Voorraadplanning vanuit het perspectief van een natuurkundige
In een perfecte wereld zou Just In Time (JIT) de geschikte oplossing zijn voor voorraadbeheer. Als je precies kunt voorspellen wat je nodig hebt en waar je het nodig hebt en je leveranciers kunnen krijgen wat je nodig hebt zonder vertraging, dan hoef je lokaal niet veel voorraad aan te houden. Maar zoals het gezegde luidt van de beroemde bokser Mike Tyson: "iedereen heeft een plan totdat ze in de mond worden geslagen." En de laatste klap in de mond voor de wereldwijde toeleveringsketen was de blokkade van het Suezkanaal van vorige week die $9.6B in de handel tegenhield en naar schatting $6.7M per minuut kostte[1]. Verstoringen als gevolg van deze en soortgelijke gebeurtenissen moeten worden gemodelleerd en in uw planning worden verantwoord.
De veronderstelling dat je precies kunt toekomst voorspellen bleek uit de wetten van Isaac Newton. Sinds de jaren 1920, met de introductie van de kwantumfysica, werd onzekerheid fundamenteel voor ons begrip van de natuur. Onzekerheid is ingebouwd in de fundamentele realiteit. Zo moet het ook worden ingebouwd in processen voor vraag- en aanbodplanning. Maar al te vaak worden Black Swan-evenementen, zoals de blokkade van het Suezkanaal, vaak gezien als anomalieën en als gevolg daarvan worden ze buiten beschouwing gelaten bij de planning. Het is niet genoeg om achteraf terug te kijken en te verkondigen dat het had kunnen worden verwacht. Er moet iets worden gedaan om het optreden van andere dergelijke gebeurtenissen in de toekomst aan te pakken en de voorraadniveaus dienovereenkomstig te plannen.
We moeten verder gaan dan het denken van "dunne staartverdeling", waarbij extreme uitkomsten worden verdisconteerd, en plannen maken voor "dikke staarten". Dus hoe voeren we een real-world JIT-plan uit als het gaat om het plannen van inventaris? Om dit te doen, is de eerste stap het inschatten van de realistische doorlooptijd om een artikel te verkrijgen. Schatting is echter moeilijk vanwege de onzekerheid over de doorlooptijd. Met behulp van actuele doorlooptijden van leveranciers in uw bedrijfsdatabase en externe gegevens, kunt u een verdeling van mogelijke toekomstige doorlooptijden en eisen binnen die doorlooptijden ontwikkelen. Probabilistische prognoses stelt u in staat om rekening te houden met verstoringen en ongebruikelijke gebeurtenissen door uw schattingen niet te beperken tot wat uitsluitend is waargenomen op basis van uw eigen kortetermijngegevens over vraag en doorlooptijd. U kunt voor elke gebeurtenis mogelijke uitkomsten met bijbehorende kansen genereren.
Zodra u een schatting heeft van de doorlooptijd en vraagverdeling, kunt u dat doen specificeer het serviceniveau je moet hebben voor dat onderdeel. Het gebruik van oplossingen zoals Slimme voorraadoptimalisatie (SIO), kunt u vol vertrouwen bevoorraden op basis van het beoogde voorraadrisico met minimale voorraadkosten. U kunt ook overwegen om de oplossing optimale serviceniveaudoelen te laten voorschrijven door de kosten van extra voorraad versus de kosten van voorraaduitval te beoordelen.
Tot slot moeten we, zoals ik al heb opgemerkt, accepteren dat we nooit alle onzekerheid kunnen wegnemen. Als natuurkundige ben ik altijd geïntrigeerd geweest door het feit dat er, zelfs op de meest basale niveaus van de werkelijkheid zoals we die vandaag kennen, nog steeds onzekerheid bestaat. Albert Einstein geloofde in zekerheid (determinisme) in de natuurkundige wet. Als hij voorraadbeheerder was geweest, had hij misschien voor JIT gepleit omdat hij vond dat natuurkundige wetten perfecte voorspelbaarheid mogelijk zouden moeten maken. Hij zei beroemd: "God speelt niet met dobbelstenen." Of zou het mogelijk kunnen zijn dat het universum waarin we bestaan een "zwarte zwaan" -gebeurtenis was in een eerder "multiversum" dat een bepaald soort universum voortbracht waardoor we konden bestaan.
Bij voorraadplanning kunnen we, net als in de wetenschap, niet ontsnappen aan de realiteit van onzekerheid en de impact van ongewone gebeurtenissen. We moeten dienovereenkomstig plannen.
[1] https://www.bbc.com/news/business-56559073#:~:text=Looking%20at%20the%20bigger%20picture,0.2%20to%200.4%20percentage%20points.
gerelateerde berichten

Rechtstreeks naar het brein van de baas – voorraadanalyse en rapportage
In deze blog wordt de software in de schijnwerpers gezet die rapporten voor het management maakt, de stille held die de schoonheid van furieuze berekeningen vertaalt naar bruikbare rapporten. Kijk hoe de berekeningen, op ingewikkelde wijze begeleid door planners die onze software gebruiken, naadloos samenkomen in Smart Operational Analytics (SOA)-rapporten, waarbij vijf belangrijke gebieden worden verdeeld: voorraadanalyse, voorraadprestaties, voorraadtrends, leveranciersprestaties en vraagafwijkingen.

Hoe gaat het met ons? KPI's en KPP's
Het dagelijkse voorraadbeheer kan u bezig houden. Maar je weet dat je af en toe je hoofd omhoog moet brengen om te zien waar je naartoe gaat. Daarvoor moet uw inventarissoftware u statistieken tonen – en niet slechts één, maar een volledige set statistieken of KPI's – Key Performance Indicators.

Verward over AI en Machine Learning?
Bent u in de war over wat AI is en wat machine learning is? Weet u niet zeker waarom meer weten u zal helpen bij uw werk in voorraadplanning? Wanhoop niet. Het komt wel goed met je, en we laten je zien hoe iets van wat het ook is, nuttig kan zijn.