De afwegingscurve berijden

De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Waar we tegen zijn

Als Boston Red Sox-fan van de derde generatie ben ik niet geneigd om advies aan te nemen van een New York Yankee-balspeler, zelfs een geweldige, maar ik moet toegeven dat je soms gewoon een beslissing moet nemen. Zou het echter niet beter zijn als we de afwegingen wisten die bij elke beslissing horen. Misschien is de ene weg mooier, maar duurt het langer, terwijl de andere directer maar saaier is. Dan hoeft u het niet zomaar te accepteren, maar kunt u een weloverwogen beslissing nemen op basis van de voor- en nadelen van elke benadering.

In de wereld van supply chain planning is de meest fundamentele beslissing hoe de beschikbaarheid van artikelen in evenwicht moet worden gebracht met de kosten om die beschikbaarheid in stand te houden (serviceniveaus en opvullingspercentages). Aan de ene kant kun je schromelijke overvoorraden hebben en nooit zonder raken totdat je failliet gaat en de winkel moet sluiten om al je geld in voorraad te stoppen die niet verkoopt. Aan het andere uiterste kunt u een grote ondervoorraad hebben en een bundel besparen op voorraadkosten, maar failliet gaan en uw winkel moeten sluiten omdat al uw klanten hun zaken elders hebben gedaan.

Er is geen ontkomen aan deze fundamentele spanning. De manier om te overleven en te gedijen is het vinden van een productieve en duurzame balans. Om dat te doen, zijn op feiten gebaseerde afwegingen nodig op basis van de cijfers. Om de nummers te krijgen is software nodig.

De algemene gang van zaken is duidelijk. Als u besluit meer voorraad aan te houden, heeft u meer voorraadkosten, lagere tekortkosten en mogelijk lagere bestelkosten. Of dit geld kost of bespaart, is onmogelijk te weten zonder een geavanceerde analyse, maar meestal is het resultaat dat de Totale Kosten omhoog gaan. Maar als u investeert in meer voorraad, levert dat iets op, omdat u uw klanten hogere serviceniveaus en opvulpercentages biedt. Hoeveel hoger vereist, zoals je misschien wel vermoedt, een geavanceerde analyse.

Laat me de cijfers zien

In deze blog leggen we uit hoe zo'n analyse eruit ziet. Er is geen universele oplossing die u naar de "juiste" beslissing wijst. U zou kunnen denken dat de juiste beslissing de beslissing is die het beste bij u past. Maar om die cijfers te krijgen, heb je iets nodig dat je zelden ziet: een nauwkeurig model van klantgedrag met betrekking tot serviceniveau (bekijk ons artikel “Hoe kies je een doelserviceniveau”) Wanneer zal een klant bijvoorbeeld weglopen en ergens anders heen gaan? Zal het zijn nadat je 1% van de tijd, 5% van de tijd, 10% van de tijd hebt opgeslagen? Blijft u hun bedrijf behouden zolang u snel nabestellingen uitvoert? Zal het zijn na een nabestelling van 1 dag, 2 dagen? 3 weken? Zal het zijn nadat dit één keer op een belangrijk onderdeel of vele malen op veel onderdelen is gebeurd? Hoewel het modelleren van het precieze serviceniveau waarmee u uw klant kunt behouden en tegelijkertijd de kosten kunt minimaliseren een ongenaakbaar ideaal lijkt, is een andere vorm van geavanceerde analyse meer pragmatisch. 

Voorraadoptimalisatie- en prognosesoftware kan alle bijbehorende kosten in rekening brengen, zoals de kosten van bevoorrading, de kosten van het aanhouden van voorraden en de kosten van het bestellen van voorraden, om zo een optimaal serviceniveau voor te schrijven dat de laagste totale kosten oplevert. Maar zelfs dat "optimale" serviceniveau is gevoelig voor veranderingen in de kosten, waardoor de resultaten mogelijk twijfelachtig zijn. Als u bijvoorbeeld de exacte kosten niet nauwkeurig kunt inschatten (de kosten van een tekort zijn het moeilijkst), zal het moeilijk zijn om met zekerheid iets te zeggen als: "Als ik mijn voorhanden voorraad verhoog met gemiddeld één eenheid voor alle artikelen in een belangrijke productfamilie, zal mijn bedrijf een nettowinst van $170.500 zien. Die winst neemt toe totdat ik bij 4 eenheden kom. Bij 4 stuks en hoger daalt het rendement door te hoge bewaarkosten. Dus de beste beslissing om rekening te houden met verwachte voorraad, bestelling en voorraad is om de voorraad met 3 eenheden te verhogen om een nettowinst van meer dan $500.000 te zien.  

Afgezien van dat ideaal, kunt u iets doen dat eenvoudiger maar toch uiterst waardevol is: kwantificeer de afwegingscurve tussen voorraadkosten en artikelbeschikbaarheid. Hoewel u niet noodzakelijkerwijs weet op welk serviceniveau u zich moet richten, kent u wel de kosten van verschillende serviceniveaus. Dan kunt u uw grote geld verdienen door een goede plek te vinden om op die afwegingscurve te zijn en te communiceren waar u risico loopt en waar niet, en verwachtingen te scheppen bij klanten en interne belanghebbenden. Zonder de afwegingscurve om u te leiden, vliegt u blind en kunt u uw voorraadbeleid niet rationeel wijzigen.

Een scenario om van te leren

Laten we een realistische afwegingscurve schetsen. We beginnen met een scenario dat een managementbeslissing vereist. Het scenario dat we zullen gebruiken en de bijbehorende veronderstellingen over vraag, doorlooptijden en kosten worden hieronder beschreven:

Voorraadbeleid

  • Periodieke beoordeling – Beslissingen voor herbestellingen worden om de 30 dagen genomen
  • Order-Up-To-Level ("S") - Varieerde van 30 tot 60 eenheden
  • Tekortbeleid - Sta nabestellingen toe, geen verloren bestellingen

Vraag naar

  • De vraag is intermitterend
  • Gemiddeld = 0,8 eenheden per dag
  • Standaarddeviatie = 1,2 eenheden per dag
  • Grootste vraag in een jaar ≈ 9
  • % dagen zonder vraag = 53%

Lead Time

  • Willekeurig op 7, 14 of 21 dagen met waarschijnlijkheden respectievelijk 70%, 20% en 10%

Kostenparameters

  • Bewaarkosten = $1 per dag
  • Bestelkosten = $10 per bestelling, ongeacht de grootte van de bestelling
  • Tekortkosten = $100 per eenheid niet onmiddellijk uit voorraad verzonden

We stellen ons een beleid voor voorraadbeheer voor dat in de handel bekend staat als een "periodieke beoordeling" of (T,S) beleid. In dit geval is de Herzieningsperiode ("T") 30 dagen, wat betekent dat elke 30 dagen de voorraadpositie wordt gecontroleerd en een bestelbeslissing wordt genomen. De bestelhoeveelheid is het verschil tussen het waargenomen aantal beschikbare eenheden en de Order-Up-To Quantity ("S"). Dus als de voorraad aan het einde van de maand 12 eenheden is en S = 20, is de bestelhoeveelheid S – 12 = 20 -1 2 = 8. De volgende maand zal de bestelhoeveelheid waarschijnlijk anders zijn. Als de voorraad tijdens een beoordelingsperiode ooit negatief wordt (nabestellingen), probeert de volgende bestelling het evenwicht te herstellen door meer te bestellen om aan die nabestellingen te voldoen. Als de voorraad bijvoorbeeld -5 is (wat betekent dat 5 bestelde eenheden niet beschikbaar zijn voor verzending, is de volgende bestelling S – (-5) = S + 5. Details van de hypothetische vraagstroom, doorlooptijden van leveranciers en kostenelementen worden weergegeven in onderstaande afbeelding 1. Afbeelding 2 toont een voorbeeld van de dagelijkse vraag en dagelijkse voorraad gedurende vijf beoordelingsperioden. periodieke, zoals vaak het geval is voor reserveonderdelen, en daarom moeilijk te plannen.

Figuur 1: Verschillende keuzes van voorraadbeleid (bestelling tot), bijbehorende kosten en serviceniveaus

Afbeelding 2: Details van vijf maanden systeemwerking, gegeven een van de beleidsregels

 

Software voor voorraadplanning is onze vriend

Software codeert de logica van de werking van het (T,S)-systeem, genereert veel hypothetische maar realistische vraagscenario's, berekent hoe elk van die scenario's zich afspeelt en kijkt vervolgens terug op de gesimuleerde werking (hier, 10 jaar of 3.650 opeenvolgende dagen) om kosten- en prestatiestatistieken te berekenen.

Om de afwegingscurve te onthullen, hebben we verschillende computationele experimenten uitgevoerd waarin we het Order-Up-To Level, S, varieerden. De grafieken Figuur 2 tonen het gedrag van de voorhanden inventaris in het "rijkste" alternatief met S = 60. In de fragment getoond in figuur 2, komt de voorhanden inventaris nooit in de buurt van uitvoorraden. Ook dat kun je lezen. Een, een beetje naïef, is om te zeggen: "Goed, we zijn goed beschermd." De andere, meer agressieve, is om te zeggen: “Oh nee, we zijn opgeblazen. Ik vraag me af wat er zou gebeuren als we S zouden verminderen.”

De afwegingscurve onthuld

Figuur 3 toont de resultaten van het verminderen van S van 60 naar 30 in stappen van 5 eenheden. De tabel laat zien dat Total Cost de som is van Holding Cost, Ordering Cost en Shortage Cost. Voor de (T,S) polis zijn de bestelkosten altijd hetzelfde, aangezien een bestelling elke 30 dagen als een uurwerk wordt geplaatst. Maar de andere kostencomponenten reageren op de veranderingen in S.

Afbeelding 3: De experimentele resultaten en bijbehorende afwegingscurve die laten zien hoe het wijzigen van het Order-Up-To Level ("S") zowel het serviceniveau als de totale jaarlijkse kosten beïnvloedt

Houd er rekening mee dat het serviceniveau in deze scenario's altijd lager is dan het opvullingspercentage. Als professor denk ik altijd aan dit verschil in termen van examenbeoordeling. Elke aanvullingscyclus is als een test. Serviceniveau gaat over de waarschijnlijkheid van een stockout, dus het is net als het cijfer voor een geslaagd/niet-geslaagd examen met één vraag die perfect moet worden beantwoord. Als er geen stockout is in een cyclus, is dat een A. Als er een stockout is, is dat een F. Het maakt niet uit of het één eenheid is die niet wordt geleverd of 50 - het is nog steeds een F. Maar Fill Rate is als een vraag dat wordt beoordeeld met deelpunten. Dus als je een van de tien eenheden te kort krijgt, krijg je 90% Fill Rate voor die cyclus, niet 0%. Het is belangrijk om het verschil te begrijpen tussen deze twee belangrijke statistieken voor voorraadplanning - bekijk deze vlog met een beschrijving serviceniveau versus opvullingspercentage via een interactieve oefening in Excel.

De plot in figuur 3 is het echte nieuws. Het koppelt de totale kosten en het serviceniveau voor verschillende S-niveaus. Als u de grafiek van rechts naar links leest, vertelt het ons dat er enorme kostenbesparingen te behalen zijn door S te verlagen met zeer weinig nadelige gevolgen in termen van verminderde artikelbeschikbaarheid. Als u bijvoorbeeld S verlaagt van 60 naar 55, bespaart u bijna $800 per jaar op dit ene item, terwijl het serviceniveau slechts een klein beetje wordt verlaagd van (in wezen) 100% naar een nog steeds indrukwekkende 99%. S iets meer snijden doet hetzelfde, maar niet zo dramatisch. Als u de grafiek van links naar rechts leest, ziet u dat het omhoog gaan van S = 30 naar S = 35 ongeveer $1.000 per jaar kost, maar het serviceniveau verbetert van een F-klasse (45%) naar ten minste een C-klasse (71%). Daarna kost het steeds meer om S hoger te duwen, terwijl je steeds minder wint.

De afwegingscurve geeft u geen antwoord op hoe u het Order-Up-To-niveau moet instellen, maar u kunt wel de kosten en baten van elk mogelijk antwoord evalueren. Neem even de tijd en doe alsof dit jouw probleem is: waar zou je langs de afwegingscurve willen zijn?

U kunt bezwaar maken en zeggen dat u uw keuzes haat en het spel wilt veranderen. Is er ontsnapping uit de bocht? Niet van de algemene curve, maar misschien kun je een minder pijnlijke curve vormen. Hoe?

Misschien heb je nog andere kaarten om te spelen. Een manier is om te proberen de vraag zo te 'vormen' dat deze minder variabel is. De vraaggrafiek in figuur 2 laat veel variabiliteit zien. Als je de vraag zou kunnen afvlakken, zou de hele afwegingscurve naar beneden verschuiven, waardoor elke keuze goedkoper zou worden. Een tweede manier is om te proberen de gemiddelde en variabiliteit van doorlooptijden van leveranciers te verminderen. Het bereiken van een van beide zou ook de curve naar beneden verschuiven om de keuze minder pijnlijk te maken. Bekijk ons artikel over hoe leveranciers beïnvloeden uw voorraadkosten

Overzicht

De afwegingscurve is altijd bij ons. Soms kunnen we het misschien vriendelijker maken, maar we kiezen altijd ons plekje erlangs. Het is beter om te weten wat u krijgt voor elke keuze van voorraadbeleid dan om te proberen te raden, en de curve geeft u dat. Wanneer u een nauwkeurige schatting van die curve heeft, vliegt u niet langer blind als het gaat om voorraadplanning. 

 

 

 

Laat een reactie achter

gerelateerde berichten

Daily Demand Scenarios

Dagelijkse vraagscenario's

In deze videoblog leggen we uit hoe tijdreeksvoorspellingen naar voren zijn gekomen als een cruciaal hulpmiddel, vooral op dagelijks niveau, waarmee Smart Software sinds de oprichting ruim veertig jaar geleden pionierde. De evolutie van bedrijfspraktijken van jaarlijkse naar meer verfijnde temporele stappen zoals maandelijkse en nu dagelijkse data-analyse illustreert een significante verschuiving in operationele strategieën.

Irregular Operations

Onregelmatige operaties

Deze blog gaat over ‘onregelmatige handelingen’. Smart Software is bezig met het aanpassen van onze producten om u te helpen omgaan met uw eigen onregelmatige werkzaamheden. Dit is een voorproefje.

Finding Your Spot on the Inventory Tradeoff Curve

Vind uw plek op de voorraadafwegingscurve

Deze videoblog bevat essentiële inzichten voor degenen die werken met de complexiteit van voorraadbeheer. De sessie richt zich op het vinden van het juiste evenwicht binnen de voorraadafwegingscurve en nodigt kijkers uit om het diepgewortelde belang van dit evenwicht te begrijpen.

recente berichten

  • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
    In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
  • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
    De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
  • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
    Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
  • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
    Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
  • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
    Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
      In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
    • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
      De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
    • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
    • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

      De 3 niveaus van prognoses: Puntenprognoses, Intervalprognoses, Waarschijnlijkheidsprognoses
      }

      De slimme voorspeller

       Het nastreven van best practices op het gebied van vraagplanning,

      prognoses en voorraadoptimalisatie

      De meeste vraagprognoses zijn gedeeltelijk of onvolledig: ze bieden slechts één enkel getal: de meest waarschijnlijke waarde van de toekomstige vraag. Dit wordt een puntvoorspelling genoemd. Gewoonlijk schat de puntvoorspelling de gemiddelde waarde van de toekomstige vraag. Intervalprognoses geven een schatting van de mogelijke toekomstige vraag (dwz de vraag heeft een 90% kans tussen 50 – 100 eenheden). Probabilistische voorspellingen gaan een stap verder en geven aanvullende informatie. Meer weten is altijd beter dan minder weten en de probabilistische prognose levert die extra informatie die zo cruciaal is voor voorraadbeheer. Deze videoblog van Dr. Thomas Willemain legt elk type voorspelling en de voordelen van probabilistische voorspelling uit.

       

      [inbound_button font_size=”20″ color=”#00a429″ text_color=”#ffffff” icon=”” url=”http://www.screencast.com/t/Ut4I5dOY8″ width=”” target=”_blank”]Nu kijken [/inkomende_knop]
       

       

      Puntvoorspelling (groen) laat zien wat er het meest waarschijnlijk zal gebeuren. De Intervalvoorspelling toont het bereik (blauw) van mogelijkheden.

       

      Waarschijnlijkheidsvoorspelling toont de waarschijnlijkheid dat elke waarde voorkomt

       

       

      Laat een reactie achter

      gerelateerde berichten

      Call an Audible to Proactively Counter Supply Chain Noise

      Bel een Audible om proactief ruis in de supply chain tegen te gaan

      U kent de situatie: u berekent de beste manier om elk voorraadartikel te beheren door de juiste reorder points en replenishment targets te berekenen, en vervolgens de gemiddelde vraag te verhogen of te verlagen, of de volatiliteit van de vraag te veranderen, of de lead times van leveranciers te veranderen, of uw eigen kosten te veranderen.

      Managing the Inventory of Promoted Items

      Beheer van de inventaris van gepromote artikelen

      In een eerder bericht besprak ik een van de neteligere problemen waarmee vraagplanners soms worden geconfronteerd: het werken met gegevens over productvraag die worden gekenmerkt door wat statistici scheefheid noemen - een situatie die kostbare voorraadinvesteringen kan vergen. Dit soort problematische gegevens is te vinden in verschillende scenario's. In ten minste één geval, de combinatie van intermitterende vraag en zeer effectieve verkoopacties, leent het probleem zich voor een effectieve oplossing.

      Top 3 Most Common Inventory Control Policies

      Top 3 meest voorkomende voorraadbeheerbeleid

      Om de juiste beslissing te nemen, moet u weten hoe vraagprognose voorraadbeheer ondersteunt, welk beleid u wilt gebruiken en berekening van de input die dit beleid aanstuurt. Het proces van het bestellen van aanvullende voorraad is zo duur en omslachtig dat u ook het aantal inkooporders dat u moet genereren wilt minimaliseren.

      recente berichten

      • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
        In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
      • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
        De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
      • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
        Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
      • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
        Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
      • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
        Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

        Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

        • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
          In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
        • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
          De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
        • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
          Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
        • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
          In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

          "Kiezen en bereiken van een doelserviceniveau" door medeoprichter van Smart Software, geprofileerd in uitgave van Foresight voorjaar 2018

          Belmont, Massachusetts, 17 mei 2018 – Smart Software, Inc., leverancier van toonaangevende oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie, heeft vandaag aangekondigd dat het voorjaar 2018 nummer van Foresight Magazine het artikel van Dr. Thomas Willemain "Choosing and Achieving a Target Service Level" bevat. Len Tashman, redacteur van Foresight stelt: "Tom Willemain beschrijft de belangrijkste overwegingen voor het stellen van doelen op serviceniveau, legt uit hoe software een waardevol hulpmiddel kan zijn bij dit streven en biedt een casestudy om een relatief eenvoudige aanpak te illustreren - wat hij noemt" service level winsten en verliezen” – waarmee een bedrijf kan evalueren hoe goed het zijn service level doelen bereikt. De casestudy laat ook zien hoe belangrijk het is om geschikte waarschijnlijkheidsmodellen te gebruiken in plaats van te vertrouwen op traditionele standaarden zoals de normale verdeling van de vraag.”

          Ga naar om het hele artikel te lezen en om meer te weten te komen over foresight https://foresight.forecasters.org/

          Over Smart Software, Inc.
          Smart Software, Inc., opgericht in 1981, is toonaangevend in het leveren van bedrijfsbrede oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie aan bedrijven. De oplossingen voor vraagvoorspelling en voorraadoptimalisatie van Smart Software hebben duizenden gebruikers over de hele wereld geholpen, waaronder klanten bij middelgrote ondernemingen en Fortune 500-bedrijven, zoals Mitsubishi, Siemens, Disney, FedEx, MARS en The Home Depot. Smart Inventory Planning & Optimization geeft vraagplanners de tools om om te gaan met seizoensinvloeden in de verkoop, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en af en toe gevraagde serviceonderdelen en kapitaalgoederen. Het biedt voorraadbeheerders ook nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts en is te vinden op het World Wide Web op www.smartcorp.com.


          Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
          Telefoon: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; E-mail: info@smartcorp.com

          De voordelen van kansvoorspelling

          }

          De slimme voorspeller

           Het nastreven van best practices op het gebied van vraagplanning,

          prognoses en voorraadoptimalisatie

          De meeste vraagprognoses zijn gedeeltelijk of onvolledig: ze bieden slechts één enkel getal: de meest waarschijnlijke waarde van de toekomstige vraag. Dit wordt een puntvoorspelling genoemd. Gewoonlijk schat de puntvoorspelling de gemiddelde waarde van de toekomstige vraag.

          Veel nuttiger is een voorspelling van de volledige waarschijnlijkheidsverdeling van de vraag op elk toekomstig tijdstip. Dit wordt vaker waarschijnlijkheidsvoorspelling genoemd en is veel nuttiger.

          Het gemiddelde is niet het antwoord

           

          Het enige voordeel van een puntvoorspelling is de eenvoud. Als uw ERP-systeem ook eenvoudig is, vult de puntprognose het ene getal in dat het ERP-systeem nodig heeft om personeelsplanning of inkoop van grondstoffen te doen.

          Het nadeel van een puntvoorspelling is dat het te simpel is. Het negeert aanvullende informatie in de vraaggeschiedenis van een artikel die u een vollediger beeld kan geven van hoe de vraag zich zou kunnen ontvouwen: een kansprognose.

          Verder gaan dan het gemiddelde: waarschijnlijkheidsvoorspellingen

           

          Terwijl de puntprognose beperkte informatie geeft, bijv. "De meest waarschijnlijke vraag volgende maand is 15 eenheden", voegt de kansprognose cruciale informatie toe, bijv. "Er is een kans van 20% dat de vraag meer dan 28 eenheden zal bedragen en een kans van 10% dat het kleiner zijn dan 5 eenheden”.

          Met deze informatie kunt u risicobeoordelingen en noodplannen maken. Contingency planning is nodig omdat de kans dat de puntvoorspelling daadwerkelijk klopt meestal maar klein is. Een waarschijnlijkheidsvoorspelling kan ook zeggen: "De kans dat de vraag 15 eenheden is, is slechts 10%, ook al is dit de meest waarschijnlijke waarde." Met andere woorden, er is een kans van 90% dat de puntvoorspelling verkeerd is. Dit soort fouten is geen fout in de prognoseberekeningen: het is de realiteit van het omgaan met vraagvolatiliteit. Het zou beter een "onzekerheid" kunnen worden genoemd dan een "fout".

          Een operations manager kan de extra informatie in een kansprognose zowel informeel als formeel gebruiken. Informeel, zelfs als een ERP-systeem een enkelvoudige prognose als invoer vereist, zal een verstandige manager enig idee willen hebben van de risico's die aan die puntvoorspelling zijn verbonden, dwz de foutmarge. Een voorspelling van 15 ± 1 eenheid is dus een stuk veiliger dan een voorspelling van 15 ± 10. Het ± gedeelte is een compressie van een probabilistische voorspelling. Afbeelding 1 hieronder toont de vraaggeschiedenis van een item (rode lijn), puntprognoses voor de komende 12 maanden (groene lijn) en hun foutmarges (cyaankleurige lijnen). De laagste prognose van ongeveer 3.300 eenheden komt in juni uit, maar de werkelijke vraag kan wel 800 eenheden hoger of lager zijn.

          Bonus: toepassing op voorraadbeheer

           

          Voorraadbeheer vereist dat u de beschikbaarheid van artikelen afzet tegen de voorraadkosten. Het blijkt dat het kennen van de volledige waarschijnlijkheidsverdeling van de vraag over een doorlooptijd van aanvulling essentieel is om bestelpunten (ook wel minuten genoemd) op een rationele, wetenschappelijke basis te bepalen. Figuur 2 toont een waarschijnlijkheidsprognose van de totale vraag gedurende de 33 weken durende aanvultijd voor een bepaald reserveonderdeel. Hoewel de gemiddelde doorlooptijdvraag 3 eenheden is, is de meest waarschijnlijke vraag nul en is een bestelpunt van 14 nodig om ervoor te zorgen dat de kans op voorraad slechts 1% is. Nogmaals, het gemiddelde is niet het antwoord.

          Meer weten is altijd beter dan minder weten en de waarschijnlijkheidsvoorspelling geeft net dat beetje extra cruciale informatie. Software kan al meer dan 40 jaar een puntvoorspelling leveren, maar moderne software kan het beter doen en het hele plaatje weergeven.

           

           

          Figuur 1: De rode lijn toont de vraaggeschiedenis van een gereed product. De groene lijn toont de puntprognoses voor de komende 12 maanden. De blauwe lijnen geven de foutmarges in de 12-puntsvoorspellingen aan.

           

           

          Afbeelding 2: Een probabilistische prognose van de vraag naar een reserveonderdeel gedurende een aanvultijd van 33 weken. De meest waarschijnlijke vraag is nul, de gemiddelde vraag is 3, maar een bestelpunt van 14 eenheden is vereist om slechts 1% kans te hebben dat de voorraad op is.

          Laat een reactie achter

          gerelateerde berichten

          Call an Audible to Proactively Counter Supply Chain Noise

          Bel een Audible om proactief ruis in de supply chain tegen te gaan

          U kent de situatie: u berekent de beste manier om elk voorraadartikel te beheren door de juiste reorder points en replenishment targets te berekenen, en vervolgens de gemiddelde vraag te verhogen of te verlagen, of de volatiliteit van de vraag te veranderen, of de lead times van leveranciers te veranderen, of uw eigen kosten te veranderen.

          Managing the Inventory of Promoted Items

          Beheer van de inventaris van gepromote artikelen

          In een eerder bericht besprak ik een van de neteligere problemen waarmee vraagplanners soms worden geconfronteerd: het werken met gegevens over productvraag die worden gekenmerkt door wat statistici scheefheid noemen - een situatie die kostbare voorraadinvesteringen kan vergen. Dit soort problematische gegevens is te vinden in verschillende scenario's. In ten minste één geval, de combinatie van intermitterende vraag en zeer effectieve verkoopacties, leent het probleem zich voor een effectieve oplossing.

          Top 3 Most Common Inventory Control Policies

          Top 3 meest voorkomende voorraadbeheerbeleid

          Om de juiste beslissing te nemen, moet u weten hoe vraagprognose voorraadbeheer ondersteunt, welk beleid u wilt gebruiken en berekening van de input die dit beleid aanstuurt. Het proces van het bestellen van aanvullende voorraad is zo duur en omslachtig dat u ook het aantal inkooporders dat u moet genereren wilt minimaliseren.

          recente berichten

          • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
            In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
          • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
            De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
          • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
            Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
          • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
            Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
          • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
            Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

            Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

            • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
              In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
            • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
              De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
            • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
              Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
            • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
              In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

              Halverwege komen met Demand Planning

              De slimme voorspeller

               Het nastreven van best practices op het gebied van vraagplanning,

              prognoses en voorraadoptimalisatie

              Vraagplanning kost tijd en moeite. Het is de moeite waard voor zover het je daadwerkelijk helpt te maken wat je nodig hebt wanneer je het nodig hebt.

              Maar het werk kan goed of slecht worden gedaan. We zien veel fabrikanten stoppen bij het eerste niveau terwijl ze gemakkelijk naar het tweede niveau kunnen gaan. En met een beetje meer moeite zouden ze helemaal naar het derde niveau kunnen gaan, door gebruik te maken van probabilistische modellering om de resultaten van de vraagplanning om te zetten in een voorraadoptimalisatieproces.

              Het eerste niveau

               

              Het eerste niveau is het maken van een vraagprognose met behulp van statistische methoden. Afbeelding 1 toont een poging op het eerste niveau: de vraaggeschiedenis van een artikel (rode lijn) en de verwachte prognose voor 12 maanden (groene lijn).

               

               The first level: A forecast of expected demand over the next 12 months

               

              De voorspelling is kaal. Het projecteert alleen verwacht vraag negeren dat de vraag volatiel is en onvermijdelijk prognosefouten zal veroorzaken. (Dit is nog een voorbeeld van een belangrijke stelregel: “Het gemiddelde is niet het antwoord”). De voorspelling is waarschijnlijk zowel te hoog als te laag, en er is geen indicatie van voorspellingsonzekerheid bij de voorspelling. Dit betekent dat de planner geen inschatting heeft van het risico dat gepaard gaat met het nakomen van de prognose. Toch biedt deze prognose een rationele basis voor productieplanning, persoonlijke planning en inkoop van grondstoffen. Het is dus veel beter dan gissen.

              Het tweede niveau

               

              Het tweede niveau houdt expliciet rekening met de voorspelde onzekerheid. Figuur 2 toont een inspanning van het tweede niveau, bekend als een "percentielprognose".

              Nu zien we een expliciete indicatie van voorspelde onzekerheid. De cyaankleurige lijn boven de groene prognoselijn vertegenwoordigt het verwachte 90e percentiel van de maandelijkse vraag. Dat wil zeggen, de vraag in elke toekomstige maand heeft een kans van 90% om op of onder de cyaanlijn te vallen. Anders gezegd, er is een kans van 10% dat de vraag elke maand de cyaanlijn overschrijdt.

              Deze analyse is veel nuttiger omdat het risicobeheer ondersteunt. Als het belangrijk is om voldoende aanvoer van dit artikel te verzekeren, dan is het logisch om te produceren tot het 90e percentiel in plaats van tot de verwachte prognose. Het is tenslotte een gok of de verwachte voorspelling zal resulteren in voldoende productie om aan de maandelijkse vraag te voldoen. Deze prognose op het tweede niveau is in feite een ruwe vervanging van een zorgvuldig voorraadbeheerproces.

               

              A percentile forecast, where the cyan line estimates the 90th percentiles of monthly demand.

               

              Afbeelding 2. Een percentielprognose, waarbij de cyaankleurige lijn het 90e percentiel van de maandelijkse vraag schat.

              Gaat helemaal naar het derde niveau

               

              Best practice is het derde niveau, dat vraagplanning gebruikt als basis voor het voltooien van een tweede taak: expliciete voorraadoptimalisatie. Figuur 3 toont de fundamentele plot voor het efficiënte beheer van ons eindproduct, ervan uitgaande dat het een productietijd van 1 maand heeft.

               

              Distribution of demand for finished good over its 1-month lead time

               

              Afbeelding 3 toont het gebruik van probabilistische prognoses en hoeveel afname van de voorraad gereed product kan plaatsvinden gedurende een productietijd van een maand. De onzekerheid in de vraag komt tot uiting in de spreiding van de mogelijke vraag, van een dieptepunt van 0 tot een maximum van 35, waarbij 15 eenheden de meest waarschijnlijke waarde is. De verticale rode lijn bij 22 geeft het "bestelpunt" (of "min" of "triggerwaarde") aan dat overeenkomt met het behouden van de kans op voorraad in afwachting van aanvulling tot een lage 5%. Wanneer de voorraad daalt tot 22 of lager, is het tijd om meer te bestellen. Het derde niveau maakt gebruik van probabilistische vraagprognoses met volledige blootstelling aan prognoseonzekerheid om de voorraad van het eindproduct efficiënt te beheren.

              Opsommen

               

              Het voorspellen van de meest waarschijnlijke vraag naar een artikel is een nuttige eerste stap. Het brengt je halverwege waar je wilt zijn. Maar het biedt een onvolledige gids voor planning, omdat het de volatiliteit van de vraag en de verwachte onzekerheid die het creëert, negeert. Door een buffer aan de vraagprognose toe te voegen, komt u verder, omdat het risico wordt verkleind dat een sprong in de vraag u een tekort aan product zal opleveren. Dit kussen kan worden berekend door middel van probabilistische prognosebenaderingen die een hoog percentage van de verdeling van de toekomstige vraag voorspellen. En als u nog een stap verder wilt gaan, kunt u prognoses van de vraagverdeling over een doorlooptijd invoeren om bestelpunten (minuten) te berekenen om ervoor te zorgen dat u een acceptabel laag risico op voorraaduitval heeft.

              Gezien wat moderne prognosetechnologie voor u kan doen, waarom zou u halverwege uw doel willen stoppen?

              Laat een reactie achter

              gerelateerde berichten

              Call an Audible to Proactively Counter Supply Chain Noise

              Bel een Audible om proactief ruis in de supply chain tegen te gaan

              U kent de situatie: u berekent de beste manier om elk voorraadartikel te beheren door de juiste reorder points en replenishment targets te berekenen, en vervolgens de gemiddelde vraag te verhogen of te verlagen, of de volatiliteit van de vraag te veranderen, of de lead times van leveranciers te veranderen, of uw eigen kosten te veranderen.

              Managing the Inventory of Promoted Items

              Beheer van de inventaris van gepromote artikelen

              In een eerder bericht besprak ik een van de neteligere problemen waarmee vraagplanners soms worden geconfronteerd: het werken met gegevens over productvraag die worden gekenmerkt door wat statistici scheefheid noemen - een situatie die kostbare voorraadinvesteringen kan vergen. Dit soort problematische gegevens is te vinden in verschillende scenario's. In ten minste één geval, de combinatie van intermitterende vraag en zeer effectieve verkoopacties, leent het probleem zich voor een effectieve oplossing.

              Top 3 Most Common Inventory Control Policies

              Top 3 meest voorkomende voorraadbeheerbeleid

              Om de juiste beslissing te nemen, moet u weten hoe vraagprognose voorraadbeheer ondersteunt, welk beleid u wilt gebruiken en berekening van de input die dit beleid aanstuurt. Het proces van het bestellen van aanvullende voorraad is zo duur en omslachtig dat u ook het aantal inkooporders dat u moet genereren wilt minimaliseren.

              recente berichten

              • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
                In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
              • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
                De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
              • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
                Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
              • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
                Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
              • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
                Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

                Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

                • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
                  In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
                • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
                  De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
                • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
                  Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
                • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
                  In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]