Het gebruik van belangrijke prestatievoorspellingen om het voorraadbeleid te plannen

Ik kan me niet voorstellen dat ik een voorraadplanner ben op het gebied van reserveonderdelen, distributie of productie en dat ik veiligheidsvoorraden, bestelpunten en bestelsuggesties moet creëren zonder gebruik te maken van belangrijke prestatievoorspellingen van serviceniveaus, opvullingspercentages en voorraadkosten:

Using Key Performance Predictions to Plan Stocking Policies Iventory

De Inventory Optimization-oplossing van Smart genereert kant-en-klare belangrijke prestatievoorspellingen die op dynamische wijze simuleren hoe uw huidige voorraadbeleid zal presteren ten opzichte van mogelijke toekomstige eisen. Het rapporteert hoe vaak u voorraad opslaat, de omvang van de voorraad, de waarde van uw voorraad, opslagkosten en meer. Hiermee kunt u problemen proactief identificeren voordat ze zich voordoen, zodat u op korte termijn corrigerende maatregelen kunt nemen. U kunt 'wat-als'-scenario's creëren door doelgerichte serviceniveaus in te stellen en doorlooptijden aan te passen, zodat u de voorspelde impact van deze wijzigingen kunt zien voordat u zich ertoe verbindt.

Bijvoorbeeld,

  • U kunt zien of een voorgestelde overstap van het huidige serviceniveau van 90% naar een gericht serviceniveau van 97% financieel voordelig is
  • U kunt automatisch vaststellen of een ander serviceniveaudoel nog winstgevender is voor uw bedrijf dan het voorgestelde doel.
  • U kunt precies zien hoeveel u nodig heeft om uw herbestelpunten te verhogen om een langere doorlooptijd mogelijk te maken.

 

Als u planners niet van de juiste tools voorziet, worden ze gedwongen voorraadbeleid en veiligheidsvoorraadniveaus in te stellen en vraagprognoses te maken in Excel of met verouderde ERP-functionaliteit. Als u niet weet hoe het beleid naar verwachting zal presteren, is uw bedrijf slecht uitgerust om de voorraad correct toe te wijzen. Neem vandaag nog contact met ons op en ontdek hoe wij u kunnen helpen!

 

Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen

Wat is er anders aan voorraadplanning voor onderhoud, reparatie en bewerkingen (MRO) vergeleken met voorraadplanning in productie- en distributieomgevingen? Kortom, het is de aard van de vraagpatronen in combinatie met het gebrek aan bruikbare bedrijfskennis.

Vraagpatronen

Fabrikanten en distributeurs hebben de neiging zich te concentreren op de topverkopers die het grootste deel van hun omzet genereren. Er is doorgaans een grote vraag naar deze artikelen, die relatief eenvoudig te voorspellen zijn met traditionele tijdreeksmodellen die inspelen op voorspelbare trends en/of seizoensinvloeden. Daarentegen hebben MRO-planners bijna altijd te maken met een intermitterende vraag, die schaarser, willekeuriger en moeilijker te voorspellen is. Bovendien zijn de fundamentele hoeveelheden van belang verschillend. MRO-planners geven uiteindelijk het meeste om de ‘wanneer’-vraag: wanneer gaat er iets kapot? Terwijl de anderen zich concentreren op de “hoeveel” vraag van verkochte eenheden.

 

Zakelijke kennis

Productie- en distributieplanners kunnen vaak rekenen op het verzamelen van klant- en verkoopfeedback, die kan worden gecombineerd met statistische methoden om de nauwkeurigheid van de prognoses te verbeteren. Aan de andere kant zijn lagers, tandwielen, verbruiksartikelen en repareerbare onderdelen zelden bereid hun mening te delen. Met MRO is bedrijfskennis over welke onderdelen nodig zijn en wanneer niet betrouwbaar (behalve gepland onderhoud wanneer verbruiksartikelen in grotere volumes worden vervangen). Het succes van de MRO-voorraadplanning gaat dus slechts zo ver als het vermogen van hun waarschijnlijkheidsmodellen om toekomstig gebruik te voorspellen. En omdat de vraag zo wisselend is, kunnen ze met traditionele benaderingen niet voorbij Go komen.

 

Methoden voor MRO

In de praktijk is het gebruikelijk dat MRO- en activa-intensieve bedrijven hun voorraden beheren door hun toevlucht te nemen tot statische Min/Max-niveaus op basis van subjectieve veelvouden van gemiddeld gebruik, aangevuld met incidentele handmatige aanpassingen op basis van onderbuikgevoelens. Het proces wordt een slechte mix van statisch en reactief, met als resultaat dat er veel tijd en geld wordt verspild aan het versnellen.

Er zijn alternatieve planningsmethoden die meer op wiskunde en data zijn gebaseerd, hoewel deze stijl van plannen bij MRO minder gebruikelijk is dan in de andere domeinen. Er zijn twee toonaangevende benaderingen voor het modelleren van defecten aan onderdelen en machines: modellen gebaseerd op de betrouwbaarheidstheorie en modellen voor ‘conditiegebaseerd onderhoud’ gebaseerd op realtime monitoring.

 

Betrouwbaarheidsmodellen

Betrouwbaarheidsmodellen zijn de eenvoudigste van de twee en vereisen minder gegevens. Ze gaan ervan uit dat alle artikelen van hetzelfde type, bijvoorbeeld een bepaald reserveonderdeel, statistisch gelijkwaardig zijn. Hun belangrijkste onderdeel is een ‘gevarenfunctie’, die het risico op falen in het volgende korte tijdsinterval beschrijft. De gevarenfunctie kan worden vertaald in iets dat beter geschikt is voor besluitvorming: de ‘overlevingsfunctie’, wat de waarschijnlijkheid is dat het item nog steeds werkt na X gebruiksduur (waarbij X kan worden uitgedrukt in dagen, maanden, kilometers, gebruik, enz.). Figuur 1 toont een constante gevaarfunctie en de bijbehorende overlevingsfunctie.

 

MRO and Spare Parts function and its survival function

Figuur 1: Constante gevarenfunctie en zijn overlevingsfunctie

 

Een gevarenfunctie die niet verandert, houdt in dat alleen willekeurige ongelukken een storing veroorzaken. Een gevaarfunctie die in de loop van de tijd toeneemt, impliceert daarentegen dat het artikel versleten is. En een afnemende gevaarfunctie impliceert dat een item zich vestigt. Figuur 2 toont een toenemende gevaarfunctie en de bijbehorende overlevingsfunctie.

 

MRO and Spare Parts Increasing hazard function and survival function

Figuur 2: Toenemende gevarenfunctie en zijn overlevingsfunctie

 

Betrouwbaarheidsmodellen worden vaak gebruikt voor goedkope onderdelen, zoals mechanische bevestigingsmiddelen, waarvan de vervanging misschien niet moeilijk of duur is (maar toch essentieel kan zijn).

 

Conditiegebaseerd onderhoud

Modellen gebaseerd op real-time monitoring worden gebruikt ter ondersteuning van condition-based onderhoud (CBM) voor dure zaken als straalmotoren. Deze modellen gebruiken gegevens van sensoren die in de items zelf zijn ingebed. Dergelijke gegevens zijn doorgaans complex en bedrijfseigen, evenals de waarschijnlijkheidsmodellen die door de gegevens worden ondersteund. Het voordeel van real-time monitoring is dat je problemen kunt zien aankomen, dat wil zeggen dat de verslechtering zichtbaar wordt gemaakt en dat voorspellingen kunnen voorspellen wanneer het item de rode lijn zal bereiken en daarom uit het speelveld moet worden gehaald. Dit maakt geïndividualiseerd, proactief onderhoud of vervanging van het artikel mogelijk.

Figuur 3 illustreert het soort gegevens dat in CBM wordt gebruikt. Elke keer dat het systeem wordt gebruikt, is er een bijdrage aan de cumulatieve slijtage ervan. (Houd er echter rekening mee dat gebruik soms de staat van het apparaat kan verbeteren, bijvoorbeeld wanneer regen een machine koel houdt). U kunt de algemene trend naar boven zien richting een rode lijn, waarna het apparaat onderhoud nodig heeft. U kunt de cumulatieve slijtage extrapoleren om in te schatten wanneer deze de rode lijn zal bereiken en dienovereenkomstig plannen.

 

MRO and Spare Parts real-time monitoring for condition-based maintenance

Figuur 3: Ter illustratie van real-time monitoring voor conditiegebaseerd onderhoud

 

Voor zover ik weet, maakt niemand zulke modellen van klanten met eindproducten om te voorspellen wanneer en hoeveel ze de volgende keer zullen bestellen, misschien omdat de klanten er bezwaar tegen zouden hebben om voortdurend hersenmonitors te dragen. Maar CBM, met zijn complexe monitoring en modellering, wint aan populariteit voor systemen die niet kunnen falen, zoals straalmotoren. Ondertussen hebben klassieke betrouwbaarheidsmodellen nog steeds veel waarde voor het beheer van grote vloten met goedkopere maar nog steeds essentiële artikelen.

 

Smart's aanpak
De bovengenoemde op condities gebaseerde onderhouds- en betrouwbaarheidsbenaderingen vereisen een buitensporige last voor het verzamelen en opschonen van gegevens die veel MRO-bedrijven niet aankunnen. Voor die bedrijven biedt Smart een aanpak waarbij geen betrouwbaarheidsmodellen hoeven te worden ontwikkeld. In plaats daarvan exploiteert het gebruiksgegevens op een andere manier. Het maakt gebruik van op waarschijnlijkheid gebaseerde modellen van zowel gebruik als doorlooptijden van leveranciers om duizenden mogelijke scenario's voor doorlooptijden van bevoorrading en vraag te simuleren. Het resultaat is een nauwkeurige verdeling van de vraag en de doorlooptijden voor elk verbruiksonderdeel, die kan worden benut om de optimale voorraadparameters te bepalen. Figuur 4 toont een simulatie die begint met een scenario voor de vraag naar reserveonderdelen (bovenste grafiek) en vervolgens een scenario oplevert van voorhanden aanbod voor bepaalde keuzes van Min/Max-waarden (onderste lijn). Key Performance Indicators (KPI's) kunnen worden geschat door de resultaten van veel van dergelijke simulaties te middelen.

MRO and Spare Parts simulation of demand and on-hand inventory

Figuur 4: Een voorbeeld van een simulatie van de vraag naar reserveonderdelen en de voorhanden voorraad

U kunt hier lezen over de aanpak van Smart bij het voorspellen van reserveonderdelen: https://smartcorp.com/wp-content/uploads/2019/10/Probabilistic-Forecasting-for-Intermittent-Demand.pdf

 

 

Software voor planning van reserveonderdelen

De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

 

 

Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

 

Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

 

    Wat is voorraadplanning? Een kort woordenboek met voorraadgerelateerde termen

    Voorraadbeheer betreft het beheer van fysieke goederen, waarbij de nadruk ligt op een nauwkeurige en actuele telling van elk item in de voorraad en waar het zich bevindt, evenals het efficiënt ophalen van items. Relevante technologieën zijn onder meer computerdatabases, streepjescodes, Radio Frequency Identification (RFID) en het gebruik van robots voor het ophalen.

    Voorraadbeheer heeft tot doel het door de onderneming gedefinieerde voorraadbeleid uit te voeren. Voorraadbeheer wordt vaak uitgevoerd met behulp van ERP-systemen (Enterprise Resource Planning), die inkooporders, productieorders en rapportage genereren met informatie over de huidige voorraad die aanwezig is, binnenkomt en kan worden besteld.

    Voorraadplanning stelt operationele beleidsdetails in, zoals artikelspecifieke bestelpunten en bestelhoeveelheden, en voorspelt de toekomstige vraag en doorlooptijden van leveranciers. Belangrijke componenten van een voorraadplanningsproces zijn onder meer wat-als-scenario's voor het verrekenen van voorhanden voorraad, het analyseren van de invloed van veranderingen in de vraag, doorlooptijden en voorraadbeleid op de bestellingen, en het beheren van uitzonderingen en onvoorziene gebeurtenissen.

    Inventory Optimization maakt gebruik van een analytisch proces dat waarden berekent voor voorraadplanningsparameters (bijvoorbeeld bestelpunten en bestelhoeveelheden) die een numeriek doel of 'objectieve functie' optimaliseren zonder een numerieke beperking te schenden. Een objectieve functie zou bijvoorbeeld kunnen zijn om de laagst mogelijke exploitatiekosten voor de voorraad te bereiken (gedefinieerd als de som van de voorraadkosten, de bestelkosten en de tekortkosten), en de beperking zou kunnen zijn om een opvullingspercentage van ten minste 90% te bereiken. Met behulp van een wiskundig model van het voorraadsysteem en waarschijnlijkheidsvoorspellingen van de vraag naar artikelen kan voorraadoptimalisatie snel en automatisch voorstellen hoe duizenden voorraadartikelen het beste kunnen worden beheerd.

    Hoe gaat uw ERP-systeem om met veiligheidsvoorraad?

    Wordt veiligheidsvoorraad beschouwd als noodreserve of als dagelijkse buffer tegen pieken in de vraag? Het verschil kennen en uw ERP correct configureren, zal een groot verschil maken voor uw bedrijfsresultaten.

    De Safety Stock veld in je ERP systeem kan heel verschillende dingen betekenen, afhankelijk van de configuratie. Het niet begrijpen van deze verschillen en hoe ze uw winst beïnvloeden, is een veelvoorkomend probleem dat we hebben gezien bij implementaties van onze software.

    Het implementeren van software voor voorraadoptimalisatie begint met nieuwe klanten die de technische implementatie voltooien om de gegevensstroom op gang te brengen. Vervolgens krijgen ze gebruikerstraining en besteden ze weken aan het zorgvuldig configureren van hun initiële veiligheidsvoorraden, bestelniveaus en consensusvraagprognoses met Smart IP&O. Het team raakt vertrouwd met Smart's Key Performance Forecasts (KPP's) voor serviceniveaus, bestelkosten en beschikbare voorraad, die allemaal worden voorspeld met behulp van het nieuwe voorraadbeleid.

    Maar wanneer ze het beleid en de prognoses opslaan in hun ERP-testsysteem, zijn de voorgestelde bestellingen soms veel groter en komen ze vaker voor dan ze hadden verwacht, wat de verwachte voorraadkosten opdrijft.

    Wanneer dit gebeurt, is de primaire boosdoener de manier waarop het ERP is geconfigureerd om veiligheidsvoorraad te behandelen. Door op de hoogte te zijn van deze configuratie-instellingen kunnen planningsteams de verwachtingen beter stellen en de verwachte resultaten bereiken met minder inspanning (en reden tot ongerustheid!).

    Dit zijn de drie veelvoorkomende voorbeelden van configuraties van ERP-veiligheidsvoorraden:

    Configuratie 1. Veiligheidsvoorraad wordt behandeld als noodvoorraad dat kan niet geconsumeerd worden. Als een inbreuk op de veiligheidsvoorraad wordt voorspeld, dwingt het ERP-systeem een spoedprocedure af, ongeacht de kosten, zodat de aanwezige voorraad nooit onder de veiligheidsvoorraad komt, zelfs als een geplande ontvangst al in bestelling is en binnenkort zal aankomen.

    Configuratie 2. Veiligheidsvoorraad wordt behandeld als Buffervoorraad die is ontworpen om te worden geconsumeerd. Het ERP-systeem zal een bestelling plaatsen wanneer een inbreuk op de veiligheidsvoorraad wordt voorspeld, maar de voorhanden voorraad mag onder de veiligheidsvoorraad dalen. De buffervoorraad beschermt tegen stockout tijdens de bevoorradingsperiode (dwz de doorlooptijd).

    Configuratie 3. Veiligheidsvoorraad wordt door het systeem genegeerd en behandeld als een visuele weergave planningshulp of vuistregel. Het wordt genegeerd door de berekeningen van de leveringsplanning, maar wordt door de planner gebruikt om handmatige beoordelingen te maken van wanneer er besteld moet worden.

    Opmerking: we raden nooit aan om het veiligheidsvoorraadveld te gebruiken zoals beschreven in Configuratie 3. In de meeste gevallen waren deze configuraties niet bedoeld, maar het resultaat van jarenlange improvisatie die ertoe hebben geleid dat het ERP op een niet-standaard manier werd gebruikt. Over het algemeen zijn deze velden ontworpen om de aanvullingsberekeningen programmatisch te beïnvloeden. De focus van ons gesprek zal dus liggen op configuraties 1 en 2. 

    Systemen voor prognoses en inventarisoptimalisatie zijn ontworpen om prognoses te berekenen die anticiperen op voorraadafname en vervolgens veiligheidsvoorraden te berekenen die voldoende zijn om bescherming te bieden tegen variabiliteit in vraag en aanbod. Dit betekent dat de veiligheidsvoorraad bedoeld is om te worden gebruikt als een beschermende buffer (configuratie 2) en niet als noodsituatie schaars (configuratie 3). Het is ook belangrijk om te begrijpen dat, door het ontwerp, de veiligheidsvoorraad zal worden geconsumeerd ongeveer 50% van die tijd.

    Waarom 50%? Omdat werkelijke bestellingen de helft van de tijd een onbevooroordeelde prognose zullen overschrijden. Zie onderstaande afbeelding om dit te illustreren. Een "goede" prognose zou de waarde moeten opleveren die het dichtst bij de werkelijke vraag komt, zodat de werkelijke vraag hoger of lager zal zijn zonder vooringenomenheid in beide richtingen.

     

    How does your ERP system treat safety stock 1

     

    Als u uw ERP-systeem zo heeft geconfigureerd dat het verbruik van veiligheidsvoorraad correct is toegestaan, dan kan de voorhanden voorraad er uitzien zoals in de onderstaande grafiek. Houd er rekening mee dat een deel van de veiligheidsvoorraad is verbruikt, maar een stockout is vermeden. Het serviceniveau dat u nastreeft bij het berekenen van de veiligheidsvoorraad, bepaalt hoe vaak u uw voorraad moet aanvullen voordat de aanvullingsorder arriveert. De gemiddelde voorraad is in dit scenario ongeveer 60 eenheden over de tijdshorizon.

     

    How does your ERP system treat safety stock 2

     

    Als uw ERP-systeem is geconfigureerd om niet het verbruik van de veiligheidsvoorraad toestaat en de ingevoerde hoeveelheid in het veld voor de veiligheidsvoorraad meer behandelt als noodreserves, dan heb je een enorme overvoorraad! Uw beschikbare voorraad ziet er uit als in de onderstaande grafiek, waarbij bestellingen worden versneld zodra een inbreuk op de veiligheidsvoorraad wordt verwacht. De gemiddelde voorraad is ongeveer 90 eenheden, een toename van 50% in vergelijking met toen u toestond dat veiligheidsvoorraad werd verbruikt.

     

    How does your ERP system treat safety stock 3

     

    Bottom Line-strategieën voor de planning van reserveonderdelen

    Het beheer van reserveonderdelen brengt tal van uitdagingen met zich mee, zoals onverwachte storingen, veranderende schema's en inconsistente vraagpatronen. Traditionele prognosemethoden en handmatige benaderingen zijn niet effectief in het omgaan met deze complexiteit. Om deze uitdagingen het hoofd te bieden, schetst deze blog de belangrijkste strategieën die prioriteit geven aan serviceniveaus, probabilistische methoden gebruiken om bestelpunten te berekenen, het voorraadbeleid regelmatig aanpassen en een speciaal planningsproces implementeren om overmatige voorraad te voorkomen. Verken deze strategieën om de inventaris van reserveonderdelen te optimaliseren en de operationele efficiëntie te verbeteren.

    Onder aan de streep vooraf

    1. Voorraadbeheer is Risicomanagement.

    2. Kan risico's niet goed of op schaal beheren subjectieve planning - Noodzaak om service versus kosten te kennen.

    3. Dat is het niet variabiliteit van vraag en aanbod dat is het probleem – het is hoe je ermee omgaat.

    4. Reserveonderdelen hebben periodieke vraag naar dus traditionele methoden werken niet.

    5.Vuistregel benaderingen houden geen rekening met de variabiliteit van de vraag en wijzen voorraad verkeerd toe.

    6.Gebruik Service Level Driven Planning  (afwegingen tussen service en kosten) om voorraadbeslissingen te stimuleren.

    7.Probabilistisch benaderingen zoals Bootstrapping nauwkeurige schattingen van bestelpunten opleveren.

    8.Onderdelen classificeren en wijs doelen op serviceniveau toe per klasse.

    9.Kalibreer vaak opnieuw - duizenden onderdelen hebben oude, verouderde bestelpunten.

    10.Herstelbare onderdelen speciale behandeling nodig hebben.

     

    Concentreer u op de echte grondoorzaken

    Bottom Line strategies for Spare Parts Planning Causes

    Intermittent Demand

    Bottom Line strategies for Spare Parts Planning Intermittent Demand

     

    • Langzaam bewegend, onregelmatig of sporadisch met een groot percentage nulwaarden.
    • Waarden die niet gelijk zijn aan nul worden willekeurig gemengd – spikes zijn groot en gevarieerd.
    • Is niet klokvormig (de vraag is niet normaal verdeeld rond het gemiddelde.)
    • Ten minste 70% van de onderdelen van een typisch nutsbedrijf wordt met tussenpozen gevraagd.

    Bottom Line strategies for Spare Parts Planning 4

     

    Normale vraag

    Bottom Line strategies for Spare Parts Planning Intermittent Demand

    • Zeer weinig periodes zonder vraag (uitzondering zijn seizoensgebonden onderdelen.)
    • Vertoont vaak trend-, seizoens- of cyclische patronen.
    • Lagere niveaus van vraagvariabiliteit.
    • Is klokvormig (de vraag is normaal verdeeld rond het gemiddelde.)

    Bottom Line strategies for Spare Parts Planning 5

    Ga niet af op gemiddelden

    Bottom Line strategies for Spare Parts Planning Averages

    • OK voor het bepalen van typisch gebruik gedurende langere tijd.
    • Voorspelt vaak meer "nauwkeurig" dan sommige geavanceerde methoden.
    • Maar... onvoldoende om te bepalen wat je in voorraad moet hebben.

     

    Buffer niet met veelvouden van gemiddelden

    Voorbeeld: twee even belangrijke onderdelen, dus laten we ze hetzelfde behandelen.
    We zullen meer bestellen wanneer Voorraad ≤ 2 x Gem. Levertijd Vraag.

    Bottom Line strategies for Spare Parts Planning Multiple Averages

     

    Gebruik Service Level-afwegingscurven om de veiligheidsvoorraad te berekenen

    Bottom Line strategies for Spare Parts Planning Service Level

    Standaard Normale Kansen

    OK voor normale vraag. Werkt niet met periodieke vraag!

    Bottom Line strategies for Spare Parts Planning Standard Probabilities

     

    Gebruik geen normale (klokvormige) verdelingen

    • U krijgt de afwegingscurve verkeerd:

    - u richt zich bijvoorbeeld op 95% maar bereikt 85%.

    - u richt zich bijvoorbeeld op 99% maar bereikt 91%.

    • Dit is een enorme misser met kostbare implicaties:

    – U slaat vaker een voorraad op dan verwacht.

    – U begint met het toevoegen van subjectieve buffers ter compensatie en vervolgens met overstock.

    – Gebrek aan vertrouwen/twijfelen aan output verlamt de planning.

     

    Waarom traditionele methoden mislukken bij intermitterende vraag: 

    Traditionele methoden zijn niet ontworpen om kernproblemen in het beheer van reserveonderdelen aan te pakken.

    Behoefte: Kansverdeling (niet klokvormig) van vraag over variabele doorlooptijd.

    • Get: Voorspelling van gemiddeld vraag in elke maand, geen totaal over de doorlooptijd.
    • Get: vastgeschroefd model van variabiliteit, meestal het normale model, meestal verkeerd.

    Behoefte: blootstelling van afwegingen tussen beschikbaarheid van artikelen en voorraadkosten.

    • Krijg: niets van dit alles; krijg in plaats daarvan veel inconsistente, ad-hocbeslissingen.

     

    Gebruik statistische bootstrapping om de verdeling te voorspellen:

    Benut vervolgens de distributie om het voorraadbeleid te optimaliseren.

    Bottom Line strategies for Spare Parts Planning Predict Distribution

     

    Hoe werkt Bootstrapping?

    24 maanden historische vraaggegevens.

    Bottom Line strategies for Spare Parts Planning Bootstrapping 1

    Bootstrap-scenario's voor een doorlooptijd van 3 maanden.

    Bottom Line strategies for Spare Parts Planning Bootstrapping 2

    Bootstrapping bereikt het doel van het serviceniveau met een nauwkeurigheid van bijna 100%!

    • Nationale opslagoperatie.

    Taak: voorraadniveaus voorspellen voor 12.000 periodiek gevraagde SKU's op serviceniveaus 95% en 99%

    Resultaten:

    Op serviceniveau 95% was 95.23% niet op voorraad.

    Op serviceniveau 99% was 98.66% niet op voorraad.

    Dit betekent dat u kunt vertrouwen op output om verwachtingen te scheppen en met vertrouwen gerichte voorraadaanpassingen door te voeren die de voorraad verlagen en de service verbeteren.

     

    Stel doelserviceniveaus in op basis van bestelfrequentie en -omvang

    Set Target Service Levels According to Order Frequency

     

    Herbestelpunten regelmatig opnieuw kalibreren

    • Statische ROP's veroorzaken overschotten en tekorten.
    • Naarmate de doorlooptijd toeneemt, neemt ook de ROP toe en vice versa.
    • Naarmate het gebruik afneemt, moet de ROP dat ook doen en vice versa.
    • Hoe langer u wacht met herijken, hoe groter de onbalans.
    • Bergen onderdelen te vroeg of te laat besteld.
    • Verspilt de tijd van kopers door de verkeerde bestellingen te plaatsen.
    • Wekt wantrouwen in systemen en dwingt gegevenssilo's af.

    Recalibrate Reorder Points Frequently

    Doe plannen draaibaar (Onderdelen repareren) Anders

    Do Plan Rotables (Repair Parts) Differently

     

    Overzicht

    1. Voorraadbeheer is Risicomanagement.

    2. Kan risico's niet goed of op schaal beheren subjectieve planning - Noodzaak om service versus kosten te kennen.

    3. Dat is het niet variabiliteit van vraag en aanbod dat is het probleem – het is hoe je ermee omgaat.

    4. Reserveonderdelen hebben periodieke vraag naar dus traditionele methoden werken niet.

    5.Vuistregel benaderingen houden geen rekening met de variabiliteit van de vraag en wijzen voorraad verkeerd toe.

    6.Gebruik Service Level Driven Planning  (afwegingen tussen service en kosten) om voorraadbeslissingen te stimuleren.

    7.Probabilistisch benaderingen zoals Bootstrapping nauwkeurige schattingen van bestelpunten opleveren.

    8.Onderdelen classificeren en wijs doelen op serviceniveau toe per klasse.

    9.Kalibreer vaak opnieuw - duizenden onderdelen hebben oude, verouderde bestelpunten.

    10.Herstelbare onderdelen speciale behandeling nodig hebben.

     

    Software voor planning van reserveonderdelen

    De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

    Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

     

     

    Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

     

    Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.