12 Oorzaken van Overstocking en Praktische Oplossingen

Overstocking van voorraden kan zowel de financiële stabiliteit als de operationele efficiëntie schaden. Wanneer een organisatie overstocking heeft, legt het kapitaal vast in overtollige voorraden die mogelijk niet verkocht worden, wat de opslagkosten en het risico op veroudering van de voorraad verhoogt. Bovendien hadden de fondsen die gebruikt werden om de overtollige voorraad te kopen beter geïnvesteerd kunnen worden in andere gebieden van het bedrijf, zoals marketing of onderzoek en ontwikkeling. Overstocking belemmert ook de cashflow, omdat geld vastzit in voorraden in plaats van beschikbaar is voor onmiddellijke operationele behoeften. Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier volgt een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen.

 

1 Onjuiste vraagvoorspelling

Een van de belangrijkste oorzaken van overstocking is onnauwkeurige vraagvoorspelling. Wanneer bedrijven vertrouwen op verouderde voorspellingsmethoden of onvoldoende gegevens, kunnen ze de vraag gemakkelijk overschatten, wat leidt tot overstocking. Een goed voorbeeld is de kledingindustrie, waar modetrends snel kunnen veranderen. Een bekend modemerk kreeg onlangs te maken met uitdagingen nadat het de vraag naar een nieuwe kledinglijn had overschat op basis van gebrekkige data-analyse, wat leidde tot onverkochte voorraad.

Om dit probleem aan te pakken, kunnen bedrijven nieuwe technologieën implementeren die automatisch de beste prognosemethoden voor de gegevens selecteren, waarbij trends en seizoenspatronen worden opgenomen om nauwkeurigheid te garanderen. Door de nauwkeurigheid van de prognose te verbeteren, kunnen bedrijven hun inventaris beter afstemmen op de werkelijke vraag, wat leidt tot nauwkeuriger voorraadbeheer en minder overstockscenario's. Een hardwareretailer die Smart Demand Planner gebruikte, verminderde bijvoorbeeld prognosefouten met 15%, wat het potentieel voor aanzienlijke verbetering in voorraadbeheer aantoont.

 

2 Onjuist voorraadbeheer

Effectief voorraadbeheer is fundamenteel om overstocking te voorkomen. Zonder nauwkeurige systemen om voorraadniveaus bij te houden, kunnen bedrijven overtollige voorraad bestellen en hogere kosten maken. Dit probleem komt vaak voort uit afhankelijkheid van spreadsheets of inefficiënte ERP-systemen die geen realtime data-integratie hebben.

State-of-the-art technologieën bieden realtime inzicht in voorraadniveaus, waardoor bedrijven bestelprocessen kunnen automatiseren en optimaliseren. Een groot elektriciteitsbedrijf had te maken met uitdagingen bij het behouden van de beschikbaarheid van serviceonderdelen zonder overbevoorrading, waarbij meer dan 250.000 onderdeelnummers werden beheerd in een divers netwerk van elektriciteitsopwekkings- en distributiefaciliteiten. Het bedrijf verving zijn verouderde systeem door Smart IP&O en integreerde het in realtime met hun Enterprise Asset Management (EAM)-systeem. Smart IP&O stelde het nutsbedrijf in staat om 'what-if'-scenario's te gebruiken, digitale tweelingen van alternatieve voorraadbeleid te creëren en prestaties te simuleren op basis van belangrijke prestatie-indicatoren, zoals voorraadwaarde, serviceniveaus, vulpercentages en tekortkosten. Hierdoor kon het nutsbedrijf gerichte aanpassingen doen aan hun voorraadparameters, die vervolgens werden geïmplementeerd in hun EAM-systeem, wat leidde tot optimale aanvullingen van reserveonderdelen.

Het resultaat was significant: een vermindering van de voorraad met $9 miljoen, waardoor er geld en waardevolle magazijnruimte vrijkwam, terwijl de beoogde serviceniveaus van meer dan 99% werden gehandhaafd.

 

3 overdreven optimistische verkoopprognoses

Bedrijven, met name die in groeifases, kunnen hogere verkopen voorspellen dan ze realiseren, wat leidt tot overtollige voorraad die bedoeld is om te voldoen aan de verwachte vraag die nooit werkelijkheid wordt. Een voorbeeld hiervan is het recente geval met een fabrikant van elektrische voertuigen die hoge verkopen voor zijn vrachtwagen voorspelde, maar te maken kreeg met vertragingen in de productie en een lagere vraag dan verwacht, wat resulteerde in een overschot aan componenten en onderdelen. Deze verkeerde berekening leidde tot hogere opslagkosten en beperkte financiële middelen.

Een ander bedrijf in de automotive aftermarket had moeite om onderdelen die af en toe werden gevraagd nauwkeurig te voorspellen, wat vaak resulteerde in overstocking en stockouts. Met behulp van AI-gestuurde technologie kon het bedrijf backorders en verloren verkopen aanzienlijk verminderen, met een verbetering van de vulpercentages van 93% naar 96% binnen slechts drie maanden. Door gebruik te maken van Smart IP&O-prognosetechnologieën kon het bedrijf nauwkeurige schattingen genereren van de cumulatieve vraag over doorlooptijden, wat een beter zicht bood op potentiële vraagscenario's. Dit zorgde voor geoptimaliseerde voorraadniveaus, lagere opslagkosten en verbeterde financiële efficiëntie door de voorraad af te stemmen op de werkelijke vraag.

 

4 Kortingen bij bulkaankopen

De aantrekkingskracht van kostenbesparingen door bulkaankopen kan bedrijven ertoe aanzetten om meer te kopen dan nodig is, waardoor kapitaal en opslagruimte worden vastgelegd. Dit leidt vaak tot opslagproblemen wanneer overtollige voorraad wordt besteld om korting te krijgen.

Om deze uitdaging aan te gaan, moeten bedrijven de voordelen van bulkkortingen afwegen tegen de kosten van het aanhouden van overtollige voorraad. Technologie van de volgende generatie kan helpen de meest kosteneffectieve inkoopstrategie te identificeren door directe besparingen in evenwicht te brengen met opslagkosten op de lange termijn. Door Smart IP&O te implementeren, kon MNR de voorraadvereisten nauwkeurig voorspellen en zijn voorraadbeheerprocessen optimaliseren. Dit leidde tot een vermindering van 8% in de onderdelenvoorraad, waardoor een hoog klantenserviceniveau van 98,7% werd bereikt en de voorraadgroei voor nieuwe apparatuur werd teruggebracht van een geprojecteerde 10% naar slechts 6%.

 

5 Seizoensgebonden Vraagschommelingen

Moeilijkheden bij het afstemmen van de voorraad op de seizoensgebonden vraag kunnen leiden tot overtollige voorraad zodra de piekverkoopperiode voorbij is. Speelgoedfabrikanten kunnen bijvoorbeeld te veel speelgoed met een vakantiethema produceren, alleen om na de feestdagen met een lage vraag te worden geconfronteerd. De mode-industrie ervaart vaak soortgelijke uitdagingen, waarbij bepaalde stijlen verouderd raken naarmate de seizoenen veranderen. De nieuwste technologieën kunnen bedrijven helpen om seizoensgebonden vraagverschuivingen te anticiperen en de voorraadniveaus dienovereenkomstig aan te passen. Door eerdere verkoopgegevens te analyseren en toekomstige trends te voorspellen, kunnen bedrijven zich beter voorbereiden op seizoensgebonden schommelingen, het risico op overbevoorrading minimaliseren en de voorraadomzet verbeteren.

 

6 Variabiliteit in de levertijd van leveranciers

Onbetrouwbare levertijden van leveranciers kunnen leiden tot overstocking als buffer tegen vertragingen. Als levertijden verbeteren of de vraag onverwachts afneemt, kunnen bedrijven overtollige voorraad hebben. Een distributeur van auto-onderdelen kan bijvoorbeeld onderdelen opslaan om vertragingen bij leveranciers te beperken, maar dan merken ze dat de levertijden plotseling verbeteren.

12 Causes of Overstocking and Practical Solutions

Geavanceerde technologie kan helpen door realtime data en voorspellende analyses te leveren om de variabiliteit van de doorlooptijd beter te beheren. Deze tools stellen bedrijven in staat om hun orders dynamisch aan te passen, waardoor de behoefte aan overmatige veiligheidsvoorraad afneemt.

 

7 Onvoldoende voorraadbeleid

Verouderde of onjuiste voorraadbeleidsregels, zoals foutieve Min/Max-instellingen, kunnen leiden tot overbestelling. Door echter moderne technologie te gebruiken om voorraadbeleidsregels regelmatig te controleren en bij te werken, wordt ervoor gezorgd dat ze aansluiten bij de huidige bedrijfsbehoeften en marktomstandigheden. Door beleid up-to-date te houden, kunnen bedrijven het risico op overstocking als gevolg van procedurele fouten verminderen. Een recente casestudy liet zien hoe een grote retailer Smart IP&O gebruikte om voorraadbeleidsregels te herzien, wat resulteerde in een 15%-reductie in overstock​​.

 

 

8 Promoties en marketingcampagnes

Een verkeerde afstemming tussen marketinginspanningen en de werkelijke vraag van klanten kan ertoe leiden dat bedrijven de impact van promoties overschatten, wat resulteert in onverkochte voorraad. Een cosmeticabedrijf kan bijvoorbeeld een product in beperkte oplage overproduceren, in de verwachting van een hoge vraag die niet uitkomt. Door Smart IP&O in te zetten, kunnen marketinginitiatieven worden afgestemd op realistische vraagverwachtingen, waardoor overtollige voorraad wordt vermeden. Door marketingplannen te integreren met vraagvoorspellingen, kunnen bedrijven hun promotionele strategieën optimaliseren om beter aan te sluiten bij de werkelijke interesse van klanten.

 

9 Angst voor voorraadtekorten

Bedrijven houden vaak hogere voorraadniveaus aan om voorraadtekorten te voorkomen, wat kan leiden tot omzetverlies en ontevreden klanten. Deze angst kan bedrijven ertoe aanzetten om te veel voorraad aan te leggen als vangnet, vooral in sectoren waar klanttevredenheid en -behoud cruciaal zijn. Een opvallend voorbeeld is een grote winkelketen die zijn voorraad huishoudelijke artikelen aanzienlijk uitbreidde om voorraadtekorten te voorkomen. Hoewel deze strategie aanvankelijk hielp om aan de vraag van klanten te voldoen, resulteerde dit later in overtollige voorraad toen de aankooppatronen van consumenten zich stabiliseerden. Deze overstocking droeg bij aan een winstdaling van bijna 90% in het tweede kwartaal, grotendeels als gevolg van afprijzingen en het opruimen van overtollige voorraad.

Om dergelijke situaties te beperken, kunnen bedrijven geavanceerde voorraadplannings- en optimalisatietools gebruiken om nauwkeurige vraagvoorspellingen te doen. Een toonaangevende elektronicafabrikant gebruikte bijvoorbeeld de Smart IP&O-oplossing om de voorraadniveaus te verlagen met 20% zonder dat dit gevolgen had voor de serviceniveaus. Dit verlaagde effectief de kosten en zorgde ervoor dat de klanttevredenheid behouden bleef door te zorgen dat ze de juiste hoeveelheid voorraad bij de hand hadden.

 

10 Overcompensatie voor problemen in de toeleveringsketen

Bedrijven kunnen te veel voorraad aanleggen om zich te beschermen tegen voortdurende verstoringen in de toeleveringsketen, maar dit kan leiden tot opslagproblemen. Een technologiebedrijf kan bijvoorbeeld componenten opslaan om mogelijke problemen in de toeleveringsketen te voorkomen, wat resulteert in overtollige voorraad en hogere kosten. Geavanceerde systemen kunnen bedrijven helpen om beter te anticiperen op en te reageren op uitdagingen in de toeleveringsketen, door de behoefte aan veiligheidsvoorraad in evenwicht te brengen met het risico van te veel voorraad. Een technologiebedrijf gebruikte Smart IP&O om zijn voorraadstrategie te stroomlijnen, waarbij de overtollige voorraad werd verminderd tegen 20% en de veerkracht van de toeleveringsketen behouden bleef.

 

11 Lange levertijden en onbetrouwbare leveranciers

Lange doorlooptijden en onbetrouwbare leveranciers kunnen ertoe leiden dat bedrijven meer voorraad bestellen dan nodig is om potentiële leveringstekorten te dekken. Minder kritieke artikelen waarvan wordt voorspeld dat ze een zeer hoog serviceniveau bereiken, vertegenwoordigen echter kansen om de voorraad te verminderen. Door lagere serviceniveaus te targeten voor minder kritieke artikelen, zal de voorraad na verloop van tijd de "juiste grootte" hebben voor het nieuwe evenwicht, waardoor de opslagkosten en de waarde van de voorraad afnemen. Een groot openbaarvervoersysteem verminderde de voorraad met meer dan $4.000.000 terwijl het serviceniveau werd verbeterd met behulp van onze geavanceerde technologie.

 

12 Gebrek aan realtime inzicht in de voorraad

Zonder realtime inzicht in de voorraad bestellen bedrijven vaak meer voorraad dan nodig is, wat leidt tot inefficiëntie en hogere kosten. Smart IP&O stelde Seneca-bedrijven in staat om de vraag op elke voorraadlocatie te modelleren en, met behulp van servicelevelgestuurde planning, te bepalen hoeveel er moet worden opgeslagen om het vereiste serviceniveau te bereiken. Door verschillende scenario's uit te voeren en te vergelijken, kunnen ze eenvoudig optimale voorraadbeleidsregels definiëren en bijwerken voor elke technische ondersteuningsvertegenwoordiger en voorraadruimten.

De software heeft veldtechnici bewijs geleverd dat ze voorheen niet hadden, door hun werkelijke verbruik, de frequentie van het gebruik van onderdelen en de reden voor het voorraadbeleid te tonen, waarbij 90% werd gebruikt als de beoogde serviceniveaunorm. Veldtechnici hebben het gebruik ervan omarmd, met significante resultaten: de voorraad "Zero Turns" is gedaald van $400K tot minder dan $100K, de "First Fix Rate" overschrijdt 90% en de totale voorraadinvestering is met meer dan 25% gedaald, van $11 miljoen tot $ 8 miljoen .

 

Concluderend vormt overstocking een ernstige bedreiging voor de winstgevendheid en efficiëntie van bedrijven, wat leidt tot hogere opslagkosten, vastgelopen kapitaal en mogelijke veroudering van goederen. Deze problemen kunnen de middelen belasten en het vermogen van een bedrijf om te reageren op marktveranderingen beperken. Overstocking kan echter effectief worden beheerd door de oorzaken ervan te begrijpen, zoals onnauwkeurige vraagvoorspellingen, langere doorlooptijden en onbetrouwbare leveranciers. Het implementeren van robuuste AI-gestuurde oplossingen zoals Smart IP&O kan bedrijven helpen voorraadniveaus te optimaliseren, overtollige voorraad te verminderen en de operationele efficiëntie te verbeteren. Door geavanceerde prognose- en voorraadoptimalisatietools te benutten, kunnen bedrijven de juiste balans vinden tussen het voldoen aan de vraag van klanten en het minimaliseren van voorraadgerelateerde kosten.

 

7 belangrijke trends in vraagplanning die de toekomst vormgeven

Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt.

Datagestuurde inzichten

Geavanceerde analyses, machine learning en kunstmatige intelligentie (AI) worden integraal onderdeel van vraagplanning. Technologieën zoals Smart UP&O stellen bedrijven in staat om complexe datasets te analyseren, patronen te identificeren en nauwkeurigere voorspellingen te doen. Deze verschuiving naar datagestuurde inzichten helpt bedrijven om snel te reageren op marktveranderingen, voorraadtekorten te minimaliseren en overtollige voorraad te verminderen.

Probabilistic Forecasting

Probabilistische voorspellingen richten zich op het voorspellen van een reeks mogelijke uitkomsten in plaats van één enkel getal. Deze trend is met name belangrijk voor het beheren van onzekerheid en risico bij vraagplanning. Het helpt bedrijven zich voor te bereiden op verschillende vraagscenario's, het verbeteren van voorraadbeheer en het verminderen van de kans op voorraadtekorten of overvoorraad.

Consensusvoorspelling

Moderne productie beweegt richting een geïntegreerde aanpak waarbij afdelingen en belanghebbenden nauwer samenwerken. Samenwerkende prognoses omvatten het delen van inzichten in de hele toeleveringsketen, van leveranciers tot distributeurs en interne teams. Deze aanpak doorbreekt silo's en zorgt ervoor dat iedereen naar een gemeenschappelijk doel toewerkt, wat leidt tot een meer gesynchroniseerde en efficiënte toeleveringsketen.

Voorspellende en prescriptieve analyses

Predictive analytics voorspelt toekomstige uitkomsten op basis van historische data en trends, waardoor bedrijven vraagschommelingen kunnen anticiperen. Smart Demand Planner (SDP) automatiseert bijvoorbeeld prognoses om voorraad- en productieniveaus dienovereenkomstig aan te passen.

Prescriptieve analyses gaan verder door bruikbare aanbevelingen te bieden. Smart Inventory Planning and Optimization (IP&O) schrijft bijvoorbeeld optimale voorraadbeleidsregels voor op basis van serviceniveaus, kosten en risico's. Samen maken deze tools proactieve besluitvorming mogelijk, waardoor bedrijven hun reacties op toekomstige uitdagingen kunnen voorspellen en optimaliseren.

Scenariomodellering

Scenariomodellering wordt een belangrijk onderdeel van vraagplanning, waardoor bedrijven verschillende scenario's kunnen simuleren en hun impact op de bedrijfsvoering kunnen beoordelen. Deze methode helpt bedrijven aanpasbare strategieën te creëren om onzekerheden effectief aan te pakken. Smart IP&O verbetert deze mogelijkheid door Wat als scenario's waarmee gebruikers verschillende voorraadbeleidsregels kunnen testen voordat ze worden geïmplementeerd. Door variabelen zoals serviceniveaus of bestelhoeveelheden aan te passen, kunnen bedrijven de effecten op kosten en serviceniveaus visualiseren, waardoor ze de optimale strategie kunnen selecteren om risico's te minimaliseren en kosten te beheersen.

Realtime zichtbaarheid

Naarmate toeleveringsketens globaler en onderling verbonden worden, is realtime inzicht in inventaris en toeleveringsketenactiviteiten cruciaal. Verbeterde samenwerking met leveranciers en distributeurs, gecombineerd met realtimegegevens, stelt bedrijven in staat om snellere, beter geïnformeerde beslissingen te nemen. Dit helpt voorraadniveaus te optimaliseren, doorlooptijden te verkorten en de algehele veerkracht van de toeleveringsketen te verbeteren.

Meervoudige prognose

Dit omvat prognoses op verschillende niveaus van de producthiërarchie, zoals individuele items, productfamilies of zelfs hele productlijnen. Multilevel-prognoses zijn essentieel voor bedrijven met complexe productportfolio's, omdat ze ervoor zorgen dat prognoses nauwkeurig zijn op zowel micro- als macroniveau.

 

Vraagplanning is een doorslaggevend aspect van modern supply chain management, dat bedrijven de mogelijkheid biedt om de operationele efficiëntie te verbeteren, kosten te verlagen en beter te voldoen aan de vraag van klanten. Door geavanceerde platforms zoals Smart IP&O te benutten, worden de nauwkeurigheid van voorspellingen en het voorraadbeheer aanzienlijk verbeterd, waardoor snelle reacties op marktschommelingen mogelijk zijn. Geautomatiseerde statistische voorspellingen, gecombineerd met mogelijkheden zoals hiërarchievoorspellingen en voorspellingsoverschrijdingen, zorgen ervoor dat voorspellingen nauwkeurig en aanpasbaar zijn, wat leidt tot realistischere planningsbeslissingen. Bovendien kunnen bedrijven met hulpmiddelen zoals scenariomodellering verschillende vraagscenario's in hun producthiërarchie verkennen, wat geïnformeerde besluitvorming mogelijk maakt door inzicht te bieden in mogelijke uitkomsten en risico's. Deze aanpak stelt bedrijven in staat om de impact van beleidswijzigingen te anticiperen, betere beslissingen te nemen en uiteindelijk hun voorraad en algehele supply chain management te optimaliseren, waarbij ze op de hoogte blijven van belangrijke trends in het proces.

 

 

 

De kosten van spreadsheetplanning

Bedrijven die afhankelijk zijn van spreadsheets voor vraagplanning, prognoses en voorraadbeheer worden vaak beperkt door de inherente beperkingen van de spreadsheet. Dit artikel onderzoekt de nadelen van traditionele voorraadbeheerbenaderingen veroorzaakt door spreadsheets en de daarmee samenhangende kosten, en contrasteert deze met de aanzienlijke voordelen die worden behaald door het omarmen van de modernste planningstechnologieën.

Spreadsheets zijn weliswaar flexibel vanwege hun oneindige aanpasbaarheid, maar zijn in wezen handmatig van aard en vereisen aanzienlijk gegevensbeheer, menselijke inbreng en toezicht. Dit vergroot het risico op fouten, van eenvoudige fouten bij het invoeren van gegevens tot complexe formulefouten, die trapsgewijze effecten veroorzaken die de voorspellingen negatief beïnvloeden. Bovendien zijn spreadsheetgebaseerde processen, ondanks de vooruitgang op het gebied van samenwerkingsfuncties die meerdere gebruikers in staat stellen om met een gemeenschappelijk blad te communiceren, vaak in silo's ondergebracht. De houder van het spreadsheet houdt de gegevens vast. Wanneer dit gebeurt, ontstaan er veel bronnen van datawaarheid. Zonder het vertrouwen van een overeengekomen, zuivere en automatisch bijgewerkte gegevensbron beschikken organisaties niet over de noodzakelijke basis waarop voorspellende modellen, prognoses en analyses kunnen worden gebouwd.

Geavanceerde planningssystemen zoals Smart IP&O zijn daarentegen ontworpen om deze beperkingen te overwinnen. Dergelijke systemen zijn gebouwd om automatisch gegevens op te nemen via API of bestanden van ERP- en EAM-systemen, die gegevens te transformeren met behulp van ingebouwde ETL-tools en grote hoeveelheden gegevens efficiënt te verwerken. Hierdoor kunnen bedrijven complexe inventarisatie- en prognosetaken met grotere nauwkeurigheid en minder handmatige inspanning beheren, omdat de gegevensverzameling, aggregatie en transformatie al zijn voltooid. De overstap naar geavanceerde planningssystemen is om verschillende redenen essentieel voor het optimaliseren van resources.

Spreadsheets hebben ook een schaalprobleem. Hoe groter het bedrijf groeit, hoe groter het aantal spreadsheets, werkmappen en formules wordt. Het resultaat is een strak verweven en rigide geheel van onderlinge afhankelijkheden die log en inefficiënt worden. Gebruikers zullen moeite hebben met het omgaan met de toegenomen belasting en complexiteit, met trage verwerkingstijden en het onvermogen om grote datasets te beheren, en zullen te maken krijgen met uitdagingen bij het samenwerken tussen teams en afdelingen.

Aan de andere kant zijn geavanceerde planningssystemen voor voorraadoptimalisatie, vraagplanning en voorraadbeheer schaalbaar, ontworpen om met het bedrijf mee te groeien en zich aan te passen aan de veranderende behoeften. Deze schaalbaarheid zorgt ervoor dat bedrijven hun voorraad en prognoses effectief kunnen blijven beheren, ongeacht de omvang of complexiteit van hun activiteiten. Door over te stappen op systemen als Smart IP&O kunnen bedrijven niet alleen de nauwkeurigheid van hun voorraadbeheer en prognoses verbeteren, maar ook een concurrentievoordeel op de markt verwerven door beter te kunnen reageren op veranderingen in de vraag en efficiënter te kunnen opereren.

Voordelen van inspringen: Een elektriciteitsbedrijf had moeite om de beschikbaarheid van serviceonderdelen op peil te houden zonder een overschot aan voorraden te creëren voor meer dan 250.000 onderdelen in een divers netwerk van energieopwekkings- en distributiefaciliteiten. Het verving hun twintig jaar oude planningsproces, dat intensief gebruik maakte van spreadsheets, met Smart IP&O en een realtime integratie met hun EAM-systeem. Vóór Smart konden ze de Min/Max- en Veiligheidsvoorraadniveaus slechts zelden wijzigen. Als ze dat deden, was dat vrijwel altijd omdat er een probleem was opgetreden dat aanleiding gaf tot de beoordeling. De methoden die werden gebruikt om de kousparameters te wijzigen, waren sterk afhankelijk van het onderbuikgevoel en de gemiddelden van het historische gebruik. Het hulpprogramma maakte gebruik van de wat-als-scenario's van Smart om digitale tweelingen van alternatief voorraadbeleid te creëren en simuleerde hoe elk scenario zou presteren op belangrijke prestatie-indicatoren zoals voorraadwaarde, serviceniveaus, opvullingspercentages en tekortkosten. De software identificeerde gerichte Min/Max-verhogingen en -verlagingen die in hun EAM-systeem werden geïmplementeerd, waardoor de aanvulling van hun reserveonderdelen optimaal werd gestimuleerd. Het resultaat: een aanzienlijke voorraadreductie van $9 miljoen, waardoor contant geld en waardevolle magazijnruimte vrijkwamen, terwijl de beoogde serviceniveaus van 99%+ behouden bleven.

Prognosenauwkeurigheid beheren: Voorspellingsfouten zijn een onvermijdelijk onderdeel van voorraadbeheer, maar de meeste bedrijven houden dit niet bij. Zoals Peter Drucker zei: “Je kunt niet verbeteren wat je niet meet.” Een mondiaal hightech productiebedrijf dat een op spreadsheets gebaseerd voorspellingsproces gebruikte, moest handmatig zijn basisvoorspellingen opstellen en de nauwkeurigheid van de prognoses rapporteren. Gezien de werkdruk en de geïsoleerde processen van de planners werkten ze hun rapporten niet vaak bij, en als ze dat wel deden, moesten de resultaten handmatig worden gedistribueerd. Het bedrijf beschikte niet over een manier om te weten hoe nauwkeurig een bepaalde voorspelling was en kon de werkelijke fouten niet met enig vertrouwen per groep of onderdeel vermelden. Ze wisten ook niet of hun voorspellingen beter presteerden dan een controlemethode. Nadat Smart IP&O live ging, automatiseerde de module Demand Planning dit voor hen. Smart Demand Planner voorspelt nu automatisch de vraag elke planningscyclus opnieuw met behulp van ML-methoden en slaat nauwkeurigheidsrapporten op voor elke Part X-locatie. Alle aanpassingen die op de prognoses worden toegepast, kunnen nu automatisch worden vergeleken met de basislijn om de toegevoegde waarde van de prognose te meten – dwz of de extra inspanning om die wijzigingen door te voeren de nauwkeurigheid heeft verbeterd. Nu de mogelijkheid bestaat om de statistische basisprognoses te automatiseren en nauwkeurigheidsrapporten te produceren, beschikt dit bedrijf over een solide basis om het voorspellingsproces en de daaruit voortvloeiende voorspellingsnauwkeurigheid te verbeteren.

Doe het goed en houd het goed:  Een andere klant in de aftermarket-onderdelensector gebruikt de prognoseoplossingen van Smart sinds 2005 – bijna 20 jaar! Ze werden geconfronteerd met uitdagingen bij het voorspellen van de vraag naar onderdelen die met tussenpozen zouden worden verkocht ter ondersteuning van hun auto-aftermarket-activiteiten. Door hun op spreadsheets gebaseerde aanpak en handmatige uploads naar SAP te vervangen door statistische prognoses van de vraag en de veiligheidsvoorraad van SmartForecasts, konden ze het aantal backorders en omzetverlies aanzienlijk terugdringen, waarbij de opvullingspercentages binnen slechts drie maanden verbeterden van 93% naar 96%. De sleutel tot hun succes was het gebruik van Smart's gepatenteerde methode voor het voorspellen van de intermitterende vraag. De “Smart-Willemain” bootstrap-methode genereerde nauwkeurige schattingen van de cumulatieve vraag gedurende de doorlooptijd, waardoor een betere zichtbaarheid van de mogelijke vraag werd verzekerd.

Prognoses koppelen aan het voorraadplan: Geavanceerde planningssystemen ondersteunen op prognoses gebaseerd voorraadbeheer, wat een proactieve aanpak is die vertrouwt op vraagprognoses en simulaties om mogelijke uitkomsten en de bijbehorende kansen te voorspellen. Deze gegevens worden gebruikt om de optimale voorraadniveaus te bepalen. Op scenario's gebaseerde of probabilistische prognoses staan in contrast met de meer reactieve aard van op spreadsheets gebaseerde methoden. Een oude klant in de stoffensector, die voorheen te maken kreeg met overvoorraden en voorraadtekorten als gevolg van de intermitterende vraag naar duizenden SKU's. Ze konden op geen enkele manier weten wat de risico's van hun stock-out waren en konden dus niet proactief het beleid aanpassen om de risico's te beperken, anders dan het maken van zeer ruwe aannames die de neiging hadden om grove overvoorraden te hebben. Ze adopteerden de software voor vraag- en voorraadplanning van Smart Software om simulaties van de vraag te genereren die de optimale minimale voorraadwaarden en bestelhoeveelheden identificeerden, waardoor de productbeschikbaarheid voor onmiddellijke verzending behouden bleef, wat de voordelen van een op prognoses gebaseerde benadering van voorraadbeheer benadrukte.

Betere samenwerking:  Het delen van prognoses met belangrijke leveranciers helpt de levering te garanderen. Kratos Space, onderdeel van Kratos Defense & Security Solutions, Inc., maakte gebruik van slimme voorspellingen om hun contractfabrikanten beter inzicht te geven in de toekomstige vraag. Ze gebruikten de prognoses om toezeggingen te doen over toekomstige aankopen, waardoor de CM de materiaalkosten en doorlooptijden voor engineered-to-order-systemen kon verlagen. Deze samenwerking laat zien hoe geavanceerde voorspellingstechnieken kunnen leiden tot aanzienlijke samenwerking in de supply chain die voor beide partijen efficiëntie en kostenbesparingen oplevert.

 

Gebruikmaken van Epicor Kinetic Planning BOM's met Smart IP&O voor nauwkeurige prognoses

In een zeer configureerbare productieomgeving kan het voorspellen van eindproducten een complexe en lastige taak worden. Het aantal mogelijke eindproducten schiet omhoog als veel componenten uitwisselbaar zijn. Een traditionele MRP zou ons dwingen om elk eindproduct te voorspellen, wat onrealistisch of zelfs onmogelijk kan zijn. Verschillende toonaangevende oplossingen introduceren het concept van de “Planning BOM”, waarmee prognoses op een hoger niveau in het productieproces kunnen worden gebruikt. In dit artikel bespreken we deze functionaliteit in Epicor Kinetic en hoe u hiervan kunt profiteren met Epicor Smart Inventory Planning and Optimization (Smart IP&O) om uw vraag voor te blijven in het licht van deze complexiteit.

Waarom heb ik een planningsstuklijst nodig?

Traditioneel zou elk eindproduct of elke SKU een strak gedefinieerde stuklijst hebben. Als we dat product op voorraad hebben en rond de voorspelde vraag willen plannen, zullen we de vraag naar die producten voorspellen en vervolgens MRP invoeren om deze voorspelde vraag via de stuklijst van het niveau van het eindproduct naar de componenten te blazen.

Veel bedrijven bieden echter zeer configureerbare producten aan waarbij klanten opties kunnen selecteren voor het product dat ze kopen. Denk bijvoorbeeld eens aan de laatste keer dat u een mobiele telefoon kocht. Je hebt een merk en model gekozen, maar van daaruit kreeg je waarschijnlijk opties voorgeschoteld: welk schermformaat wil je? Hoeveel opslagruimte wil je? Welke kleur heeft jouw voorkeur? Als dat bedrijf deze mobiele telefoons binnen een redelijke termijn klaar en beschikbaar wil hebben om naar u te verzenden, anticiperen ze plotseling niet langer alleen maar op de vraag naar dat model; ze moeten dat model voorspellen voor elk type schermformaat, voor alle opslagcapaciteiten, voor alle kleuren, en ook voor alle mogelijke combinaties daarvan! Voor sommige fabrikanten kunnen deze configuraties honderden of duizenden mogelijke voltooide goede permutaties opleveren.

Er kunnen zoveel aanpassingen mogelijk zijn dat de vraag op het niveau van het eindproduct in traditionele zin volkomen onvoorspelbaar is. Duizenden van deze mobiele telefoons kunnen elk jaar worden verkocht, maar voor elke mogelijke configuratie kan de vraag extreem laag en sporadisch zijn – misschien worden bepaalde combinaties één keer verkocht en nooit meer.

Dit dwingt deze bedrijven vaak om bestelpunten en veiligheidsvoorraadniveaus vooral op componentniveau te plannen, terwijl ze grotendeels reageren op de sterke vraag op het niveau van eindproducten via MRP. Hoewel dit een geldige aanpak is, ontbreekt het aan een systematische manier om voorspellingen te doen die rekening kunnen houden met verwachte toekomstige activiteiten, zoals promoties, aanstaande projecten of verkoopkansen. Voorspellen op het 'geconfigureerde' niveau is feitelijk onmogelijk, en het is ook niet haalbaar om deze prognoseaannames op componentniveau te verweven.

Planning BOM uitgelegd Hier komen Planning BOM's om de hoek kijken. Misschien werkt het verkoopteam aan een grote B2B-mogelijkheid voor dat model, of is er een geplande promotie voor Cyber Monday. Hoewel het niet realistisch is om met deze aannames voor elke mogelijke configuratie te werken, is het op modelniveau wel heel goed te doen – en enorm waardevol.

De Planningsstuklijst kan een prognose op een hoger niveau gebruiken en vervolgens de vraag naar beneden blazen op basis van vooraf gedefinieerde verhoudingen voor de mogelijke componenten ervan. De fabrikant van mobiele telefoons weet bijvoorbeeld misschien dat de meeste mensen kiezen voor 128 GB opslagruimte, en dat veel minder mensen kiezen voor upgrades naar 256 GB of 512 GB. Met de planningsstuklijst kan de organisatie (bijvoorbeeld) 60% van de vraag terugbrengen naar de 128GB-optie, 30% naar de 256GB-optie en 10% naar de 512GB-optie. Ze zouden hetzelfde kunnen doen voor schermformaten, kleuren of andere beschikbare aanpassingen.

Het bedrijf kan zijn prognose nu op dit modelniveau richten, waarbij de planningsstuklijst de componentenmix bepaalt. Het is duidelijk dat het definiëren van deze verhoudingen enige aandacht vergt, maar het plannen van stuklijsten stelt bedrijven in staat te voorspellen wat anders onvoorspelbaar zou zijn.

Het belang van een goede voorspelling

Natuurlijk hebben we nog steeds een goede voorspelling nodig om in Epicor Kinetic te laden. Zoals uitgelegd in dit artikel, kan Epicor Kinetic weliswaar een voorspelling importeren, maar kan het er vaak geen genereren, en als dat wel het geval is, zijn er vaak een groot aantal moeilijk te gebruiken configuraties nodig die niet vaak opnieuw worden bezocht, wat resulteert in onnauwkeurige prognoses. . Het is daarom aan het bedrijf om met zijn eigen sets prognoses te komen, vaak handmatig geproduceerd in Excel. Handmatige prognoses brengen over het algemeen een aantal uitdagingen met zich mee, waaronder maar niet beperkt tot:

  • Het onvermogen om vraagpatronen zoals seizoensinvloeden of trends te identificeren.
  • Overmatig vertrouwen op klant- of verkoopprognoses.
  • Gebrek aan nauwkeurigheid of prestatieregistratie.

Hoe goed de MRP ook is geconfigureerd met uw zorgvuldig overwogen planningsstuklijsten, een slechte prognose betekent een slechte MRP-output en wantrouwen in het systeem: garbage in, garbage out. Als we verdergaan met het voorbeeld van het ‘mobiele telefoonbedrijf’, zonder een systematische manier om de belangrijkste vraagpatronen en/of domeinkennis in de prognose vast te leggen, kan MRP dit nooit zien.

 

Slimme IP&O: een allesomvattende oplossing

Smart IP&O ondersteunt planning op alle niveaus van uw stuklijst, hoewel het “uitblazen” wordt afgehandeld via MRP binnen Epicor Kinetic. Dit is de methode die we gebruiken voor onze Epicor Kinetic-klanten, die eenvoudig en effectief is:

  • Smart Demand Planner: Het platform bevat een speciaal gebouwde prognosetoepassing genaamd Smart Demand Planner die u gaat gebruiken om de vraag naar uw vervaardigde producten (meestal eindproducten) te voorspellen. Het genereert statistische prognoses, stelt planners in staat aanpassingen aan te brengen en/of andere prognoses in te passen (zoals verkoop- of klantprognoses) en houdt de nauwkeurigheid bij. De output hiervan is een prognose die wordt ingevoerd in de prognoseinvoer in Epicor Kinetic, waar MRP deze zal ophalen. MRP zal vervolgens gebruik maken van de vraag op het niveau van het eindproduct en ook de materiaalvereisten via de stuklijst uitblazen, zodat de vraag ook op lagere niveaus wordt onderkend.
  • Smart Inventory Optimization: U gebruikt tegelijkertijd Smart Inventory Optimization om min-/max-/veiligheidsniveaus in te stellen voor zowel alle eindproducten die u op voorraad maakt (indien van toepassing; sommige van onze klanten werken puur op bestelling op basis van een vaste vraag), als voor onbewerkte goederen materialen. De sleutel hier is dat Smart op grondstofniveau de vraag naar werkgebruik, doorlooptijden van leveranciers, enz. zal benutten om deze parameters te optimaliseren, terwijl tegelijkertijd verkooporders/verzendingen worden gebruikt als vraag op het niveau van het eindproduct. Smart verwerkt deze meerdere inputs van de vraag op elegante wijze via de bidirectionele integratie met Epicor Kinetic.

Wanneer MRP wordt uitgevoerd, worden vraag en aanbod (wat wederom de vraag naar grondstoffen omvat die voortvloeit uit de voltooide goede prognose) geneutraliseerd met de min/max/veiligheidsniveaus die u hebt vastgesteld om PO- en werksuggesties voor te stellen.

 

Breid Epicor Kinetic uit met Smart IP&O

Smart IP&O is ontworpen om uw Epicor Kinetic-systeem uit te breiden met vele geïntegreerde oplossingen voor vraagplanning en voorraadoptimalisatie. Het kan bijvoorbeeld automatisch statistische prognoses genereren voor grote aantallen artikelen, maakt intuïtieve prognoseaanpassingen mogelijk, houdt de nauwkeurigheid van prognoses bij en stelt u uiteindelijk in staat echte op consensus gebaseerde prognoses te genereren om beter te kunnen anticiperen op de behoeften van uw klanten.

Dankzij de zeer flexibele producthiërarchieën is Smart IP&O perfect geschikt voor prognoses op het niveau van de Planning BOM, zodat u belangrijke patronen kunt vastleggen en bedrijfskennis kunt integreren op de niveaus die er het meest toe doen. Bovendien kunt u op elk niveau van uw stuklijst optimale veiligheidsvoorraden analyseren en inzetten.

Door gebruik te maken van de Planning BOM-mogelijkheden van Epicor Kinetic naast de geavanceerde functies voor prognoses en voorraadoptimalisatie van Smart IP&O, zorgt u ervoor dat u efficiënt en nauwkeurig aan de vraag kunt voldoen, ongeacht de complexiteit van uw productconfiguraties. Deze synergie verbetert niet alleen de nauwkeurigheid van de prognoses, maar versterkt ook de algehele operationele efficiëntie, waardoor u voorop kunt blijven lopen in een concurrerende markt.

 

 

Een vraagvoorspelling doorstaan

Voor sommige van onze klanten heeft het weer een grote invloed op de vraag. Extreme weersomstandigheden op de korte termijn, zoals branden, droogtes, hittegolven, enzovoort, kunnen op de korte termijn een aanzienlijke invloed hebben op de vraag.

Er zijn twee manieren om het weer mee te nemen in een vraagvoorspelling: indirect en direct. De indirecte route is eenvoudiger met behulp van de scenariogebaseerde aanpak van Smart Demand Planner. De directe aanpak vereist een speciaal project op maat dat aanvullende gegevens en handgemaakte modellen vereist.

Indirecte boekhouding voor het weer

Het standaardmodel ingebouwd Smart Demand Planner (SDP) houdt op vier manieren rekening met weerseffecten:

  1. Als de wereld gestaag warmer/kouder/droger/natter wordt op manieren die van invloed zijn op uw omzet, detecteert SDP deze trends automatisch en neemt deze op in de vraagscenario's die het genereert.
  2. Als uw bedrijf een regelmatig ritme heeft waarin bepaalde dagen van de week of bepaalde maanden van het jaar een consistent hogere of lager dan gemiddelde vraag hebben, detecteert SDP deze seizoensinvloeden ook automatisch en neemt deze op in zijn vraagscenario's.
  3. Vaak is het de vervloekte willekeur van het weer die de nauwkeurigheid van de voorspellingen in de weg staat. We noemen dit effect vaak ‘ruis’. Lawaai is een verzamelnaam die allerlei willekeurige problemen omvat. Naast het weer kunnen ook een geopolitieke opflakkering, de verrassende mislukking van een regionale bank of een schip dat vastloopt in het Suezkanaal voor verrassingen zorgen en de vraag naar producten vergroten. SDP beoordeelt de volatiliteit van de vraag en reproduceert deze in zijn vraagscenario's.
  4. Beheeroverschrijvingen. Meestal laten klanten SDP aan de slag om automatisch tienduizenden vraagscenario's te genereren. Maar als gebruikers de behoefte voelen om specifieke prognoses aan te passen met behulp van hun voorkennis, kan SDP dat mogelijk maken door managementoverrides.

Directe boekhouding voor het weer

Soms kan een gebruiker inhoudelijke expertise onder woorden brengen door factoren buiten zijn bedrijf (zoals rentetarieven of grondstofkosten of technologietrends) te koppelen aan zijn eigen totale omzet. In deze situaties kan Smart Software eenmalige speciale projecten verzorgen die alternatieve (“causale”) modellen bieden als aanvulling op onze standaard statistische voorspellingsmodellen. Neem contact op met uw Smart Software-vertegenwoordiger om een mogelijk causaal modelleringsproject te bespreken.

Vergeet intussen uw paraplu niet.

 

 

 

Maak gebruik van ERP-planningstuklijsten met slimme IP&O om het onvoorspelbare te voorspellen

In een zeer configureerbare productieomgeving kan het voorspellen van eindproducten een complexe en lastige taak worden. Het aantal mogelijke eindproducten zal enorm stijgen als veel componenten uitwisselbaar zijn. Een traditionele MRP zou ons dwingen om elk afzonderlijk eindproduct te voorspellen, wat onrealistisch of zelfs onmogelijk kan zijn. Verschillende toonaangevende ERP-oplossingen introduceren het concept van de “Planning BOM”, waarmee prognoses op een hoger niveau in het productieproces kunnen worden gebruikt. In dit artikel bespreken we deze functionaliteit in ERP, en hoe u hiervan kunt profiteren met Smart Inventory Planning en Optimization (Smart IP&O) om in het licht van deze complexiteit uw vraag voor te blijven.

Waarom heb ik een planningsstuklijst nodig?

Traditioneel zou elk eindproduct of elke SKU een strak gedefinieerde stuklijst hebben. Als we dat product op voorraad hebben en rond de voorspelde vraag willen plannen, voorspellen we de vraag naar die producten en voeren we vervolgens MRP in om deze voorspelde vraag via de stuklijst van het niveau van het eindproduct naar de componenten te blazen.

Veel bedrijven bieden echter zeer configureerbare producten aan waarbij klanten opties kunnen selecteren voor het product dat ze kopen. Denk bijvoorbeeld eens aan de laatste keer dat u een personal computer kocht. U koos een merk en model, maar van daaruit kreeg u waarschijnlijk opties te zien: welke CPU-snelheid wilt u? Hoeveel RAM wil je? Wat voor harde schijf en hoeveel ruimte? Als dat bedrijf deze computers binnen een redelijke termijn klaar en beschikbaar wil hebben om naar u te verzenden, anticiperen ze plotseling niet langer alleen maar op de vraag naar dat model; ze moeten dat model voorspellen voor elk type CPU, voor alle hoeveelheden RAM, voor alle soorten harde schijven, en ook alle mogelijke combinaties daarvan! Voor sommige fabrikanten kunnen deze configuraties honderden of duizenden mogelijke voltooide goede permutaties opleveren.

Planning BOM emphasizing the large numbers of permutations Laptops Factory Components

Er kunnen zoveel aanpassingen mogelijk zijn dat de vraag op het niveau van het eindproduct in traditionele zin volkomen onvoorspelbaar is. Duizenden van deze computers kunnen elk jaar worden verkocht, maar voor elke mogelijke configuratie kan de vraag extreem laag en sporadisch zijn – misschien worden bepaalde combinaties één keer verkocht en nooit meer.

Dit dwingt deze bedrijven vaak om bestelpunten en veiligheidsvoorraadniveaus vooral op componentniveau te plannen, terwijl ze grotendeels reageren op de sterke vraag op het niveau van eindproducten via MRP. Hoewel dit een geldige aanpak is, ontbreekt het aan een systematische manier om voorspellingen te doen die rekening kunnen houden met verwachte toekomstige activiteiten, zoals promoties, aanstaande projecten of verkoopkansen. Voorspellen op het 'geconfigureerde' niveau is feitelijk onmogelijk, en het is ook niet haalbaar om deze prognoseaannames op componentniveau te verweven.

 

Planning BOM uitgelegd

Dit is waar Planning BOM's van pas komen. Misschien werkt het verkoopteam aan een grote b2b-opportuniteit voor dat model, of is er een geplande promotie voor Cyber Monday. Hoewel het niet realistisch is om met deze aannames voor elke mogelijke configuratie te werken, is het op modelniveau wel heel goed te doen – en enorm waardevol.

De Planningstuklijst kan een prognose op een hoger niveau gebruiken en vervolgens de vraag naar beneden blazen op basis van vooraf gedefinieerde verhoudingen mogelijk componenten. De computerfabrikant weet bijvoorbeeld misschien dat de meeste mensen kiezen voor 16 GB RAM, en veel minder mensen kiezen voor de upgrades naar 32 of 64. Met de planningsstuklijst kan de organisatie (bijvoorbeeld) 60% van de vraag terugblazen naar de 16 GB-optie , 30% naar de 32GB-optie en 10% naar de 64GB-optie. Ze zouden hetzelfde kunnen doen voor CPU's, harde schijven of andere beschikbare aanpassingen.  

Planning BOM Explained with computer random access memory ram close hd

 

Het bedrijf kan zijn prognose nu op dit modelniveau richten, waarbij de planningsstuklijst de componentenmix moet uitzoeken. Het is duidelijk dat het definiëren van deze verhoudingen enige denkkracht vereist, maar het plannen van stuklijsten stelt bedrijven in staat te voorspellen wat anders onvoorspelbaar zou zijn.

 

Het belang van een goede voorspelling

Natuurlijk nog steeds hebben een goede prognose nodig om in een ERP-systeem te laden. Zoals hierin uitgelegd artikelHoewel ERP een prognose kan importeren, kan het er vaak geen genereren en als dat wel het geval is, zijn er vaak veel moeilijk te gebruiken configuraties nodig die niet vaak opnieuw worden bekeken, wat resulteert in onnauwkeurige prognoses. Het is daarom aan het bedrijf om met eigen prognoses te komen, vaak handmatig geproduceerd in Excel. Handmatige prognoses brengen over het algemeen een aantal uitdagingen met zich mee, waaronder maar niet beperkt tot:

  • Het onvermogen om vraagpatronen zoals seizoensinvloeden of trends te identificeren
  • Overmatig vertrouwen op klant- of verkoopprognoses
  • Gebrek aan nauwkeurigheid of prestatieregistratie

Hoe goed de MRP ook is geconfigureerd met uw zorgvuldig overwogen planningsstuklijsten, een slechte prognose betekent een slechte MRP-output en wantrouwen in het systeem: garbage in, garbage out. Als we verdergaan met het voorbeeld van het ‘computerbedrijf’, zonder een systematische manier om belangrijke vraagpatronen en/of domeinkennis in de prognose vast te leggen, kan MRP dit nooit zien.

 

Breid ERP uit met Smart IP&O

Smart IP&O is ontworpen om uw ERP-systeem uit te breiden met een aantal geïntegreerde oplossingen voor vraagplanning en voorraadoptimalisatie. Het kan bijvoorbeeld automatisch statistische prognoses genereren voor grote aantallen artikelen, maakt intuïtieve prognoseaanpassingen mogelijk, houdt de nauwkeurigheid van prognoses bij en stelt u uiteindelijk in staat echte op consensus gebaseerde prognoses te genereren om beter te kunnen anticiperen op de behoeften van uw klanten.

Dankzij de zeer flexibele producthiërarchieën is Smart IP&O perfect geschikt voor prognoses op het niveau van de Planning BOM, zodat u belangrijke patronen kunt vastleggen en bedrijfskennis kunt integreren op de niveaus die er het meest toe doen. Bovendien kunt u op elk niveau van uw stuklijst optimale veiligheidsvoorraden analyseren en inzetten.