóstico más adelante.

La previsión requiere soporte gráfico.

Los patrones evidentes en los datos pueden ser vistos por un ojo perspicaz. La credibilidad de sus pronósticos a menudo dependerá en gran medida de las comparaciones gráficas que hacen otras partes interesadas del negocio cuando evalúan los datos históricos y los pronósticos. Smart Demand Planner proporciona visualizaciones gráficas de pronósticos, historial e informes de pronóstico versus datos reales.

Los pronósticos nunca son exactamente correctos.

Debido a que siempre se introduce algún error incluso en el mejor proceso de pronóstico, uno de los complementos más útiles de un pronóstico es una estimación honesta de su margen de error.

Smart Demand Planner presenta resúmenes gráficos y tabulares de la precisión del pronóstico basados en la prueba de fuego de los datos de predicción retenidos en el desarrollo del modelo de pronóstico. 

También son muy útiles los intervalos de previsión o intervalos de confianza. Detallan el rango probable de demanda posible que se espera que ocurra. Por ejemplo, si la demanda real cae fuera del intervalo de confianza de 90% más de 10% del tiempo, entonces hay motivos para investigar más a fondo.  

La previsión requiere una coincidencia del método con los datos.

Una de las principales tareas técnicas en la elaboración de pronósticos es hacer coincidir la elección de la técnica de pronóstico con la naturaleza de los datos. Las características de una serie de datos como la tendencia, la estacionalidad o los cambios abruptos de nivel sugieren ciertas técnicas en lugar de otras.

La función de previsión automática de Smart Demand Planner hace que esta coincidencia sea rápida, precisa y automática.

La previsión suele ser parte de un proceso más amplio de planificación o control.

Por ejemplo, los pronósticos pueden ser un complemento poderoso para el análisis financiero basado en hojas de cálculo, extendiendo filas de cifras hacia el futuro. Además, los pronósticos precisos de ventas y demanda de productos son aportes fundamentales para los procesos de planificación de producción y control de inventario de un fabricante. Un pronóstico estadístico objetivo de las ventas futuras siempre ayudará a identificar cuándo el presupuesto (o el plan de ventas) puede ser demasiado poco realista. El análisis de brechas permite a la empresa tomar medidas correctivas para su demanda y sus planes de marketing para garantizar que no incumplan el plan presupuestado.

Los pronósticos deben integrarse en los sistemas ERP
Smart Demand Planner puede transferir rápida y fácilmente sus resultados a otras aplicaciones, como hojas de cálculo, bases de datos y sistemas de planificación, incluidas aplicaciones ERP. Los usuarios pueden exportar pronósticos en una variedad de formatos de archivo, ya sea mediante descarga o mediante ubicaciones seguras de archivos FTP. Smart Demand Planner incluye integraciones basadas en API para una variedad de sistemas ERP y EAM, incluidos Epicor Kinetic y Epicor Prophet 21, Sage X3 y Sage 300, Oracle NetSuite y cada uno de los sistemas ERP Dynamics 365 de Microsoft. Las integraciones basadas en API permiten a los clientes enviar los resultados de las previsiones directamente al sistema ERP según demanda.

El resultado es una planificación de ventas, elaboración de presupuestos, programación de producción, pedidos y planificación de inventario más eficientes.

 

 

 

 

Aprovechar las listas de materiales de planificación de ERP con Smart IP&O para pronosticar lo imprevisible

​En un entorno de fabricación altamente configurable, pronosticar productos terminados puede convertirse en una tarea compleja y desalentadora. El número de posibles productos terminados se disparará cuando muchos componentes sean intercambiables. Un MRP tradicional nos obligaría a pronosticar cada producto terminado, lo que puede ser poco realista o incluso imposible. Varias soluciones ERP líderes introducen el concepto de "Planificación BOM", que permite el uso de pronósticos a un nivel superior en el proceso de fabricación. En este artículo, discutiremos esta funcionalidad en ERP y cómo puede aprovecharla con Smart Inventory Planning and Optimization (Smart IP&O) para adelantarse a su demanda ante esta complejidad.

¿Por qué necesitaría una lista de materiales de planificación?

Tradicionalmente, cada producto terminado o SKU tenía una lista de materiales rígidamente definida. Si almacenamos ese producto y queremos planificar en torno a la demanda pronosticada, pronosticaremos la demanda de esos productos y luego alimentaremos MRP para llevar esta demanda pronosticada desde el nivel del producto terminado hasta sus componentes a través de la lista de materiales.

Sin embargo, muchas empresas ofrecen productos altamente configurables donde los clientes pueden seleccionar opciones sobre el producto que están comprando. Como ejemplo, recuerde la última vez que compró una computadora personal. Elegiste una marca y un modelo, pero a partir de ahí probablemente se te presentaron opciones: ¿qué velocidad de CPU deseas? ¿Cuánta RAM quieres? ¿Qué tipo de disco duro y cuánto espacio? Si esa empresa quiere tener estas computadoras listas y disponibles para enviárselas en un tiempo razonable, de repente ya no solo anticipan la demanda de ese modelo: deben pronosticar ese modelo para cada tipo de CPU, para todas las cantidades de RAM, para ¡Todos los tipos de discos duros y todas las combinaciones posibles de ellos también! Para algunos fabricantes, estas configuraciones pueden dar lugar a cientos o miles de posibles permutaciones de productos terminados.

Planning BOM emphasizing the large numbers of permutations Laptops Factory Components

Puede haber tantas personalizaciones posibles que la demanda a nivel del producto terminado sea completamente impredecible en el sentido tradicional. Es posible que se vendan miles de esas computadoras cada año, pero para cada configuración posible, la demanda puede ser extremadamente baja y esporádica; tal vez ciertas combinaciones se vendan una vez y nunca más.

Esto a menudo obliga a estas empresas a planificar puntos de reorden y niveles de existencias de seguridad principalmente a nivel de componentes, mientras reaccionan en gran medida a la demanda firme en el nivel de producto terminado a través de MRP. Si bien este es un enfoque válido, carece de una forma sistemática de aprovechar los pronósticos que puedan dar cuenta de la actividad futura anticipada, como promociones, próximos proyectos u oportunidades de ventas. Hacer pronósticos a nivel “configurado” es efectivamente imposible, y tratar de incorporar estos supuestos de pronóstico a nivel de componentes tampoco es factible.

 

Planificación de la lista de materiales explicada

Aquí es donde entran las listas de materiales de planificación. Quizás el equipo de ventas esté trabajando en una gran oportunidad b2b para ese modelo, o haya una promoción planificada para el Cyber Monday. Si bien no es realista intentar trabajar con esos supuestos para cada configuración posible, hacerlo a nivel de modelo es totalmente factible y tremendamente valioso.

La lista de materiales de planificación puede utilizar un pronóstico a un nivel superior y luego reducir la demanda en función de proporciones predefinidas para su posible componentes. Por ejemplo, el fabricante de computadoras puede saber que la mayoría de las personas optan por 16 GB de RAM, y muchas menos optan por las actualizaciones a 32 o 64. La lista de materiales de planificación permite a la organización (por ejemplo) reducir 60% de la demanda a la opción de 16 GB. , 30% para la opción de 32 GB y 10% para la opción de 64 GB. Podrían hacer lo mismo con las CPU, los discos duros o cualquier otra personalización disponible.  

Planning BOM Explained with computer random access memory ram close hd

 

La empresa ahora puede centrar su pronóstico en este nivel de modelo, dejando que la lista de materiales de planificación determine la combinación de componentes. Claramente, definir estas proporciones requiere algo de reflexión, pero las listas de materiales de planificación permiten efectivamente a las empresas pronosticar lo que de otro modo sería impredecible.

 

La importancia de un buen pronóstico

Por supuesto, todavía Necesita un buen pronóstico para cargarlo en un sistema ERP.. Como se explica en este artículo, si bien ERP puede importar un pronóstico, a menudo no puede generar uno y, cuando lo hace, tiende a requerir una gran cantidad de configuraciones difíciles de usar que no suelen revisarse, lo que genera pronósticos inexactos. Por lo tanto, corresponde a la empresa elaborar sus propios conjuntos de pronósticos, a menudo elaborados manualmente en Excel. La elaboración de pronósticos manualmente generalmente presenta una serie de desafíos, que incluyen, entre otros:

  • La incapacidad de identificar patrones de demanda como estacionalidad o tendencia.
  • Dependencia excesiva de las previsiones de clientes o de ventas
  • Falta de precisión o seguimiento del rendimiento.

No importa qué tan bien configurado esté el MRP con sus listas de materiales de planificación cuidadosamente consideradas, un pronóstico deficiente significa una producción deficiente del MRP y desconfianza en el sistema: basura que entra, basura que sale. Siguiendo con el ejemplo de la “empresa de informática”, sin una forma sistemática de capturar patrones de demanda clave y/o conocimiento del dominio en el pronóstico, MRP nunca podrá verlo.

 

Amplíe su ERP con Smart IP&O

Smart IP&O está diseñado para ampliar su sistema ERP con una serie de soluciones integradas de planificación de la demanda y optimización del inventario. Por ejemplo, puede generar pronósticos estadísticos automáticamente para una gran cantidad de artículos, permite ajustes de pronóstico intuitivos, realiza un seguimiento de la precisión del pronóstico y, en última instancia, le permite generar verdaderos pronósticos basados en consenso para anticipar mejor las necesidades de sus clientes.

Gracias a las jerarquías de productos altamente flexibles, Smart IP&O se adapta perfectamente a la previsión en el nivel de planificación de la lista de materiales para que pueda capturar patrones clave e incorporar conocimiento empresarial en los niveles más importantes. Además, puede analizar e implementar niveles óptimos de existencias de seguridad en cualquier nivel de su lista de materiales.

 

 

El pronóstico importa, pero tal vez no como usted piensa

Verdadero o falso: El pronóstico no importa para la gestión del inventario de repuestos.

A primera vista, esta afirmación parece evidentemente falsa. Después de todo, las previsiones son cruciales para planificar los niveles de existencias, ¿verdad?

Depende de lo que entiendas por “previsión”. Si te refieres a un pronóstico de un solo número de la vieja escuela (“la demanda del artículo CX218b será de 3 unidades la próxima semana y de 6 unidades la semana siguiente”), entonces no. Si se amplía el significado de pronóstico para incluir una distribución de probabilidad que tenga en cuenta las incertidumbres tanto de la demanda como de la oferta, entonces sí.

La realidad clave es que muchos artículos, especialmente repuestos y repuestos, tienen una demanda impredecible e intermitente. (Los plazos de entrega de los proveedores también pueden ser erráticos, especialmente cuando las piezas provienen de un OEM atrasado). Hemos observado que, si bien los fabricantes y distribuidores generalmente experimentan una demanda intermitente de solo 20% o más de sus artículos, el porcentaje aumenta a 80%+ para las empresas basadas en MRO. Esto significa que los datos históricos a menudo muestran períodos de demanda cero intercalados con períodos aleatorios de demanda distinta de cero. A veces, estas demandas distintas de cero son tan bajas como 1 o 2 unidades, mientras que en otras ocasiones aumentan inesperadamente a cantidades varias veces mayores que su promedio.

Este no es el tipo de datos que normalmente enfrentan sus pares “planificadores de la demanda” en el comercio minorista, productos de consumo y alimentos y bebidas. Esas personas suelen trabajar con cantidades mayores que tienen proporcionalmente menos aleatoriedad. Y pueden navegar por características que mejoran las predicciones, como tendencias y patrones estacionales estables. En cambio, el uso de repuestos es mucho más aleatorio, lo que supone un obstáculo para el proceso de planificación, incluso en la minoría de casos en los que hay variaciones estacionales detectables.

En el ámbito de la demanda intermitente, el mejor pronóstico disponible se desviará significativamente de la demanda real. A diferencia de los productos de consumo con volumen y frecuencia de medianos a altos, el pronóstico de una pieza de servicio puede fallar por cientos de puntos porcentuales. Un pronóstico de una o dos unidades, en promedio, siempre fallará cuando la demanda real sea cero. Incluso con inteligencia empresarial avanzada o algoritmos de aprendizaje automático, el error al pronosticar las demandas distintas de cero seguirá siendo sustancial.

Quizás debido a la dificultad de hacer pronósticos estadísticos en el ámbito del inventario, la planificación del inventario en la práctica a menudo se basa en la intuición y el conocimiento del planificador. Desafortunadamente, este enfoque no abarca decenas de miles de piezas. La intuición simplemente no puede hacer frente a toda la gama de posibilidades de demanda y plazos de entrega, y mucho menos estimar con precisión la probabilidad de cada escenario posible. Incluso si su empresa tiene uno o dos pronosticadores intuitivos excepcionales, las jubilaciones de personal y las reorganizaciones de la línea de productos significan que no se puede confiar en los pronósticos intuitivos en el futuro.

La solución radica en cambiar el enfoque de los pronósticos tradicionales a predecir probabilidades para cada escenario de demanda potencial y plazo de entrega. Este cambio transforma la conversación de un “plan de un solo número” poco realista a un rango de números con probabilidades asociadas. Al predecir las probabilidades de cada demanda y posibilidad de plazo de entrega, puede alinear mejor los niveles de existencias con la tolerancia al riesgo de cada grupo de piezas.

El software que genera escenarios de demanda y plazos de entrega, repitiendo este proceso decenas de miles de veces, puede simular con precisión cómo se comportarán las políticas de almacenamiento actuales frente a estas políticas. Si el rendimiento en la simulación no es suficiente y se prevé que se agote con más frecuencia de la que se siente cómodo o que le quede un exceso de inventario, la realización de escenarios hipotéticos permite realizar ajustes en las políticas. Luego puede predecir cómo se comportarán estas políticas revisadas frente a demandas aleatorias y plazos de entrega. Puede llevar a cabo este proceso de forma iterativa y perfeccionarlo con cada nuevo escenario hipotético o apoyarse en políticas prescritas por el sistema que logren un equilibrio óptimo entre riesgo y costos.

Por lo tanto, si está planificando inventarios de servicios y repuestos, deje de preocuparse por predecir la demanda como lo hacen los planificadores de demanda tradicionales del comercio minorista y de CPG. En cambio, concéntrese en cómo sus políticas de almacenamiento resistirán la aleatoriedad del futuro, ajustándolas en función de su tolerancia al riesgo. Para hacer esto, necesitará el conjunto adecuado de software de soporte a la toma de decisiones, y así es como Smart Software puede ayudar.

 

 

Soluciones de software para la planificación de repuestos

El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

 

 

Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

 

Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

 

    Necesitas formar equipo con los algoritmos

    Hace más de cuarenta años, Smart Software estaba formada por tres amigos que trabajaban para iniciar una empresa en el sótano de una iglesia. Hoy, nuestro equipo se ha expandido para operar desde múltiples ubicaciones en Massachusetts, New Hampshire y Texas, con miembros del equipo en Inglaterra, España, Armenia e India. Como muchos de ustedes en sus trabajos, hemos encontrado formas de hacer que los equipos distribuidos trabajen para nosotros y para usted.

    Esta nota trata sobre un tipo diferente de trabajo en equipo: la colaboración entre usted y nuestro software que ocurre al alcance de su mano. A menudo escribo sobre el software en sí y lo que sucede "debajo del capó". Esta vez, mi tema es cuál es la mejor forma de asociarse con el software.

    Nuestro paquete de software, Smart Inventory Planning and Optimization (Smart IP&O™) es capaz de realizar cálculos enormemente detallados de la demanda futura y los parámetros de control de inventario (por ejemplo, puntos de reorden y cantidades de pedidos) que administrarían esa demanda de manera más efectiva. Pero se requiere su participación para aprovechar al máximo todo ese poder. Necesitas formar equipo con los algoritmos.

    Esa interacción puede adoptar varias formas. Puede comenzar simplemente evaluando cómo se encuentra ahora. Las funciones de redacción de informes en Smart IP&O (Smart Operational Analytics™) pueden recopilar y analizar todos sus datos transaccionales para medir sus indicadores clave de rendimiento (KPI), tanto financieros (por ejemplo, inversión en inventario) como operativos (por ejemplo, tasas de cumplimiento).

    El siguiente paso podría ser utilizar SIO (Smart Inventory Optimization™), el análisis de inventario dentro de SIP&O, para jugar juegos de “qué pasaría si” con el software. Por ejemplo, podría preguntar "¿Qué pasaría si redujéramos la cantidad del pedido del artículo 1234 de 50 a 40?" El software calcula los números para hacerle saber cómo se desarrollaría y luego usted reacciona. Esto puede resultar útil, pero ¿qué pasa si tienes que considerar 50.000 elementos? Querría hacer juegos hipotéticos para algunos elementos críticos, pero no para todos.

    El verdadero poder proviene del uso de la capacidad de optimización automática en SIO. Aquí puedes formar equipo con los algoritmos a escala. Utilizando su criterio empresarial, puede crear "grupos", es decir, colecciones de elementos que comparten algunas características críticas. Por ejemplo, podría crear un grupo para “repuestos críticos para clientes de servicios eléctricos” que consta de 1200 piezas. Luego, recurriendo nuevamente a su criterio comercial, podría especificar qué estándar de disponibilidad de artículos debe aplicarse a todos los artículos de ese grupo (por ejemplo, “al menos 95% de posibilidades de no desabastecerse en un año”). Ahora el software puede tomar el control y calcular automáticamente los mejores puntos de reorden y cantidades de pedidos para cada uno de esos artículos para lograr la disponibilidad de artículos requerida al menor costo total posible. Y eso, querido lector, es un poderoso trabajo en equipo.

     

     

    Repensar la precisión del pronóstico: un cambio de la precisión a las métricas de error

    Sin lugar a dudas, medir la precisión de los pronósticos es una parte importante del proceso de planificación de la demanda. Este cuadro de mando de pronóstico podría construirse basándose en uno de dos puntos de vista contrastantes para calcular métricas. El punto de vista del error pregunta: "¿a qué distancia estaba el pronóstico de lo real?" El punto de vista de la precisión pregunta: "¿Qué tan cerca estuvo el pronóstico de lo real?" Ambas son válidas, pero las métricas de error proporcionan más información.

    La precisión se representa como un porcentaje entre cero y 100, mientras que los porcentajes de error comienzan en cero pero no tienen límite superior. Los informes de MAPE (error porcentual absoluto medio) u otras métricas de error pueden denominarse informes de “precisión del pronóstico”, lo que desdibuja la distinción. Por lo tanto, es posible que desee saber cómo pasar del punto de vista del error al punto de vista de la precisión que defiende su empresa. Este blog describe cómo con algunos ejemplos.

    Las métricas de precisión se calculan de manera que cuando lo real es igual al pronóstico, la precisión es 100% y cuando el pronóstico es el doble o la mitad de lo real, entonces la precisión es 0%. Los informes que comparan el pronóstico con el real a menudo incluyen lo siguiente:

    • El actual
    • La previsión
    • Error unitario = Pronóstico – Real
    • Error absoluto = Valor absoluto del error unitario
    • Error absoluto % = Error Abs / Real, como %
    • Precisión % = 100% – Error absoluto %

    Mire un par de ejemplos que ilustran la diferencia en los enfoques. Digamos que Real = 8 y el pronóstico es 10.

    El error de unidad es 10 – 8 = 2

    Error absoluto de % = 2/8, como % = 0,25 * 100 = 25%

    Precisión = 100% – 25% = 75%.

    Ahora digamos que el real es 8 y el pronóstico es 24.

    El error de unidad es 24– 8 = 16

    Error absoluto de % = 16/8 como % = 2 * 100 = 200%

    Precisión = 100% – 200% = negativo se establece en 0%.

    En el primer ejemplo, las mediciones de precisión proporcionan la misma información que las mediciones de error, ya que el pronóstico y lo real ya están relativamente cerca. Pero cuando el error es más del doble del real, las mediciones de precisión llegan a cero. Indica correctamente que el pronóstico no era del todo exacto. Pero el segundo ejemplo es más preciso que el tercero, donde el valor real es 8 y el pronóstico es 200. Esa es una distinción que un rango de precisión de 0 a 100% no registra. En este último ejemplo:

    El error de unidad es 200 – 8 = 192

    Error absoluto de % = 192/8, como % = 24 * 100 = 2,400%

    Precisión = 100% – 2,400% = negativo se establece en 0%.

    Las métricas de error continúan proporcionando información sobre qué tan lejos está el pronóstico de lo real y posiblemente representan mejor la precisión del pronóstico.

    Alentamos a adoptar el punto de vista del error. Simplemente espera que un pequeño porcentaje de error indique que el pronóstico no estuvo lejos de lo real, en lugar de esperar un gran porcentaje de precisión para indicar que el pronóstico estuvo cerca de lo real. Este cambio de mentalidad ofrece los mismos conocimientos y al mismo tiempo elimina las distorsiones.

     

     

     

     

    Cada modelo de pronóstico es bueno para lo que está diseñado

    ​Cuándo se deben utilizar técnicas tradicionales de pronóstico extrapolativo.

    Con tanto entusiasmo en torno al nuevo aprendizaje automático (ML) y los métodos de pronóstico probabilístico, los métodos tradicionales de pronóstico estadístico “extrapolativo” o de “series de tiempo” parecen estar recibiendo la espalda. Sin embargo, vale la pena recordar que estas técnicas tradicionales (como el suavizado exponencial simple y doble, los promedios móviles lineales y simples y los modelos de Winters para artículos estacionales) a menudo funcionan bastante bien para datos de mayor volumen. Cada método es bueno para lo que fue diseñado. Simplemente aplique cada uno de manera apropiada, como por ejemplo, no lleve un cuchillo a un tiroteo y no use un martillo neumático cuando un simple martillo de mano será suficiente. 

    Los métodos extrapolativos funcionan bien cuando la demanda tiene un gran volumen y no es demasiado granular (es decir, la demanda se clasifica mensual o trimestralmente). También son muy rápidos y no utilizan tantos recursos informáticos como los métodos probabilísticos y de ML. Esto los hace muy accesibles.

    ¿Son los métodos tradicionales tan precisos como los métodos de pronóstico más nuevos? Smart ha descubierto que los métodos de extrapolación funcionan muy mal cuando la demanda es intermitente. Sin embargo, cuando la demanda es de mayor volumen, solo funcionan ligeramente peor que nuestros nuevos métodos probabilísticos cuando la demanda se divide mensualmente. Dada su accesibilidad, velocidad y el hecho de que va a aplicar anulaciones de pronóstico basadas en el conocimiento empresarial, la diferencia de precisión de referencia aquí no será material.

    La ventaja de los modelos más avanzados, como los métodos probabilísticos GEN2 de Smart, es cuando es necesario predecir patrones utilizando grupos más granulares, como datos diarios (o incluso semanales). Esto se debe a que los modelos probabilísticos pueden simular patrones de día de la semana, semana del mes y mes del año que se perderán con técnicas más simples. ¿Alguna vez ha intentado predecir la estacionalidad diaria con un modelo de Winter? Aquí hay una pista: no funcionará y requiere mucha ingeniería.

    Los métodos probabilísticos también brindan valor más allá del pronóstico de referencia porque generan escenarios para usar en las pruebas de estrés de los modelos de control de inventario. Esto los hace más apropiados para evaluar, por ejemplo, cómo un cambio en el punto de reorden afectará las probabilidades de desabastecimiento, las tasas de cumplimiento y otros KPI. Al simular miles de posibles demandas durante muchos plazos de entrega (que a su vez se presentan en forma de escenario), tendrá una idea mucho mejor de cómo funcionarán sus políticas de almacenamiento actuales y propuestas. Puede tomar mejores decisiones sobre dónde realizar aumentos y disminuciones de existencias específicas.

    Por lo tanto, no deseche lo viejo por lo nuevo todavía. Solo sepa cuándo necesita un martillo y cuándo necesita un martillo neumático.