Voorraadplanning wordt interessanter

De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Taiichi Ohno van Toyota wordt gecrediteerd voor het uitvinden van Just-In-Time (JIT) -productie in de jaren vijftig. JIT zorgt ervoor dat een fabrikant alleen produceert wat nodig is, alleen wanneer nodig en alleen in de benodigde hoeveelheid. Die innovatie heeft sindsdien grote gevolgen gehad, sommige goed, sommige minder.

Een recent artikel in de New York Times "How the World Ran out of Everything" beschrijft enkele van de "mindere" effecten. JIT heeft bijvoorbeeld de voorraadkosten zeer laag gehouden, waardoor het rendement op activa is verbeterd. Dit wordt op zijn beurt beloond door Wall Street, dus veel bedrijven hebben de afgelopen decennia hun voorraden drastisch verminderd. Gefocust als ze waren op financiën, negeerden veel bedrijven de risico's die inherent zijn aan het verminderen van voorraden tot het punt dat 'mager' begon te grenzen aan 'uitgemergeld'. Gecombineerd met de toegenomen globalisering en nieuwe risico's van leveringsonderbrekingen, zijn de voorraden in overvloed toegenomen.

Sommige industrieën zijn te ver gegaan, waardoor ze blootstaan aan disruptie. In een competitie om de laagste kosten te krijgen, hebben bedrijven onbedoeld hun risico geconcentreerd, onderbroken door tekorten aan grondstoffen of componenten en soms gedwongen om assemblagelijnen stop te zetten. Wall Street kijkt niet goed naar productiestops.

We weten allemaal dat willekeurige gebeurtenissen het probleem hebben vergroot. De eerste daarvan was de Covid-pandemie. Aangezien de pandemie de fabrieksactiviteiten heeft belemmerd en wanorde heeft veroorzaakt in de wereldwijde scheepvaart, worden veel economieën over de hele wereld gekweld door tekorten aan een enorm scala aan goederen – van computerchips tot hout tot kleding.

De schade wordt nog groter als er meer onverwachte dingen fout gaan. De blokkade van het Suezkanaal is een goed voorbeeld, het blokkeren van de belangrijkste handelsroute tussen Europa en Azië. Onlangs hebben cyberaanvallen een nieuwe laag van verstoring toegevoegd.

De reactie creëert zijn eigen problemen, net zoals de cyberaanval op de koloniale pijpleiding gastekorten veroorzaakte door paniekaankopen. Leveranciers beginnen langzamer dan normaal met het uitvoeren van bestellingen. Fabrikanten en distributeurs keren de koers om en vergroten hun voorraden en diversifiëren hun leveranciers om toekomstige voorraden te voorkomen. Het simpelweg uitbreiden van magazijnen biedt misschien niet de oplossing, en de noodzaak om te bepalen hoeveel voorraad moet worden aangehouden, wordt elke dag urgenter.Manager In Warehouse With Inventory Management Software

Dus hoe kun je een real-world plan voor JIT-inventarisatie uitvoeren te midden van al deze risico's en onzekerheden? De basis van uw reactie zijn uw bedrijfsgegevens. Onzekerheid heeft twee bronnen: vraag en aanbod. Voor beide heb je de feiten nodig.

Maak aan de aanbodzijde gebruik van de gegevens die u heeft over recente doorlooptijden van leveranciers, die de huidige turbulentie weerspiegelen. Gebruik geen gemiddelde waarden als u kansverdelingen kunt gebruiken die het volledige bereik van onvoorziene gebeurtenissen weergeven. Overweeg deze vergelijking. Leverancier A voert nu op betrouwbare wijze bestellingen uit in precies 10 dagen. Leverancier B is ook gemiddeld 10 dagen maar doet het met een 78%/22% mix van 7 en 21 dagen. Zowel A als B hebben een gemiddelde aanvullingsvertraging van 10 dagen, maar de operationele resultaten die ze opleveren zullen heel verschillend zijn. U kunt dit alleen herkennen als u waarschijnlijkheidsmodellen van voorraadprestaties gebruikt.

Aan de vraagzijde gelden soortgelijke overwegingen. Ten eerste, erken dat er mogelijk een grote verschuiving heeft plaatsgevonden in de aard van de vraag naar artikelen (statistici noemen dit een "regimeverandering"), dus verwijder uit uw analyse alle gegevens die de "goede oude tijd" vertegenwoordigen. Stop dan weer met denken in termen van gemiddelden. Hoewel de gemiddelde vraag belangrijk is, is deze geen voldoende beschrijving van het probleem waarmee u wordt geconfronteerd. Even belangrijk is de volatiliteit van de vraag. Volatiliteit is de reden dat u in de eerste plaats voorraad aanhoudt. Als de vraag volledig voorspelbaar zou zijn, zou u geen stockouts of overtollige voorraad hebben. Net zoals u de volledige waarschijnlijkheidsverdeling van doorlooptijden voor bevoorrading moet schatten, hebt u de volledige verdeling van vraagwaarden nodig.

Zodra u het bereik van variabiliteit in zowel vraag als aanbod begrijpt, kunt u met probabilistische prognoses rekening houden met verstoringen en ongebruikelijke gebeurtenissen. Software zet uw gegevens on demand en doorlooptijden om in een groot aantal scenario's die aangeven hoe uw volgende planningsperiode eruit zou kunnen zien. Op basis van die scenario's kan de software bepalen hoe uw doelen het beste kunnen worden bereikt voor statistieken als voorraadkosten en voorraadpercentages. Met behulp van oplossingen zoals Smart Inventory Optimization plant u vol vertrouwen op basis van uw beoogde voorraadrisico met minimale voorraadkosten. U kunt ook overwegen om de oplossing optimale serviceniveaudoelen te laten voorschrijven door de kosten van extra voorraad versus voorraadkosten te beoordelen.

Bij voorraadplanning kunnen we, net als in de wetenschap, niet ontsnappen aan de realiteit van onzekerheid en de impact van ongewone gebeurtenissen. We moeten dienovereenkomstig plannen: met software voor voorraadoptimalisatie kunt u het serviceniveau met de laagste kosten bepalen. Dit creëert een coherente, bedrijfsbrede inspanning die inzicht in de huidige activiteiten combineert met wiskundig correcte beoordelingen van toekomstige risico's en omstandigheden.

Voorraadplanning is "interessanter" geworden en vereist een grotere mate van risicobewustzijn en wendbaarheid. De juiste software kan daarbij helpen.

 

Laat een reactie achter

gerelateerde berichten

Smart Software Announces Next-Generation Patent

Smart Software kondigt patent van de volgende generatie aan

Smart Software is verheugd de toekenning van US Patent 11,656,887 aan te kondigen. Het patent leidt “technische oplossingen voor het analyseren van historische vraaggegevens van middelen in een technologieplatform om het beheer van een geautomatiseerd proces in het platform te vergemakkelijken.

Do your statistical forecasts suffer from the wiggle effect?

Hebben uw statistische prognoses last van het wiggle-effect?

Wat is het wiggle-effect? Het is wanneer uw statistische prognose de ups en downs die zijn waargenomen in uw vraaggeschiedenis onjuist voorspelt terwijl er echt geen patroon is. Het is belangrijk om ervoor te zorgen dat uw prognoses niet schommelen, tenzij er een echt patroon is. Hier is een transcriptie van een recente klant waar dit probleem werd besproken:

How to Handle Statistical Forecasts of Zero

Hoe om te gaan met statistische prognoses van nul

Een statistische voorspelling van nul kan veel verwarring veroorzaken bij voorspellers, vooral wanneer de historische vraag niet nul is. Natuurlijk, het is duidelijk dat de vraag naar beneden neigt, maar moet deze naar nul evolueren?

recente berichten

  • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
    In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
  • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
    De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
  • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
    Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
  • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
    Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
  • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
    Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
      In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
    • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
      De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
    • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
    • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

      Herdefinieer uitzonderingen en verfijn de planning om onzekerheid aan te pakken

      De slimme voorspeller

       Het nastreven van best practices op het gebied van vraagplanning,

      prognoses en voorraadoptimalisatie

      Voorraadplanning vanuit het perspectief van een natuurkundige

      In een perfecte wereld zou Just In Time (JIT) de geschikte oplossing zijn voor voorraadbeheer. Als je precies kunt voorspellen wat je nodig hebt en waar je het nodig hebt en je leveranciers kunnen krijgen wat je nodig hebt zonder vertraging, dan hoef je lokaal niet veel voorraad aan te houden. Maar zoals het gezegde luidt van de beroemde bokser Mike Tyson: "iedereen heeft een plan totdat ze in de mond worden geslagen." En de laatste klap in de mond voor de wereldwijde toeleveringsketen was de blokkade van het Suezkanaal van vorige week die $9.6B in de handel tegenhield en naar schatting $6.7M per minuut kostte[1]. Verstoringen als gevolg van deze en soortgelijke gebeurtenissen moeten worden gemodelleerd en in uw planning worden verantwoord.

      De veronderstelling dat je precies kunt toekomst voorspellen bleek uit de wetten van Isaac Newton. Sinds de jaren 1920, met de introductie van de kwantumfysica, werd onzekerheid fundamenteel voor ons begrip van de natuur. Onzekerheid is ingebouwd in de fundamentele realiteit. Zo moet het ook worden ingebouwd in processen voor vraag- en aanbodplanning. Maar al te vaak worden Black Swan-evenementen, zoals de blokkade van het Suezkanaal, vaak gezien als anomalieën en als gevolg daarvan worden ze buiten beschouwing gelaten bij de planning. Het is niet genoeg om achteraf terug te kijken en te verkondigen dat het had kunnen worden verwacht. Er moet iets worden gedaan om het optreden van andere dergelijke gebeurtenissen in de toekomst aan te pakken en de voorraadniveaus dienovereenkomstig te plannen.

      We moeten verder gaan dan het denken van "dunne staartverdeling", waarbij extreme uitkomsten worden verdisconteerd, en plannen maken voor "dikke staarten". Dus hoe voeren we een real-world JIT-plan uit als het gaat om het plannen van inventaris? Om dit te doen, is de eerste stap het inschatten van de realistische doorlooptijd om een artikel te verkrijgen. Schatting is echter moeilijk vanwege de onzekerheid over de doorlooptijd. Met behulp van actuele doorlooptijden van leveranciers in uw bedrijfsdatabase en externe gegevens, kunt u een verdeling van mogelijke toekomstige doorlooptijden en eisen binnen die doorlooptijden ontwikkelen. Probabilistische prognoses stelt u in staat om rekening te houden met verstoringen en ongebruikelijke gebeurtenissen door uw schattingen niet te beperken tot wat uitsluitend is waargenomen op basis van uw eigen kortetermijngegevens over vraag en doorlooptijd. U kunt voor elke gebeurtenis mogelijke uitkomsten met bijbehorende kansen genereren.

      Zodra u een schatting heeft van de doorlooptijd en vraagverdeling, kunt u dat doen specificeer het serviceniveau je moet hebben voor dat onderdeel. Het gebruik van oplossingen zoals Slimme voorraadoptimalisatie (SIO), kunt u vol vertrouwen bevoorraden op basis van het beoogde voorraadrisico met minimale voorraadkosten. U kunt ook overwegen om de oplossing optimale serviceniveaudoelen te laten voorschrijven door de kosten van extra voorraad versus de kosten van voorraaduitval te beoordelen.

      Tot slot moeten we, zoals ik al heb opgemerkt, accepteren dat we nooit alle onzekerheid kunnen wegnemen. Als natuurkundige ben ik altijd geïntrigeerd geweest door het feit dat er, zelfs op de meest basale niveaus van de werkelijkheid zoals we die vandaag kennen, nog steeds onzekerheid bestaat. Albert Einstein geloofde in zekerheid (determinisme) in de natuurkundige wet. Als hij voorraadbeheerder was geweest, had hij misschien voor JIT gepleit omdat hij vond dat natuurkundige wetten perfecte voorspelbaarheid mogelijk zouden moeten maken. Hij zei beroemd: "God speelt niet met dobbelstenen." Of zou het mogelijk kunnen zijn dat het universum waarin we bestaan een "zwarte zwaan" -gebeurtenis was in een eerder "multiversum" dat een bepaald soort universum voortbracht waardoor we konden bestaan.

      Bij voorraadplanning kunnen we, net als in de wetenschap, niet ontsnappen aan de realiteit van onzekerheid en de impact van ongewone gebeurtenissen. We moeten dienovereenkomstig plannen.

       

      [1] https://www.bbc.com/news/business-56559073#:~:text=Looking%20at%20the%20bigger%20picture,0.2%20to%200.4%20percentage%20points.

      Laat een reactie achter

      gerelateerde berichten

      Smart Software Announces Next-Generation Patent

      Smart Software kondigt patent van de volgende generatie aan

      Smart Software is verheugd de toekenning van US Patent 11,656,887 aan te kondigen. Het patent leidt “technische oplossingen voor het analyseren van historische vraaggegevens van middelen in een technologieplatform om het beheer van een geautomatiseerd proces in het platform te vergemakkelijken.

      Do your statistical forecasts suffer from the wiggle effect?

      Hebben uw statistische prognoses last van het wiggle-effect?

      Wat is het wiggle-effect? Het is wanneer uw statistische prognose de ups en downs die zijn waargenomen in uw vraaggeschiedenis onjuist voorspelt terwijl er echt geen patroon is. Het is belangrijk om ervoor te zorgen dat uw prognoses niet schommelen, tenzij er een echt patroon is. Hier is een transcriptie van een recente klant waar dit probleem werd besproken:

      How to Handle Statistical Forecasts of Zero

      Hoe om te gaan met statistische prognoses van nul

      Een statistische voorspelling van nul kan veel verwarring veroorzaken bij voorspellers, vooral wanneer de historische vraag niet nul is. Natuurlijk, het is duidelijk dat de vraag naar beneden neigt, maar moet deze naar nul evolueren?

      recente berichten

      • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
        In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
      • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
        De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
      • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
        Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
      • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
        Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
      • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
        Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

        Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

        • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
          In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
        • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
          De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
        • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
          Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
        • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
          In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]