Onthul uw werkelijke voorraadplanning en prognosebeleid door deze 10 vragen te beantwoorden

De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

In onze vorige blog stelden we de vraag: Hoe weet je zeker dat je echt een beleid hebt voor voorraadplanning en vraagvoorspelling? We legden uit hoe het gebrek aan begrip van een organisatie over de basisprincipes (hoe een prognose tot stand komt, hoe veiligheidsvoorraadbuffers worden bepaald en hoe/waarom deze waarden worden aangepast) bijdraagt aan slechte prognosenauwkeurigheid, verkeerd toegewezen voorraad en gebrek aan vertrouwen in het geheel Verwerken.

In deze blog bekijken we 10 specifieke vragen die u kunt stellen om erachter te komen wat er echt speelt in uw bedrijf. We beschrijven de typische antwoorden die worden gegeven wanneer er niet echt een beleid voor prognoses/voorraadplanning bestaat, leggen uit hoe deze antwoorden moeten worden geïnterpreteerd en geven duidelijk advies over wat u eraan kunt doen.

Begin altijd met een simpele hypothetisch voorbeeld. Als u zich concentreert op een specifiek probleem dat u zojuist hebt ervaren, zal dit ongetwijfeld defensieve antwoorden uitlokken die het volledige verhaal verbergen. Het doel is om de daadwerkelijke benadering te ontdekken die wordt gebruikt om inventaris en prognoses te plannen die in de mentale wiskunde of spreadsheets is ingebakken. Hier is een voorbeeld:

Stel dat u 100 eenheden bij de hand heeft, de doorlooptijd om aan te vullen 3 maanden is en de gemiddelde maandelijkse vraag 20 eenheden is? Wanneer bestel je meer? Hoeveel zou jij bestellen? Hoe zal uw antwoord veranderen als de verwachte ontvangsten van 10 per maand zouden aankomen? Hoe verandert uw antwoord als het artikel een A-, B- of C-artikel is, de prijs van het artikel hoog of laag is, de doorlooptijd van het artikel lang of kort is? Simpel gezegd, wanneer u een productietaak plant of een nieuwe bestelling plaatst bij een leverancier, waarom deed u dat dan? Wat was de aanleiding voor de beslissing om meer te krijgen? Welke planningsinputs werden overwogen?

Wanneer u antwoorden op de bovenstaande vraag krijgt, concentreer u dan op het vinden van antwoorden op de volgende vragen:

1. Wat is de onderliggende aanvullingsbenadering? Dit is meestal een van Min/Max, prognose/veiligheidsvoorraad, bestelpunt/bestelhoeveelheid, periodieke beoordeling/bestelling tot of zelfs een vreemde combinatie

2. Hoe worden de planningsparameters, zoals vraagprognoses, bestelpunten of Min/Max, daadwerkelijk berekend? Het is niet voldoende om te weten dat u Min/Max gebruikt. U moet precies weten hoe deze waarden worden berekend. Antwoorden als “We gebruiken geschiedenis” of “We gebruiken een gemiddelde” zijn niet specifiek genoeg. U hebt antwoorden nodig die duidelijk aangeven hoe geschiedenis wordt gebruikt. Bijvoorbeeld, “We nemen een gemiddelde van de afgelopen 6 maanden, delen dat door 30 om een daggemiddelde te krijgen en vermenigvuldigen dat met de doorlooptijd in dagen. Voor 'A'-artikelen vermenigvuldigen we vervolgens de gemiddelde doorlooptijd met 2 en voor 'B'-artikelen gebruiken we een vermenigvuldiger van 1,5.” (Hoewel dat geen bijzonder goede technische benadering is, heeft het tenminste een duidelijke logica.)

Zodra u een goed gedefinieerd beleid heeft, kunt u de zwakke punten identificeren om het te verbeteren. Maar als het gegeven antwoord niet veel verder komt dan “We gebruiken geschiedenis”, dan heb je geen beleid om mee te beginnen. Uit antwoorden blijkt vaak dat verschillende planners geschiedenis op verschillende manieren gebruiken. Sommigen houden alleen rekening met de meest recente vraag, anderen slaan misschien in op basis van het gemiddelde van de perioden met de hoogste vraag, enz. Met andere woorden, het kan zijn dat u in feite meerdere ondoordachte "polissen" heeft.

3. Worden prognoses gebruikt om de bevoorradingsplanning aan te sturen en, zo ja, hoe? Veel bedrijven zullen zeggen dat ze voorspellen, maar hun prognoses worden op een andere manier berekend en gebruikt. Wordt de prognose gebruikt om te voorspellen welke voorraad er in de toekomst zal zijn, waardoor een order wordt geactiveerd? Of wordt het gebruikt om een bestelpunt af te leiden, maar niet om te voorspellen wanneer ik moet bestellen (dat wil zeggen, ik voorspel dat we er 10 per week zullen verkopen, dus om te helpen voorkomen dat de voorraad op is, zal ik meer bestellen als de voorraad op 15 komt)? Wordt het gebruikt als een leidraad voor de planner om subjectief te helpen bepalen wanneer ze meer moeten bestellen? Wordt het gebruikt om raamcontracten met leveranciers op te stellen? Sommigen gebruiken het om MRP aan te drijven. U moet deze details kennen. Een grondig antwoord op deze vraag zou er als volgt uit kunnen zien: “Mijn voorspelling is 10 per week en mijn doorlooptijd is 3 weken, dus ik maak mijn bestelpunt een veelvoud van die voorspelling, meestal 2 x de doorlooptijdvraag of 60 eenheden voor belangrijke artikelen en ik gebruik een kleiner veelvoud voor minder belangrijke artikelen. (Nogmaals, geen geweldige technische benadering, maar duidelijk.)

4. Welke techniek wordt eigenlijk gebruikt om de prognose te genereren? Is het een gemiddelde, een trending model zoals dubbele exponentiële afvlakking, een seizoensmodel? Hangt de keuze van de techniekverandering af van het type vraaggegevens of wanneer er nieuwe vraaggegevens beschikbaar zijn? (Reserveonderdelen en artikelen met een hoog volume hebben zeer verschillende vraagpatronen.) Hoe kiest u het prognosemodel? Is dit proces geautomatiseerd? Hoe vaak wordt de modelkeuze heroverwogen? Hoe vaak worden de modelparameters opnieuw berekend? Wat is het proces dat wordt gebruikt om uw aanpak te heroverwegen? Het antwoord documenteert hier hoe de basisprognoses tot stand komen. Eenmaal bepaald, kunt u een analyse uitvoeren om te bepalen of andere prognosemethoden zouden verbeteren nauwkeurigheid van de voorspelling. Als u de nauwkeurigheid van de prognoses niet documenteert en geen analyse van de toegevoegde waarde van de prognose uitvoert, bent u niet in staat om goed te beoordelen of de geproduceerde prognoses de beste zijn die ze kunnen zijn. U loopt kansen mis om het proces te verbeteren, de nauwkeurigheid van prognoses te vergroten en het bedrijf te informeren over welk type prognosefout normaal is en moet worden verwacht.

5. Hoe gebruik je veiligheidsvoorraad? Merk op dat de vraag niet was: "Gebruikt u veiligheidsvoorraad?" In deze context, en om het simpel te houden, betekent de term "veiligheidsvoorraad" voorraad die wordt gebruikt om voorraad te bufferen tegen variabiliteit van vraag en aanbod. Alle bedrijven gebruiken op de een of andere manier buffermethoden. Er zijn echter enkele uitzonderingen. Misschien bent u een werkplaatsfabrikant die alle onderdelen op bestelling aanschaft en vinden uw klanten het helemaal prima om weken of maanden op u te wachten om materiaal te vinden, te produceren, QA te leveren en te verzenden. Of misschien bent u een grote fabrikant met tonnen koopkracht, zodat uw leveranciers lokale magazijnen opzetten die volledig gevuld zijn en klaar om u vrijwel onmiddellijk van voorraad te voorzien. Als deze beschrijvingen uw bedrijf niet beschrijven, heeft u zeker een soort buffer om u te beschermen tegen variabiliteit in vraag en aanbod. U gebruikt het veld "veiligheidsvoorraad" misschien niet in uw ERP, maar u bent zeker aan het bufferen.

Er kunnen antwoorden worden gegeven zoals "We gebruiken geen veiligheidsvoorraad omdat we prognoses maken." Helaas, een goede voorspelling zal een 50/50 kans hebben om boven/onder de daadwerkelijke vraag te zijn. Dit betekent dat u 50% van de tijd een voorraad krijgt zonder dat er een veiligheidsvoorraadbuffer aan de prognose is toegevoegd. Voorspellingen zijn alleen perfect als er geen willekeur is. Aangezien er altijd willekeur is, moet u bufferen als u geen bodemloze serviceniveaus wilt hebben.

Als het antwoord niet wordt onthuld, kunt u wat meer onderzoeken hoe de verschillende aanvullingshendels worden gebruikt om mogelijke buffers toe te voegen, wat leidt tot vragen 6 en 7.

6. Verlengt u wel eens de doorlooptijd of bestelt u wel eens eerder dan nodig is?
In ons hypothetische voorbeeld heeft uw leverancier doorgaans 4 weken nodig om te leveren en is redelijk consistent. Maar om u te beschermen tegen stockouts, bestelt uw koper routinematig 6 weken uit in plaats van 4 weken. Het veiligheidsvoorraadveld in uw ERP-systeem staat misschien op nul omdat "we geen veiligheidsvoorraad gebruiken", maar in werkelijkheid heeft de bestelbenadering van de koper zojuist 2 weken buffervoorraad toegevoegd.

7. Vult u de vraagprognose in?
In ons voorbeeld verwacht de planner 10 eenheden per maand te verbruiken, maar "voor het geval dat" een prognose van 20 per maand invoert. Het veiligheidsvoorraadveld in het MRP-systeem is blanco gelaten, maar de nu vermomde buffervoorraad is de vraagprognose binnengesmokkeld. Dit is een fout die 'voorspellingsbias' introduceert. Niet alleen zullen uw prognoses minder nauwkeurig zijn, maar als er geen rekening wordt gehouden met de vertekening en de veiligheidsvoorraad wordt toegevoegd door andere afdelingen, zult u te veel bevoorraden.

Het ad-hockarakter van de bovenstaande benaderingen verergert de problemen door geen rekening te houden met de daadwerkelijke vraag of het aanbod variabiliteit van het artikel. De planner kan bijvoorbeeld gewoon een vuistregel maken die de doorlooptijdprognose voor belangrijke artikelen verdubbelt. Eén maat past niet allemaal als het gaat om voorraadbeheer. Deze benadering zal de voorspelbare artikelen substantieel overbevoorraden, terwijl de periodiek gevraagde artikelen substantieel onderbezet zijn. Jij kunt lezen "Pas op voor eenvoudige vuistregels voor voorraadbeheer” om meer te weten te komen over waarom dit soort aanpak zo kostbaar is.

De ad-hoc aard van de benaderingen negeert ook wat er gebeurt als het bedrijf wordt geconfronteerd met een enorme overstock of stock out. Bij het proberen te begrijpen wat er is gebeurd, zal het vermelde beleid worden onderzocht. In het geval van een overstock zal het systeem een veiligheidsvoorraad nul tonen. De bedrijfsleiders zullen aannemen dat ze geen veiligheidsvoorraad bij zich hebben, hun hoofd krabben en uiteindelijk de voorspelling de schuld geven, verklaren "Ons bedrijf kan niet worden voorspeld" en strompelen verder. Ze kunnen de leverancier zelfs de schuld geven voor het te vroeg verzenden en ervoor zorgen dat ze meer vasthouden dan nodig is. In het geval dat de voorraad op is, denken ze dat ze niet genoeg op voorraad hebben en voegen ze willekeurig meer voorraad toe aan veel items, zonder zich te realiseren dat er in feite veel extra veiligheidsvoorraad in het proces is ingebakken. Dit maakt het waarschijnlijker dat voorraden in de toekomst moeten worden afgeschreven.

8. Wat is de exacte inventaristerminologie die wordt gebruikt? Definieer wat u bedoelt met veiligheidsvoorraad, Min, bestelpunt, EOQ, enz. Hoewel er standaard technische definities het is mogelijk dat er iets anders is, en miscommunicatie zal hier problematisch zijn. Sommige bedrijven verwijzen bijvoorbeeld naar Min als de hoeveelheid voorraad die nodig is om aan de doorlooptijdvraag te voldoen, terwijl sommigen Min definiëren als inclusief zowel doorlooptijdvraag als veiligheidsvoorraad om te bufferen tegen vraagvariabiliteit. Anderen kunnen de minimale bestelhoeveelheid betekenen.

9. Is de aanwezige voorraad in overeenstemming met het beleid? Wanneer uw detectivewerk is voltooid en alles is gedocumenteerd, opent u uw spreadsheet of ERP-systeem en bekijkt u de beschikbare hoeveelheid. Het zou min of meer in overeenstemming moeten zijn met uw planningsparameters (dwz als Min/Max 20/40 is en de typische doorlooptijdvraag 10 is, dan zou u op elk moment ongeveer 10 tot 40 eenheden bij de hand moeten hebben. Verrassend genoeg, voor veel bedrijven is er vaak een enorme inconsistentie. We hebben situaties waargenomen waarin de min/max-instelling 20/40 is, maar de voorhanden voorraad 300+ is. Dit geeft aan dat het beleid dat is voorgeschreven gewoon niet wordt gevolgd. Dat is een groter probleem.

10. Wat ga je nu doen?

Vraagprognoses en voorraadopslagbeleid moeten goed gedefinieerde processen zijn die door alle betrokkenen worden begrepen en geaccepteerd.  Er zou nul mysterie moeten zijn.

Om dit goed te doen, moeten de vraag- en aanbodvariabiliteit worden geanalyseerd en gebruikt om de juiste niveaus van veiligheidsvoorraad te berekenen. Buffers toevoegen zonder een impliciet begrip van wat elke extra eenheid buffervoorraad u oplevert in termen van service, is als willekeurig een handvol ingrediënten in een cakerecept gooien. Een kleine verandering in ingrediënten kan een enorme impact hebben op wat er uit de oven komt: de ene hap is te zoet, de volgende te zuur. Zo is het ook met voorraadbeheer. Een beetje extra hier, een beetje minder daar, en al snel zit je met kostbare overtollige voorraad in sommige gebieden, pijnlijke tekorten in andere, geen idee hoe je daar bent gekomen, en met weinig begeleiding om dingen beter te maken.

Modern Inventory optimization en software voor vraagplanning met zijn geavanceerde analyses en sterke basis in prognoseanalyse kan veel helpen bij dit probleem. Maar zelfs de beste software helpt niet als deze inconsistent wordt gebruikt.

Laat een reactie achter

gerelateerde berichten

The Next Frontier in Supply Chain Analytics

De volgende grens in Supply Chain Analytics

Wij geloven dat de ontwikkeling van digitale tweelingen van voorraadsystemen de leidende factor op het gebied van supply chain-analyse is. Deze tweelingen nemen de vorm aan van discrete gebeurtenismodellen die Monte Carlo-simulatie gebruiken om het volledige scala aan operationele risico's te genereren en te optimaliseren. We beweren ook dat wij en onze collega's bij Smart Software een grote rol hebben gespeeld bij het smeden van die voorsprong.

Overcoming Uncertainty with Service and Inventory Optimization Technology

Onzekerheid overwinnen met technologie voor service- en voorraadoptimalisatie

In deze blog bespreken we de snelle en onvoorspelbare markt van vandaag en de voortdurende uitdagingen waarmee bedrijven worden geconfronteerd bij het efficiënt beheren van hun voorraad- en serviceniveaus. Het hoofdonderwerp van deze discussie, geworteld in het concept van ‘probabilistische voorraadoptimalisatie’, richt zich op de manier waarop moderne technologie kan worden ingezet om optimale service- en voorraaddoelstellingen te bereiken te midden van onzekerheid. Deze aanpak pakt niet alleen de traditionele problemen met voorraadbeheer aan, maar biedt ook een strategische voorsprong bij het omgaan met de complexiteit van vraagschommelingen en verstoringen van de toeleveringsketen.

Centering Act: Spare Parts Timing, Pricing, and Reliability

Centreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen

In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren.

recente berichten

  • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
    In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
  • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
    De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
  • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
    Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
  • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
    Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
  • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
    Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
      In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
    • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
      De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
    • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
    • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

      Veiligheidsvoorraad inschatten

      De slimme voorspeller

      Het nastreven van best practices op het gebied van vraagplanning,

      prognoses en voorraadoptimalisatie

      In mijn vorige post in deze serie over essentiële concepten, “Wat is 'Een goede voorspelling'”besprak ik de basisinspanning om de meest waarschijnlijke toekomst te ontdekken in een scenario voor vraagplanning. Ik definieerde een goede voorspelling als een die onbevooroordeeld en zo nauwkeurig mogelijk is. Maar ik waarschuwde ook dat, afhankelijk van de stabiliteit of volatiliteit van de gegevens waarmee we moeten werken, er nog steeds enige onnauwkeurigheid kan zijn in zelfs een goede voorspelling. De sleutel is om inzicht te hebben in hoeveel.

      Dit onderwerp, omgaan met onzekerheid, is het onderwerp van een bericht van mijn collega Tom Willemain, “Het gemiddelde is niet het antwoord”. Zijn post legt de theorie uiteen om op verantwoorde wijze de grenzen van ons voorspellende vermogen te confronteren. Het is belangrijk om te begrijpen hoe dit echt werkt.

      Zoals ik aan het einde van mijn vorige bericht kort aanstipte, begint onze aanpak met iets dat een "glijdende simulatie" wordt genoemd. We schatten hoe nauwkeurig we de toekomst voorspellen door onze voorspellingstechnieken te gebruiken op een ouder deel van de geschiedenis, waarbij we de meest recente gegevens uitsluiten. We kunnen dan wat we zouden hebben voorspeld voor het recente verleden vergelijken met onze werkelijke informatie over wat er is gebeurd. Dit is een betrouwbare methode om in te schatten hoe nauwkeurig we de toekomstige vraag voorspellen.

      Veiligheidsvoorraad, een zorgvuldig gemeten buffer in voorraadniveau die we in voorraad hebben boven onze voorspelling van de meest waarschijnlijke vraag, is afgeleid van de schatting van de voorspellingsfout die voortkomt uit de "glijdende simulatie". Deze aanpak om met de nauwkeurigheid van onze prognoses om te gaan, balanceert efficiënt tussen het negeren van de dreiging van onvoorspelbare en kostbare overcompensatie.

      In meer technische details: de prognosefouten die worden geschat door dit glijdende simulatieproces geven het niveau van onzekerheid aan. We gebruiken deze fouten om de standaarddeviatie van de prognoses te schatten. Nu, met een regelmatige vraag, kunnen we aannemen dat de voorspellingen (die schattingen zijn van toekomstig gedrag) het beste worden weergegeven door een klokvormige kansverdeling - wat statistici de "normale verdeling" noemen. Het centrum van die verdeling is onze puntvoorspelling. De breedte van die verdeling is de standaarddeviatie van de "glijdende simulatie"-voorspelling van de bekende werkelijke waarden - we halen dit rechtstreeks uit onze schattingen van de voorspellingsfout.

      Zodra we de specifieke klokvormige curve kennen die bij de voorspelling hoort, kunnen we eenvoudig de benodigde veiligheidsvoorraadbuffer inschatten. De enige input van ons is het “serviceniveau” dat gewenst is en de veiligheidsvoorraad op dat serviceniveau kan worden bepaald. (Het serviceniveau is in wezen een maatstaf van hoe zeker we moeten zijn van onze voorraadniveaus, waarbij een groeiend vertrouwen corresponderende uitgaven voor extra voorraad vereist.) Let op, we gaan ervan uit dat de juiste verdeling die moet worden gebruikt de normale verdeling is. Dit is correct voor de meeste vraagreeksen waar u een regelmatige vraag per periode heeft. Het mislukt wanneer de vraag sporadisch of met tussenpozen is.

      In het volgende stuk in deze serie zal ik bespreken hoe Smart Forecasts omgaat met het schatten van de veiligheidsvoorraad in die gevallen van intermitterende vraag, wanneer de veronderstelling van normaliteit onjuist is.

      Nelson Hartunian, PhD, was medeoprichter van Smart Software, was voorheen President en houdt er momenteel toezicht op als voorzitter van de raad van bestuur. Hij heeft op verschillende momenten leiding gegeven aan softwareontwikkeling, verkoop en klantenservice.

      Laat een reactie achter

      gerelateerde berichten

      You Need to Team up with the Algorithms

      Je moet samenwerken met de algoritmen

      Dit artikel gaat over de echte kracht die voortkomt uit de samenwerking tussen u en onze software die binnen handbereik plaatsvindt. We schrijven vaak over de software zelf en wat er ‘onder de motorkap’ gebeurt. Deze keer is het onderwerp hoe je het beste met de software kunt samenwerken.

      Rethinking forecast accuracy: A shift from accuracy to error metrics

      Beantwoord de precisie van het pronóstico: een precisie-cambio met de meetmetrieken

      Het meten van de nauwkeurigheid van prognoses is een onmiskenbaar belangrijk onderdeel van het vraagplanningsproces. Deze voorspellingsscorekaart zou kunnen worden opgebouwd op basis van een van de twee contrasterende gezichtspunten voor het berekenen van metrieken. Vanuit het foutperspectief wordt de vraag gesteld: “Hoe ver lag de voorspelling van de werkelijkheid?” Vanuit het nauwkeurigheidsperspectief wordt de vraag gesteld: “Hoe dicht lag de voorspelling bij de werkelijkheid?” Beide zijn geldig, maar foutstatistieken bieden meer informatie.

      Every Forecasting Model is Good for What it is Designed for

      Elk voorspellingsmodel is goed waarvoor het is ontworpen

      Met zoveel hype rond nieuwe Machine Learning (ML) en probabilistische voorspellingsmethoden lijken de traditionele “extrapolatieve” of “tijdreeksen” statistische voorspellingsmethoden de koude schouder te krijgen. Het is echter de moeite waard om te onthouden dat deze traditionele technieken (zoals enkele en dubbele exponentiële afvlakking, lineaire en eenvoudige voortschrijdende middeling, en Winters-modellen voor seizoensitems) vaak behoorlijk goed werken voor gegevens met een groter volume. Elke methode is goed voor waarvoor deze is ontworpen. Pas ze allemaal op de juiste manier toe, bijvoorbeeld: neem geen mes mee naar een vuurgevecht en gebruik geen drilboor als een eenvoudige handhamer voldoende is.

      recente berichten

      • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
        In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
      • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
        De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
      • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
        Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
      • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
        Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
      • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
        Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

        Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

        • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
          In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
        • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
          De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
        • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
          Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
        • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
          In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

          Smart Software wint drie Supply Chain Awards voor 2013

          Supply & Demand Chain Executive en Inbound Logistics kiezen opnieuw voor Smart Software voor Top 100 Lijsten en Executive Recognition

          Belmont, massa., 16 juli 2013 – Smart Software, Inc., leverancier van toonaangevende oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie, heeft vandaag aangekondigd dat drie publicaties over de toeleveringsketen het bedrijf en zijn president opnieuw hebben erkend als leiders in de toeleveringsketen. Smart is geselecteerd door Supply & Demand Chain Executive en Inbound logistiek respectievelijk voor het achtste en negende jaar op hun "Top 100" -lijsten staan. In aanvulling, Supply & Demand Chain Executive koos ook de president en CEO van Smart, Nelson Hartunian, als een "Provider Pro to Know". De competitieve prijzen erkennen Smart Software als een leider in de niche van supply chain planning-software en benadrukken de sterke punten van het bedrijf op het gebied van technische innovatie en het vermogen om te voldoen aan de behoeften van klanten op het gebied van prognose- en vraagplanningoplossingen.

          Supply & Demand Chain Executive 100
          Supply & Demand Chain Executive magazine koos Smart Software uit meer dan 300 inzendingen voor zijn jaarlijkse "Supply & Demand Chain Executive 100", aangekondigd op 13 mei en gepubliceerd in de uitgave van juni 2013. De 2013 Supply & Demand Chain Executive 100 zijn supply chain-oplossingen en dienstverleners die hun klanten helpen om supply chain excellence te bereiken. Ze hebben meetbare ROI-winst opgeleverd door kostenbesparingen en verhoogde efficiëntie in de prognose- en vraagplanningsketen.

          "De opname van Smart Software in de "100"-lijst van dit jaar erkent zijn leiderschap als leverancier van oplossingen en diensten bij het ondersteunen van de Supply Chain-functie en supply chain-executives terwijl uw klanten op weg zijn naar supply chain-excellentie", aldus Barry Hochfelder, redacteur, Supply & Demand Chain Executive.

          Top 100 logistieke IT-providers
          In de uitgave van april 2013 Inbound logistiek' redactie erkende 100 logistieke IT-bedrijven die logistieke uitmuntendheid ondersteunen en mogelijk maken. Gekozen uit meer dan 300 bedrijven, tonen de geselecteerde "Top 100 logistieke IT-providers" leiderschap door te beantwoorden aan de behoeften van lezers van Inbound Logistics aan schaalbaarheid, eenvoud, snelle ROI en gemakkelijke implementatie.

          “Inbound Logistics-redacteuren hebben 100 logistieke technologiebedrijven geselecteerd die logistiek en supply chain-excellentie mogelijk maken. Smart Software werd erkend door Inbound Logistics voor het leiden van de weg in 2013 en het positioneren van ondernemingen voor de komende jaren.” zei Felicia Stratton, redacteur van Inbound logistiek. “Smart Software blinkt uit in het leveren van oplossingen die supply chain excellence stimuleren en beantwoorden aan de behoefte van IL-lezers aan eenvoud, ROI en efficiënte implementatie. Inbound Logistics is er trots op Smart Software te eren voor het blijven bieden van onze lezers oplossingen die logistiek en supply chain excellence optimaliseren.”

          Aanbieder Voordelen om te weten
          President en CEO, Dr. Nelson Hartunian, is verkozen tot "2013 Provider Pro to Know". Supply & Demand Chain Executive magazine in de uitgave van februari/maart 2013. De jaarlijkse lijst van Provider Pros to Know van deze gerespecteerde publicatie erkent een selecte groep individuen, en Dr. Hartunian, een pionier in het ontwikkelen van voorraadoptimalisatietechnieken voor intermitterende vraag, werd gekozen uit meer dan 400 inzendingen.

          "Degenen die werken aan het overwinnen van supply chain-uitdagingen en tegelijkertijd de wereldwijde supply chain laten groeien, moeten de erkenning krijgen die ze verdienen voor hun prestaties", aldus Barry Hochfelder, redacteur, Supply & Demand Chain Executive. “Nu in zijn 13e jaar, de Supply & Demand Chain Executive "Pros to Know"-awards erkennen beide uiteinden van de toeleveringsketen. Dit omvat het eren van personen van softwarebedrijven, serviceproviders, adviesbureaus of de academische wereld die hun supply chain-klanten of de supply chain-gemeenschap hebben geholpen zich voor te bereiden op uitdagingen in de industrie.

          "We werken ijverig samen met onze klanten om hun doelstellingen voor vraagplanning te bereiken", aldus Dr. Hartunian. “Onze klanten hebben ontdekt dat een betere planning van de vraag, met behulp van SmartForecasts, een cruciaal strategisch element is geworden voor het verbeteren van hun activiteiten en de productiviteit van hun toeleveringsketen. Terwijl velen in eerste instantie SmartForecasts kopen® om tactische doelen te bereiken, ontdekken ze snel strategische voordelen. Meer specifiek verbetert de mogelijkheid om hun voorraadniveaus nauwkeurig te voorspellen en in te schatten hun relaties met zowel klanten als leveranciers, vooral wanneer hun voorraden veel intermitterende vraag ervaren.

          Over Smart Software, Inc.
          Smart Software, Inc., opgericht in 1981, is een toonaangevende leverancier van ondernemingsbrede oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie. Het paradepaardje van Smart Software, SmartForecasts, heeft wereldwijd duizenden gebruikers, waaronder klanten van middelgrote ondernemingen en Fortune 500-bedrijven, zoals Abbott Laboratories, Metro-North Railroad, Siemens, Disney, Nestle, Nikon, GE en The Coca-Cola Company . Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts en is online te vinden op www.smartsoftware.wpengine.com .

          SmartForecasts is een geregistreerd handelsmerk van Smart Software, Inc. Alle andere handelsmerken zijn het eigendom van hun respectievelijke eigenaars.


          Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
          Telefoon: 1-800-SMART-99 (800-762-7899); FAXEN: 1-617-489-2748; E-mailadres: info@smartsoftware.wpengine.com

           

          Slimme software om de doorvoer van New Jersey te helpen de voorraadplanning en de beschikbaarheid van serviceonderdelen te verbeteren

          Belmont, Massachusetts, 13 juni 2013 – Smart Software, Inc., leverancier van toonaangevende oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie, heeft vandaag aangekondigd dat New Jersey Transit (NJT) het vlaggenschipproduct van Smart, SmartForecasts, heeft gekocht®, voor haar spoor- en busactiviteiten als onderdeel van een bedrijfsbreed programma voor serviceverbetering en voorraadvermindering. NJT is de op twee na grootste aanbieder van bus-, spoor- en lightrailvervoer van het land en verbindt belangrijke punten in New Jersey, New York en Philadelphia.

          NJT zal SmartForecasts gebruiken om het verbruik van onderdelen en de benodigde voorraadvoorraad te voorspellen voor zijn 40.000 actieve reserve- en serviceonderdelen, ter waarde van meer dan $100 miljoen. Een groot deel van de voorraad van NJT heeft te maken met een grillige, intermitterende vraag die bijzonder moeilijk te voorspellen is en kan leiden tot een aanzienlijke over- en onderbevoorrading van kritieke onderdelen. De eerste resultaten met SmartForecasts wijzen op het potentieel voor substantiële besparingen en verbeteringen in het serviceniveau, zodra de volledige implementatie is voltooid.

          Smart Software zal het NJT-project in twee fasen uitvoeren. De eerste fase zal zich richten op het gebruik van SmartForecasts om onmiddellijke voordelen op korte termijn voor belangrijke groepen onderdelen te identificeren, en om de waarschijnlijke voordelen op lange termijn voor NJT te meten. In de tweede fase wordt SmartForecasts geïntegreerd in de dagelijkse planningsomgeving van New Jersey Transit.

          SmartForecasts biedt unieke, gepatenteerde statistische oplossingen voor het voorspellen van een intermitterende vraag, een bijzonder uitdagend aspect van het beheer van serviceonderdelen, evenals een complete suite van geautomatiseerde prognose- en planningsmethodologieën. Door automatisch de juiste methode voor elk onderdeel te identificeren, kan SmartForecasts de hoeveelheid voorraad die nodig is om aan een bepaald serviceniveau te voldoen, aanzienlijk verminderen.

          "We hebben verschillende zeer sterke successen behaald door transportsystemen te helpen hun onderdelenvoorraadplanning te verbeteren en hun klanten betere service te bieden met een betere beschikbaarheid van onderdelen", aldus Nelson Hartunian, CEO van Smart Software. “Organisaties zoals New Jersey Transit zoeken naar manieren om hen te helpen hun kosten te verlagen zonder de klantenservice negatief te beïnvloeden. Nu het aantal passagiers toeneemt, wordt dit steeds belangrijker. We kijken ernaar uit om NJT te helpen zijn doelen te bereiken.”

          Over de doorvoer van New Jersey
          NJ TRANSIT is het openbaarvervoerbedrijf van New Jersey. Haar missie is om veilige, betrouwbare, handige en kosteneffectieve vervoersdiensten te bieden met een bekwaam team van medewerkers, toegewijd aan de behoeften van onze klanten en toegewijd aan uitmuntendheid. Met een servicegebied van 5.325 vierkante mijl is NJ Transit de op twee na grootste aanbieder van bus-, spoor- en lightrailvervoer van het land, die belangrijke punten in New Jersey, New York en Philadelphia met elkaar verbindt. Het bureau exploiteert een vloot van 2.027 bussen, 711 treinen en 45 lightrailvoertuigen. Op 236 busroutes en 11 spoorlijnen over de hele staat verzorgt NJ Transit jaarlijks bijna 223 miljoen passagiersreizen. Daarnaast biedt het bureau ondersteuning en uitrusting aan particuliere contractbusvervoerders. Klik voor meer informatie over NJ Transit hier.

          Over Smart Software, Inc.
          Smart Software, Inc., opgericht in 1981, is een toonaangevende leverancier van ondernemingsbrede oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie. Het paradepaardje van Smart Software, SmartForecasts, heeft wereldwijd duizenden gebruikers, waaronder klanten van middelgrote ondernemingen en Fortune 500-bedrijven, zoals Abbott Laboratories, Metro-North Railroad, Siemens, Disney, Nestle, Nikon, GE en The Coca-Cola Company . Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts en is online te vinden op www.smartsoftware.wpengine.com .

          SmartForecasts is een geregistreerd handelsmerk van Smart Software, Inc. Alle andere handelsmerken zijn het eigendom van hun respectievelijke eigenaars.


          Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
          Telefoon: 1-800-SMART-99 (800-762-7899); FAXEN: 1-617-489-2748; E-mailadres: info@smartsoftware.wpengine.com