De 3 soorten supply chain-analyse

De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Er is een oud grapje: "Er zijn twee soorten mensen - zij die geloven dat er twee soorten mensen zijn, en zij die dat niet doen." We kunnen die grap aanpassen: "Er zijn twee soorten mensen - zij die weten dat er drie soorten supply chain-analyse zijn, en zij die deze blog nog niet hebben gelezen."

De drie typen supply chain-analyse zijn 'beschrijvend', 'voorspellend' en 'voorschrijvend'. Elk speelt een andere rol bij het helpen bij het beheren van uw voorraad. Met moderne supply chain-software kunt u alle drie benutten.

Beschrijvende analyses

Beschrijvende analyses zijn het spul van dashboards. Ze vertellen je "wat er nu gebeurt." In deze categorie zijn samenvattingscijfers opgenomen zoals dollars die momenteel in voorraad zijn geïnvesteerd, het huidige niveau van klantenservice en opvullingspercentage, en gemiddelde doorlooptijden van leveranciers. Deze statistieken zijn handig om uw activiteiten bij te houden, vooral wanneer u wijzigingen daarin van maand tot maand bijhoudt. U zult elke dag op hen vertrouwen. Ze vereisen nauwkeurige bedrijfsdatabases, statistisch verwerkt.

Voorspellende analyse

Voorspellende analyses manifesteren zich meestal als prognoses van de vraag, vaak opgesplitst per product en locatie en soms ook per klant. Deze statistieken geven vroegtijdige waarschuwingen, zodat u productie, personeel en inkoop van grondstoffen kunt versnellen om aan de vraag te voldoen. Ze bieden ook voorspellingen van het effect van wijzigingen in het bedrijfsbeleid, bijvoorbeeld: wat gebeurt er als we onze bestelhoeveelheid voor product X verhogen van 20 naar 25 eenheden? U kunt periodiek, misschien wekelijks of maandelijks, vertrouwen op Predictive Analytics wanneer u opkijkt van wat er nu gebeurt om te zien wat er daarna zal gebeuren. Predictive Analytics gebruikt beschrijvende analyse als basis, maar voegt meer mogelijkheden toe. Predictive Analytics voor vraagprognoses vereist geavanceerde statistische verwerking om kenmerken van de productvraag zoals trend, seizoensinvloeden en verandering van regime. Predictive Analytics voor voorraadbeheer gebruikt prognoses van de vraag als invoer in modellen van de werking van voorraadbeleid, die op hun beurt schattingen geven van belangrijke prestatiestatistieken zoals serviceniveaus, opvullingspercentages, en werkingskosten.

Prescriptieve analyses

Prescriptieve analyses gaan niet over wat er nu gebeurt of wat er daarna gaat gebeuren, maar over wat u vervolgens zou moeten doen, dwz ze bevelen beslissingen aan die gericht zijn op het maximaliseren van de prestaties van het inventarisatiesysteem. U kunt op Prescriptive Analytics vertrouwen om uw gehele voorraadbeleid zo goed mogelijk vorm te geven. Prescriptive Analytics gebruikt Predictive Analytics als basis en voegt vervolgens optimalisatiemogelijkheden toe. Prescriptive Analytics-software kan bijvoorbeeld automatisch de beste keuzes maken voor toekomstige waarden van min's en max's voor duizenden inventarisitems. Hier kan 'beste' de waarde van Min en Max voor elk artikel betekenen die de bedrijfskosten minimaliseert (de som van kosten voor vasthouden, bestellen en tekorten) terwijl een 90%-minimum voor het opvullingspercentage van artikelen wordt gehandhaafd.

Voorbeeld

Onderstaande figuur laat zien hoe supply chain analytics de voorraadbeheerder kan helpen. De kolommen tonen drie voorspelde Key Performance Indicators (KPI's): serviceniveau, voorraadinvestering en bedrijfskosten (holdingkosten + bestelkosten + tekortkosten).

 Afbeelding 1: de drie soorten analyses die worden gebruikt om planningsscenario's te evalueren

De rijen tonen vier alternatieve voorraadbeleidslijnen, uitgedrukt als scenario's. Het “Live” scenario rapporteert over de waarden van de KPI's op 1 juli 2018. Het “99% All” scenario wijzigt het huidige beleid door het serviceniveau van alle artikelen te verhogen naar 99%. Het scenario "75 verdieping/99 plafond" verhoogt serviceniveaus die te laag zijn tot 75% en verlaagt zeer hoge (dwz dure) serviceniveaus tot 95%. Het scenario "Optimalisatie" schrijft artikelspecifieke serviceniveaus voor die de totale bedrijfskosten minimaliseren.

Het scenario “Live 01-07-2018” is een voorbeeld van beschrijvende analyse. Het toont de huidige basislijnprestaties. De software stelt de gebruiker vervolgens in staat wijzigingen in het voorraadbeleid uit te proberen door nieuwe "Wat als"-scenario's te creëren die vervolgens kunnen worden omgezet in benoemde scenario's voor verdere overweging. De volgende twee scenario's zijn voorbeelden van Predictive Analytics. Ze beoordelen allebei de gevolgen van hun aanbevolen beleid voor voorraadbeheer, dwz de aanbevolen waarden van Min en Max voor alle artikelen. Het scenario 'Optimalisatie' is een voorbeeld van Prescriptive Analytics omdat het een beste compromisbeleid aanbeveelt.

Overweeg hoe de drie alternatieve scenario's zich verhouden tot het "Live" basisscenario. Het scenario "99% All" verhoogt de beschikbaarheidsstatistieken van artikelen, waardoor het serviceniveau stijgt van 88% naar 99%. Hierdoor neemt de totale inventarisinvestering echter toe van $3 miljoen tot ongeveer $4 miljoen. Het scenario '75 vloer/99 plafond' daarentegen verhoogt zowel het serviceniveau als vermindert het contante geld dat vastzit in de voorraad met ongeveer $300.000. Ten slotte bereikt het scenario "Optimalisatie" een 80%-serviceniveau, een verlaging ten opzichte van de huidige 88%, maar het verlaagt de voorraadwaarde met meer dan $2 miljoen en verlaagt de bedrijfskosten met meer dan $400.000 per jaar. Van hieruit konden managers verdere opties uitproberen, zoals het teruggeven van een deel van de $2 miljoen besparingen om een hoger gemiddeld serviceniveau te bereiken.

Overzicht

Moderne softwarepakketten voor voorraadplanning en voorraadoptimalisatie zouden drie soorten supply chain-analyses moeten bieden: beschrijvend, voorspellend en prescriptief. Dankzij hun combinatie kunnen voorraadbeheerders hun activiteiten volgen (Beschrijvend), voorspellen waar hun activiteiten in de toekomst zullen zijn (Predictive) en hun voorraadbeleid optimaliseren om te anticiperen op toekomstige omstandigheden (Prescriptief).

 

 

Laat een reactie achter

gerelateerde berichten

The Importance of Clear Service Level Definitions in Inventory Management

Het belang van duidelijke definities van serviceniveaus bij voorraadbeheer

Voorraadoptimalisatiesoftware die 'wat als'-analyse ondersteunt, legt de afweging tussen voorraadtekorten en extra kosten van verschillende serviceniveaudoelen bloot. Maar eerst is het belangrijk om te identificeren hoe ‘serviceniveaus’ worden geïnterpreteerd, gemeten en gerapporteerd. Dit voorkomt miscommunicatie en het valse gevoel van veiligheid dat kan ontstaan als er minder strenge definities worden gebruikt. Als u duidelijk definieert hoe het serviceniveau wordt berekend, staan alle belanghebbenden op één lijn. Dit vergemakkelijkt een betere besluitvorming.

The Cost of Spreadsheet Planning

De kosten van spreadsheetplanning

Bedrijven die afhankelijk zijn van spreadsheets voor vraagplanning, prognoses en voorraadbeheer worden vaak beperkt door de inherente beperkingen van de spreadsheet. Dit artikel onderzoekt de nadelen van traditionele voorraadbeheerbenaderingen veroorzaakt door spreadsheets en de daarmee samenhangende kosten, en contrasteert deze met de aanzienlijke voordelen die worden behaald door het omarmen van de modernste planningstechnologieën.

Leveraging Epicor Kinetic Planning BOMs with Smart IP&O to Forecast Accurately

Gebruikmaken van Epicor Kinetic Planning BOM's met Smart IP&O voor nauwkeurige prognoses

In deze blog onderzoeken we hoe het gebruik van Epicor Kinetic Planning BOM's met Smart IP&O uw benadering van forecasting in een zeer configureerbare productieomgeving kan transformeren. Ontdek hoe Smart, een geavanceerde AI-gestuurde oplossing voor vraagplanning en voorraadoptimalisatie, de complexiteit van het voorspellen van de vraag naar eindproducten kan vereenvoudigen, vooral als het om verwisselbare componenten gaat. Ontdek hoe het plannen van stuklijsten en geavanceerde prognosetechnieken bedrijven in staat stelt nauwkeuriger te anticiperen op de behoeften van klanten, waardoor de operationele efficiëntie wordt gewaarborgd en een voorsprong behouden in een concurrerende markt.

recente berichten

  • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
    In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
  • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
    De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
  • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
    Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
  • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
    Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
  • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
    Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
      In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
    • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
      De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
    • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
    • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

      Bescherm uw vraagplanningsproces tegen regimeverandering

      De slimme voorspeller

        Het nastreven van best practices op het gebied van vraagplanning,

      prognoses en voorraadoptimalisatie

      Nee, niet dat soort regimewisseling: niets over kruisraketten en stealth-bommenwerpers. En nee, we hebben het niet over het andere soort regimeverandering dat dichter bij huis komt: het door elkaar schuiven van de C-Suite bij uw bedrijf.

      "Regimeverandering" heeft een derde betekenis die relevant is voor uw beroep als vraagplanner of voorraadbeheerder. Voor onderzoekers in economie en financiën betekent regimeverandering plotselinge verschuivingen in het karakter van een tijdreeks van willekeurige waarnemingen. De willekeurige tijdreeks in kwestie is hier de volgorde van dagelijkse (of wekelijkse of maandelijkse) vraagtellingen voor uw producten en voorraaditems.

      De meeste prognosesoftware gebruikt statistische algoritmen om de historische vraag te verwerken. Het kan extra stappen toevoegen, zoals het opnemen van veldinformatie van verkopers, maar alles begint met de vraaggeschiedenis van welk item u ook moet beheren.

      De vraag die opkomt bij regime change is: welke gegevens gebruikt u? Het simpele antwoord is "Alles", want dat leidt tot de meest nauwkeurige voorspellingen - maar alleen als uw datawereld stabiel is. Als uw datawereld turbulent is, betekent het gebruik van alle data dat u prognoses baseert op vervlogen omstandigheden. Op zijn beurt, het invoeren van verouderde gegevens in uw voorspellende algoritmen leidt onvermijdelijk tot verminderde prognosenauwkeurigheid.

      Merk op dat omgaan met regimeverandering niet hetzelfde is als omgaan met uitschieters. Uitschieters zijn meestal eenmalige uitzonderingen die worden veroorzaakt door voorbijgaande gebeurtenissen, zoals een knik in uw toeleveringsketen veroorzaakt door een enorme sneeuwstorm die alle doorvoerpaden verstikt. Regime change houdt daarentegen aan over een langere periode en kan daarom meer schade toebrengen aan uw prognoses. Hier is een analogie: uitschieters gaan over het weer en regimeverandering gaat over het klimaat.

      De meest ingrijpende vormen van regimeverandering zijn existentieel. Figuur 1 toont een voorbeeld van een existentiële verandering: er was lange tijd helemaal geen vraag, toen was er opeens vraag. Als u geen vraag naar een artikel had omdat het niet bestond, maar u behoudt nul vraagwaarden in uw database, en vervolgens gaat het artikel live en heeft u verkopen, dan is de overgang van niets naar iets een extreme verandering van regime. Het opnemen van al die nulvraagwaarden van vóór "Dag één" zal de statistische prognoses zeker naar beneden vertekenen waar ze zouden moeten zijn. Hetzelfde gebeurt als u een product doodt maar geen vraag blijft registreren: het opnemen van al die recente nullen verslechtert uw vraagprognoses.

      In principe zou een zorgvuldige administratie deze problemen moeten elimineren. U dient alleen zinvolle nulwaarden op te nemen. Als je een nieuw item hebt, begin dan met opnemen wanneer het live gaat. Als je geen vraag meer hebt naar een item en er ook geen verwacht, verwijder het dan uit je database, of voorspel in ieder geval nul vraag.

      Helaas is er een verschil tussen principe en praktijk. We zien veel gevallen waarin de gegevensrecords voor zowel nieuwe als slapende items niet correct worden bijgehouden, met "nepnullen" verward met "echte nullen". Dit probleem is niet noodzakelijkerwijs het gevolg van incompetentie: meestal is het een bijproduct van de omvang van het probleem, waarbij te weinig mensen proberen om te veel items bij te houden.

      Deze existentiële regimeveranderingen zijn relatief gemakkelijk te hanteren in vergelijking met meer subtiele vormen, die meer items lijken te treffen. Figuur 2 toont twee voorbeelden van regimeveranderingen in een patroon van lopende verkopen. Er zijn een aantal factoren die de vraag naar een artikel kunnen veranderen: prestaties van het verkooppersoneel, marketing- en reclame-inspanningen, acties van concurrenten en leveranciers, nieuwe klanten die ontstaan of oude klanten die verdwijnen, enz. Als de vraag naar een artikel gestaag doorgaat 1 eenheid per dag maar ineens verdubbelt (of vice versa), dat is een verandering van regime. In de nieuwe wereldorde is de vraag 2 eenheden/dag en de prognoses zouden dat moeten weerspiegelen. In plaats daarvan zullen algoritmen voor statistische prognoses te weinig vraag voorspellen als ze alle gegevens krijgen, ook die van vóór de regimewisseling.

      Hoe bescherm je jezelf tegen regimeverandering? Het antwoord is hetzelfde voor de wreedste dictator of de meest onschuldige eisenplanner: Intelligentie. En omdat er veel bedreigingen zijn, kan de intelligentie het beste worden geautomatiseerd. Moderne softwaresystemen hebben de mogelijkheid om tienduizenden items te screenen op tekenen van regimeverandering. Vervolgens kan de software uw aandacht vestigen op de problematische items en u vragen aan te geven welke recente gegevens u in berekeningen wilt gebruiken. Of de software kan automatisch detecteren en corrigeren voor verandering van regime, snel werkend op een schaal die elke drukbezette persoon die "met de hand" werkt gemakkelijk zou verslaan.

       

      Laat een reactie achter

      gerelateerde berichten

      The Importance of Clear Service Level Definitions in Inventory Management

      Het belang van duidelijke definities van serviceniveaus bij voorraadbeheer

      Voorraadoptimalisatiesoftware die 'wat als'-analyse ondersteunt, legt de afweging tussen voorraadtekorten en extra kosten van verschillende serviceniveaudoelen bloot. Maar eerst is het belangrijk om te identificeren hoe ‘serviceniveaus’ worden geïnterpreteerd, gemeten en gerapporteerd. Dit voorkomt miscommunicatie en het valse gevoel van veiligheid dat kan ontstaan als er minder strenge definities worden gebruikt. Als u duidelijk definieert hoe het serviceniveau wordt berekend, staan alle belanghebbenden op één lijn. Dit vergemakkelijkt een betere besluitvorming.

      The Cost of Spreadsheet Planning

      De kosten van spreadsheetplanning

      Bedrijven die afhankelijk zijn van spreadsheets voor vraagplanning, prognoses en voorraadbeheer worden vaak beperkt door de inherente beperkingen van de spreadsheet. Dit artikel onderzoekt de nadelen van traditionele voorraadbeheerbenaderingen veroorzaakt door spreadsheets en de daarmee samenhangende kosten, en contrasteert deze met de aanzienlijke voordelen die worden behaald door het omarmen van de modernste planningstechnologieën.

      Leveraging Epicor Kinetic Planning BOMs with Smart IP&O to Forecast Accurately

      Gebruikmaken van Epicor Kinetic Planning BOM's met Smart IP&O voor nauwkeurige prognoses

      In deze blog onderzoeken we hoe het gebruik van Epicor Kinetic Planning BOM's met Smart IP&O uw benadering van forecasting in een zeer configureerbare productieomgeving kan transformeren. Ontdek hoe Smart, een geavanceerde AI-gestuurde oplossing voor vraagplanning en voorraadoptimalisatie, de complexiteit van het voorspellen van de vraag naar eindproducten kan vereenvoudigen, vooral als het om verwisselbare componenten gaat. Ontdek hoe het plannen van stuklijsten en geavanceerde prognosetechnieken bedrijven in staat stelt nauwkeuriger te anticiperen op de behoeften van klanten, waardoor de operationele efficiëntie wordt gewaarborgd en een voorsprong behouden in een concurrerende markt.

      recente berichten

      • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
        In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
      • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
        De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
      • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
        Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
      • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
        Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
      • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
        Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

        Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

        • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
          In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
        • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
          De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
        • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
          Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
        • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
          In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

          Undershoot saboteert uw serviceniveau!

          De slimme voorspeller

           Het nastreven van best practices op het gebied van vraagplanning,

          prognoses en voorraadoptimalisatie

          Serviceniveau is een belangrijke prestatie-indicator voor bedrijven die een hoge prioriteit geven aan het voldoen aan de vraag van de klant. Serviceniveau wordt gedefinieerd als de waarschijnlijkheid dat een doorlooptijd van aanvulling wordt overleefd zonder dat er voorraad wordt aangelegd.

          Best practice voor voorraadbeheer begint met het stellen van serviceniveaudoelen en berekent vervolgens bestelpunten (ook wel Mins genoemd) om die doelen te bereiken. Deze berekeningen moeten rekening houden met variabiliteit in zowel de vraag als de doorlooptijd voor aanvulling. Er zijn veel softwaresystemen beschikbaar om deze berekeningen uit te voeren. Als alles goed gaat, komt het bereikte serviceniveau heel dicht in de buurt van het beoogde serviceniveau. Helaas gaapt er vaak een pijnlijke kloof tussen die twee.

          Een reden voor de kloof zijn onrealistische vraagmodellen. In veel gevallen gebruikt software voor het berekenen van bestelpunten formules uit het handboek die zijn gebaseerd op wiskundige aannames die analyse eenvoudig maken ten koste van realisme. Veel "Inventory 101"-handboeken gebruiken formules die veronderstellen dat de vraag een normale verdeling heeft (ook wel de "klokvormige curve" genoemd) voor afgewerkte goederen en de Poisson-verdeling voor reserveonderdelen. Gelukkig zijn er nu voorraadoptimalisatie- en prognosesystemen die de werkelijke vraaggeschiedenis van de voorraaditems verwerken met behulp van probabilistische prognoses. Deze oplossingen berekenen een nauwkeurige schatting van de verdeling – niet een geïdealiseerde versie. Bekijk voor meer informatie deze eerdere blog op probabilistische voorspelling:

          Maar er is een tweede bron van fouten in leerboeken die onzichtbaar opereert in veel inventarissoftwarepakketten: "onderschrijding".

          Berekeningen van bestelpunten gaan er bijna altijd van uit dat stockouts ontstaan wanneer de totale vraag tijdens een bevoorradingsinterval het bestelpunt overschrijdt. Stel bijvoorbeeld dat de vraag gemiddeld 1 eenheid per dag is. Als de doorlooptijd 5 dagen is, dan is de gemiddelde doorlooptijdvraag 5 stuks. Het herbestelpunt instellen op 5 eenheden zou ergens in de buurt van 50% een lachwekkend serviceniveau opleveren. Het toevoegen van veiligheidsvoorraad aan de berekening kan resulteren in een bestelpunt van bijvoorbeeld 11 eenheden, wat zou kunnen overeenkomen met een serviceniveau van 95%. Een andere manier om dit te zeggen is dat, beginnend bij een bestelpunt van 11 eenheden, er een kans van 95% zou moeten zijn om de doorlooptijd van 5 dagen te overleven zonder een cumulatieve vraag van meer dan 11 eenheden te ervaren. Theoretisch!

          Wat in deze analyse ontbreekt, is het undershoot-fenomeen. Undershoot betekent dat de doorlooptijd niet begint Bij het bestelpunt maar onderstaand het. Onderschrijding gebeurt elke keer dat de vraag die het bestelpunt overschreed, de voorraad naar beneden haalde onderstaand (Niet beneden tot) het bestelpunt. Onderstaande figuur toont suppletiecycli met en zonder onderschrijding. Undershoot plukt uw zak voordat u zelfs maar begint met het gooien van de dobbelstenen. Het misleidt de voorraadprofessional door te denken dat zijn of haar bestelpunten voldoende zijn om hun doelen te bereiken, terwijl de werkelijke prestaties het cijfer niet zullen halen.

          Er is maar één situatie waarin onderschrijding geen probleem is: wanneer de vraag altijd nul of één eenheid is. Onderschrijding is dan onmogelijk. Maar in alle andere gevallen zal er zeker tot op zekere hoogte sprake zijn van onderschrijding, en dit kan het serviceniveau dat daadwerkelijk wordt bereikt door een bepaalde keuze van een bestelpunt ernstig ondermijnen. Onze analyses tonen aan dat de omstandigheden die het meest kwetsbaar zijn voor onderschrijdingen een sterk intermitterende en scheve vraag zijn met zeer korte doorlooptijden - de omstandigheden die het meest voorkomen door markttrends.

          Wat kunt u doen om uzelf te beschermen tegen het effect van onderschrijding op berekeningen van bestelpunten? Gebruik voorraadoptimalisatie- en prognosesoftware die niet gebonden is aan de aannames uit het oude leerboek en in plaats daarvan automatisch rekening houdt met onderschrijdingen bij het berekenen van het serviceniveau dat wordt geproduceerd door een willekeurig bestelpunt.

          Om de Inventory Optimization-oplossing van Smart Software in actie te zien, kunt u zich hieronder registreren om een opgenomen demo te zien:

           

            Uw naam *

            Bedrijfsnaam *

            Werk email *

            Werktelefoon


             

             

            Laat een reactie achter

            gerelateerde berichten

            The Importance of Clear Service Level Definitions in Inventory Management

            Het belang van duidelijke definities van serviceniveaus bij voorraadbeheer

            Voorraadoptimalisatiesoftware die 'wat als'-analyse ondersteunt, legt de afweging tussen voorraadtekorten en extra kosten van verschillende serviceniveaudoelen bloot. Maar eerst is het belangrijk om te identificeren hoe ‘serviceniveaus’ worden geïnterpreteerd, gemeten en gerapporteerd. Dit voorkomt miscommunicatie en het valse gevoel van veiligheid dat kan ontstaan als er minder strenge definities worden gebruikt. Als u duidelijk definieert hoe het serviceniveau wordt berekend, staan alle belanghebbenden op één lijn. Dit vergemakkelijkt een betere besluitvorming.

            The Cost of Spreadsheet Planning

            De kosten van spreadsheetplanning

            Bedrijven die afhankelijk zijn van spreadsheets voor vraagplanning, prognoses en voorraadbeheer worden vaak beperkt door de inherente beperkingen van de spreadsheet. Dit artikel onderzoekt de nadelen van traditionele voorraadbeheerbenaderingen veroorzaakt door spreadsheets en de daarmee samenhangende kosten, en contrasteert deze met de aanzienlijke voordelen die worden behaald door het omarmen van de modernste planningstechnologieën.

            Leveraging Epicor Kinetic Planning BOMs with Smart IP&O to Forecast Accurately

            Gebruikmaken van Epicor Kinetic Planning BOM's met Smart IP&O voor nauwkeurige prognoses

            In deze blog onderzoeken we hoe het gebruik van Epicor Kinetic Planning BOM's met Smart IP&O uw benadering van forecasting in een zeer configureerbare productieomgeving kan transformeren. Ontdek hoe Smart, een geavanceerde AI-gestuurde oplossing voor vraagplanning en voorraadoptimalisatie, de complexiteit van het voorspellen van de vraag naar eindproducten kan vereenvoudigen, vooral als het om verwisselbare componenten gaat. Ontdek hoe het plannen van stuklijsten en geavanceerde prognosetechnieken bedrijven in staat stelt nauwkeuriger te anticiperen op de behoeften van klanten, waardoor de operationele efficiëntie wordt gewaarborgd en een voorsprong behouden in een concurrerende markt.

            recente berichten

            • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
              In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
            • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
              De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
            • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
              Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
            • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
              Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
            • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
              Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

              Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

              • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
                In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
              • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
                De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
              • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
                Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
              • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
                In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

                Hoe u een doelserviceniveau kiest

                De slimme voorspeller

                 Het nastreven van best practices op het gebied van vraagplanning,

                prognoses en voorraadoptimalisatie

                Overzicht

                Een doel stellen serviceniveau of opvullingspercentage is een strategische beslissing over voorraadrisicobeheer. Het kiezen van serviceniveaus kan moeilijk zijn. Relevante factoren zijn onder meer het huidige serviceniveau, doorlooptijden voor bevoorrading, kostenbeperkingen, de pijn die u en uw klanten door tekorten wordt toegebracht, en uw concurrentiepositie. Het stellen van doelen wordt vaak het best benaderd als een samenwerking tussen operations, sales en finance. Voorraadoptimalisatiesoftware is een essentieel hulpmiddel in het proces.

                Keuzes op serviceniveau

                Serviceniveau is de kans dat er geen tekorten ontstaan tussen het moment dat u meer voorraad bestelt en het moment dat deze in het schap ligt. Het redelijke bereik van serviceniveaus loopt van ongeveer 70% tot 99%. Niveaus onder 70% kunnen erop wijzen dat u niet om uw klanten geeft of ze niet aankan. Niveaus van 100% zijn bijna nooit geschikt en duiden meestal op een enorm opgeblazen inventaris.

                Factoren die van invloed zijn op de keuze van het serviceniveau

                Verschillende factoren zijn van invloed op de keuze van het serviceniveau voor een voorraadartikel. Hier zijn enkele van de belangrijkste.

                Huidige serviceniveaus:
                Een redelijke plaats om te beginnen is om erachter te komen wat uw huidige serviceniveaus zijn voor elk item en in het algemeen. Als je al in goede conditie bent, wordt het gemakkelijker om een reeds goede oplossing aan te passen. Als u er nu slecht aan toe bent, kan het moeilijker zijn om serviceniveaus in te stellen. Verrassend genoeg hebben maar weinig bedrijven gegevens over deze belangrijke maatstaf voor hun hele voorraaditems. Wat vaak gebeurt, is dat herordeningspunten willens en wetens groeien uit keuzes die in de prehistorie van het bedrijf zijn gemaakt en zelden, soms nooit, systematisch worden herzien en bijgewerkt. Aangezien bestelpunten een belangrijke bepalende factor zijn voor serviceniveaus, volgt hieruit dat serviceniveaus "gewoon gebeuren". Voorraadoptimalisatiesoftware kan uw huidige bestelpunten en doorlooptijden omzetten in solide schattingen van uw huidige serviceniveaus. Deze analyse onthult vaak een subset van items met een te hoog of te laag serviceniveau, in welk geval u advies heeft over welke items respectievelijk naar beneden of naar boven moeten worden bijgesteld.

                Bevoorradingstermijnen:
                Sommige bedrijven passen de serviceniveaus daarop aan aanvulling levertijden. Als het lang duurt om een artikel te maken of te kopen, dan duurt het ook lang om van een tekort te herstellen. Dienovereenkomstig verhogen ze de serviceniveaus voor artikelen met een lange doorlooptijd en verlagen ze deze voor artikelen waarvoor de achterstand kort zal zijn.

                Kostenbeperkingen:
                Voorraadoptimalisatiesoftware kan de goedkoopste manieren vinden om hoge serviceniveaudoelen te halen, maar agressieve doelen impliceren onvermijdelijk hogere kosten. Het kan zijn dat de kosten uw keuze van serviceniveaudoelen beperken. Kosten zijn er in verschillende smaken. "Voorraadinvestering" is de dollarwaarde van de voorraad. "Bedrijfskosten" omvatten zowel voorraadkosten als bestelkosten. Beperkingen op voorraadinvesteringen worden vaak opgelegd aan voorraadmanagers en impliceren altijd plafonds op serviceniveaudoelstellingen; software kan deze relaties expliciet maken, maar neemt de noodzaak van keuze niet weg. Je hoort minder vaak over plafonds voor bedrijfskosten, maar ze zijn altijd op zijn minst een secundaire factor die pleit voor lagere serviceniveaus.

                Tekort kosten:
                Tekortkosten zijn afhankelijk van het feit of uw tekortbeleid vraagt om nabestellingen of verloren verkopen. In beide gevallen werken tekortkosten de voorraadinvesteringen en bedrijfskosten tegen door te pleiten voor hogere serviceniveaus. Deze kosten worden niet altijd uitgedrukt in dollars, zoals in het geval van medische/chirurgische benodigdheden, waar tekortkosten worden uitgedrukt in morbiditeit en mortaliteit.

                Concurrentie:
                Hoe dichter uw bedrijf bij het domineren van de markt is, hoe meer u de serviceniveaus kunt verlagen om geld te besparen. Te ver terugvallen brengt echter risico's met zich mee: het moedigt potentiële klanten aan om ergens anders te zoeken en het moedigt concurrenten aan. Omgekeerd kan een hoge productbeschikbaarheid de positie van een kleine speler ver versterken.

                Gezamenlijke targeting

                Voorraadmanagers kunnen degenen zijn die belast zijn met het stellen van serviceniveaudoelen, maar het kan het beste zijn om samen te werken met andere functies bij het maken van deze oproepen. De financiële afdeling kan al vroeg in het proces eventuele "rode lijnen" delen, en zij zouden de taak moeten krijgen om de bewaar- en bestelkosten te schatten. Verkoop kan helpen bij het inschatten van tekortkosten door de waarschijnlijke reacties van klanten op achterstanden of verloren verkopen uit te leggen.

                De rol van software voor voorraadoptimalisatie en planning

                Zonder voorraadoptimalisatiesoftware is het stellen van serviceniveaudoelen puur giswerk: het is onmogelijk om te weten hoe een bepaald doel zal uitpakken in termen van voorraadinvesteringen, bedrijfskosten, tekortkosten. De software kan de gedetailleerde, kwantitatieve afwegingscurven berekenen die nodig zijn om weloverwogen keuzes te maken of zelfs het beoogde serviceniveau aan te bevelen dat resulteert in de laagste totale kosten, rekening houdend met bewaarkosten, bestelkosten en voorraadkosten. Niet alle softwareoplossingen zijn echter hetzelfde. U kunt een door de gebruiker gedefinieerd 99%-serviceniveau in uw voorraadplanningssysteem invoeren of het systeem kan een doelservice aanbevelen, maar dit betekent niet dat u dat vermelde serviceniveau daadwerkelijk bereikt. Sterker nog, u komt er misschien niet eens in de buurt en bereikt een veel lager serviceniveau. We hebben situaties waargenomen waarin een beoogd serviceniveau van 99% daadwerkelijk een serviceniveau van slechts 82% bereikte! Alle beslissingen die worden genomen als gevolg van het doelwit zullen resulteren in een onbedoelde verkeerde toewijzing van voorraad, zeer kostbare gevolgen en veel uitleg. Lees dus zeker ons volgende blogartikel over hoe u de nauwkeurigheid van uw serviceniveauprognose kunt meten, zodat u deze kostbare fout niet maakt.

                Laat een reactie achter

                gerelateerde berichten

                The Importance of Clear Service Level Definitions in Inventory Management

                Het belang van duidelijke definities van serviceniveaus bij voorraadbeheer

                Voorraadoptimalisatiesoftware die 'wat als'-analyse ondersteunt, legt de afweging tussen voorraadtekorten en extra kosten van verschillende serviceniveaudoelen bloot. Maar eerst is het belangrijk om te identificeren hoe ‘serviceniveaus’ worden geïnterpreteerd, gemeten en gerapporteerd. Dit voorkomt miscommunicatie en het valse gevoel van veiligheid dat kan ontstaan als er minder strenge definities worden gebruikt. Als u duidelijk definieert hoe het serviceniveau wordt berekend, staan alle belanghebbenden op één lijn. Dit vergemakkelijkt een betere besluitvorming.

                The Cost of Spreadsheet Planning

                De kosten van spreadsheetplanning

                Bedrijven die afhankelijk zijn van spreadsheets voor vraagplanning, prognoses en voorraadbeheer worden vaak beperkt door de inherente beperkingen van de spreadsheet. Dit artikel onderzoekt de nadelen van traditionele voorraadbeheerbenaderingen veroorzaakt door spreadsheets en de daarmee samenhangende kosten, en contrasteert deze met de aanzienlijke voordelen die worden behaald door het omarmen van de modernste planningstechnologieën.

                Leveraging Epicor Kinetic Planning BOMs with Smart IP&O to Forecast Accurately

                Gebruikmaken van Epicor Kinetic Planning BOM's met Smart IP&O voor nauwkeurige prognoses

                In deze blog onderzoeken we hoe het gebruik van Epicor Kinetic Planning BOM's met Smart IP&O uw benadering van forecasting in een zeer configureerbare productieomgeving kan transformeren. Ontdek hoe Smart, een geavanceerde AI-gestuurde oplossing voor vraagplanning en voorraadoptimalisatie, de complexiteit van het voorspellen van de vraag naar eindproducten kan vereenvoudigen, vooral als het om verwisselbare componenten gaat. Ontdek hoe het plannen van stuklijsten en geavanceerde prognosetechnieken bedrijven in staat stelt nauwkeuriger te anticiperen op de behoeften van klanten, waardoor de operationele efficiëntie wordt gewaarborgd en een voorsprong behouden in een concurrerende markt.

                recente berichten

                • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
                  In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
                • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
                  De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
                • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
                  Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
                • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
                  Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
                • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
                  Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

                  Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

                  • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
                    In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
                  • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
                    De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
                  • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
                    Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
                  • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
                    In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

                    Onthul uw werkelijke voorraadplanning en prognosebeleid door deze 10 vragen te beantwoorden

                    De slimme voorspeller

                     Het nastreven van best practices op het gebied van vraagplanning,

                    prognoses en voorraadoptimalisatie

                    In onze vorige blog stelden we de vraag: Hoe weet je zeker dat je echt een beleid hebt voor voorraadplanning en vraagvoorspelling? We legden uit hoe het gebrek aan begrip van een organisatie over de basisprincipes (hoe een prognose tot stand komt, hoe veiligheidsvoorraadbuffers worden bepaald en hoe/waarom deze waarden worden aangepast) bijdraagt aan slechte prognosenauwkeurigheid, verkeerd toegewezen voorraad en gebrek aan vertrouwen in het geheel Verwerken.

                    In deze blog bekijken we 10 specifieke vragen die u kunt stellen om erachter te komen wat er echt speelt in uw bedrijf. We beschrijven de typische antwoorden die worden gegeven wanneer er niet echt een beleid voor prognoses/voorraadplanning bestaat, leggen uit hoe deze antwoorden moeten worden geïnterpreteerd en geven duidelijk advies over wat u eraan kunt doen.

                    Begin altijd met een simpele hypothetisch voorbeeld. Als u zich concentreert op een specifiek probleem dat u zojuist hebt ervaren, zal dit ongetwijfeld defensieve antwoorden uitlokken die het volledige verhaal verbergen. Het doel is om de daadwerkelijke benadering te ontdekken die wordt gebruikt om inventaris en prognoses te plannen die in de mentale wiskunde of spreadsheets is ingebakken. Hier is een voorbeeld:

                    Stel dat u 100 eenheden bij de hand heeft, de doorlooptijd om aan te vullen 3 maanden is en de gemiddelde maandelijkse vraag 20 eenheden is? Wanneer bestel je meer? Hoeveel zou jij bestellen? Hoe zal uw antwoord veranderen als de verwachte ontvangsten van 10 per maand zouden aankomen? Hoe verandert uw antwoord als het artikel een A-, B- of C-artikel is, de prijs van het artikel hoog of laag is, de doorlooptijd van het artikel lang of kort is? Simpel gezegd, wanneer u een productietaak plant of een nieuwe bestelling plaatst bij een leverancier, waarom deed u dat dan? Wat was de aanleiding voor de beslissing om meer te krijgen? Welke planningsinputs werden overwogen?

                    Wanneer u antwoorden op de bovenstaande vraag krijgt, concentreer u dan op het vinden van antwoorden op de volgende vragen:

                    1. Wat is de onderliggende aanvullingsbenadering? Dit is meestal een van Min/Max, prognose/veiligheidsvoorraad, bestelpunt/bestelhoeveelheid, periodieke beoordeling/bestelling tot of zelfs een vreemde combinatie

                    2. Hoe worden de planningsparameters, zoals vraagprognoses, bestelpunten of Min/Max, daadwerkelijk berekend? Het is niet voldoende om te weten dat u Min/Max gebruikt. U moet precies weten hoe deze waarden worden berekend. Antwoorden als “We gebruiken geschiedenis” of “We gebruiken een gemiddelde” zijn niet specifiek genoeg. U hebt antwoorden nodig die duidelijk aangeven hoe geschiedenis wordt gebruikt. Bijvoorbeeld, “We nemen een gemiddelde van de afgelopen 6 maanden, delen dat door 30 om een daggemiddelde te krijgen en vermenigvuldigen dat met de doorlooptijd in dagen. Voor 'A'-artikelen vermenigvuldigen we vervolgens de gemiddelde doorlooptijd met 2 en voor 'B'-artikelen gebruiken we een vermenigvuldiger van 1,5.” (Hoewel dat geen bijzonder goede technische benadering is, heeft het tenminste een duidelijke logica.)

                    Zodra u een goed gedefinieerd beleid heeft, kunt u de zwakke punten identificeren om het te verbeteren. Maar als het gegeven antwoord niet veel verder komt dan “We gebruiken geschiedenis”, dan heb je geen beleid om mee te beginnen. Uit antwoorden blijkt vaak dat verschillende planners geschiedenis op verschillende manieren gebruiken. Sommigen houden alleen rekening met de meest recente vraag, anderen slaan misschien in op basis van het gemiddelde van de perioden met de hoogste vraag, enz. Met andere woorden, het kan zijn dat u in feite meerdere ondoordachte "polissen" heeft.

                    3. Worden prognoses gebruikt om de bevoorradingsplanning aan te sturen en, zo ja, hoe? Veel bedrijven zullen zeggen dat ze voorspellen, maar hun prognoses worden op een andere manier berekend en gebruikt. Wordt de prognose gebruikt om te voorspellen welke voorraad er in de toekomst zal zijn, waardoor een order wordt geactiveerd? Of wordt het gebruikt om een bestelpunt af te leiden, maar niet om te voorspellen wanneer ik moet bestellen (dat wil zeggen, ik voorspel dat we er 10 per week zullen verkopen, dus om te helpen voorkomen dat de voorraad op is, zal ik meer bestellen als de voorraad op 15 komt)? Wordt het gebruikt als een leidraad voor de planner om subjectief te helpen bepalen wanneer ze meer moeten bestellen? Wordt het gebruikt om raamcontracten met leveranciers op te stellen? Sommigen gebruiken het om MRP aan te drijven. U moet deze details kennen. Een grondig antwoord op deze vraag zou er als volgt uit kunnen zien: “Mijn voorspelling is 10 per week en mijn doorlooptijd is 3 weken, dus ik maak mijn bestelpunt een veelvoud van die voorspelling, meestal 2 x de doorlooptijdvraag of 60 eenheden voor belangrijke artikelen en ik gebruik een kleiner veelvoud voor minder belangrijke artikelen. (Nogmaals, geen geweldige technische benadering, maar duidelijk.)

                    4. Welke techniek wordt eigenlijk gebruikt om de prognose te genereren? Is het een gemiddelde, een trending model zoals dubbele exponentiële afvlakking, een seizoensmodel? Hangt de keuze van de techniekverandering af van het type vraaggegevens of wanneer er nieuwe vraaggegevens beschikbaar zijn? (Reserveonderdelen en artikelen met een hoog volume hebben zeer verschillende vraagpatronen.) Hoe kiest u het prognosemodel? Is dit proces geautomatiseerd? Hoe vaak wordt de modelkeuze heroverwogen? Hoe vaak worden de modelparameters opnieuw berekend? Wat is het proces dat wordt gebruikt om uw aanpak te heroverwegen? Het antwoord documenteert hier hoe de basisprognoses tot stand komen. Eenmaal bepaald, kunt u een analyse uitvoeren om te bepalen of andere prognosemethoden zouden verbeteren nauwkeurigheid van de voorspelling. Als u de nauwkeurigheid van de prognoses niet documenteert en geen analyse van de toegevoegde waarde van de prognose uitvoert, bent u niet in staat om goed te beoordelen of de geproduceerde prognoses de beste zijn die ze kunnen zijn. U loopt kansen mis om het proces te verbeteren, de nauwkeurigheid van prognoses te vergroten en het bedrijf te informeren over welk type prognosefout normaal is en moet worden verwacht.

                    5. Hoe gebruik je veiligheidsvoorraad? Merk op dat de vraag niet was: "Gebruikt u veiligheidsvoorraad?" In deze context, en om het simpel te houden, betekent de term "veiligheidsvoorraad" voorraad die wordt gebruikt om voorraad te bufferen tegen variabiliteit van vraag en aanbod. Alle bedrijven gebruiken op de een of andere manier buffermethoden. Er zijn echter enkele uitzonderingen. Misschien bent u een werkplaatsfabrikant die alle onderdelen op bestelling aanschaft en vinden uw klanten het helemaal prima om weken of maanden op u te wachten om materiaal te vinden, te produceren, QA te leveren en te verzenden. Of misschien bent u een grote fabrikant met tonnen koopkracht, zodat uw leveranciers lokale magazijnen opzetten die volledig gevuld zijn en klaar om u vrijwel onmiddellijk van voorraad te voorzien. Als deze beschrijvingen uw bedrijf niet beschrijven, heeft u zeker een soort buffer om u te beschermen tegen variabiliteit in vraag en aanbod. U gebruikt het veld "veiligheidsvoorraad" misschien niet in uw ERP, maar u bent zeker aan het bufferen.

                    Er kunnen antwoorden worden gegeven zoals "We gebruiken geen veiligheidsvoorraad omdat we prognoses maken." Helaas, een goede voorspelling zal een 50/50 kans hebben om boven/onder de daadwerkelijke vraag te zijn. Dit betekent dat u 50% van de tijd een voorraad krijgt zonder dat er een veiligheidsvoorraadbuffer aan de prognose is toegevoegd. Voorspellingen zijn alleen perfect als er geen willekeur is. Aangezien er altijd willekeur is, moet u bufferen als u geen bodemloze serviceniveaus wilt hebben.

                    Als het antwoord niet wordt onthuld, kunt u wat meer onderzoeken hoe de verschillende aanvullingshendels worden gebruikt om mogelijke buffers toe te voegen, wat leidt tot vragen 6 en 7.

                    6. Verlengt u wel eens de doorlooptijd of bestelt u wel eens eerder dan nodig is?
                    In ons hypothetische voorbeeld heeft uw leverancier doorgaans 4 weken nodig om te leveren en is redelijk consistent. Maar om u te beschermen tegen stockouts, bestelt uw koper routinematig 6 weken uit in plaats van 4 weken. Het veiligheidsvoorraadveld in uw ERP-systeem staat misschien op nul omdat "we geen veiligheidsvoorraad gebruiken", maar in werkelijkheid heeft de bestelbenadering van de koper zojuist 2 weken buffervoorraad toegevoegd.

                    7. Vult u de vraagprognose in?
                    In ons voorbeeld verwacht de planner 10 eenheden per maand te verbruiken, maar "voor het geval dat" een prognose van 20 per maand invoert. Het veiligheidsvoorraadveld in het MRP-systeem is blanco gelaten, maar de nu vermomde buffervoorraad is de vraagprognose binnengesmokkeld. Dit is een fout die 'voorspellingsbias' introduceert. Niet alleen zullen uw prognoses minder nauwkeurig zijn, maar als er geen rekening wordt gehouden met de vertekening en de veiligheidsvoorraad wordt toegevoegd door andere afdelingen, zult u te veel bevoorraden.

                    Het ad-hockarakter van de bovenstaande benaderingen verergert de problemen door geen rekening te houden met de daadwerkelijke vraag of het aanbod variabiliteit van het artikel. De planner kan bijvoorbeeld gewoon een vuistregel maken die de doorlooptijdprognose voor belangrijke artikelen verdubbelt. Eén maat past niet allemaal als het gaat om voorraadbeheer. Deze benadering zal de voorspelbare artikelen substantieel overbevoorraden, terwijl de periodiek gevraagde artikelen substantieel onderbezet zijn. Jij kunt lezen "Pas op voor eenvoudige vuistregels voor voorraadbeheer” om meer te weten te komen over waarom dit soort aanpak zo kostbaar is.

                    De ad-hoc aard van de benaderingen negeert ook wat er gebeurt als het bedrijf wordt geconfronteerd met een enorme overstock of stock out. Bij het proberen te begrijpen wat er is gebeurd, zal het vermelde beleid worden onderzocht. In het geval van een overstock zal het systeem een veiligheidsvoorraad nul tonen. De bedrijfsleiders zullen aannemen dat ze geen veiligheidsvoorraad bij zich hebben, hun hoofd krabben en uiteindelijk de voorspelling de schuld geven, verklaren "Ons bedrijf kan niet worden voorspeld" en strompelen verder. Ze kunnen de leverancier zelfs de schuld geven voor het te vroeg verzenden en ervoor zorgen dat ze meer vasthouden dan nodig is. In het geval dat de voorraad op is, denken ze dat ze niet genoeg op voorraad hebben en voegen ze willekeurig meer voorraad toe aan veel items, zonder zich te realiseren dat er in feite veel extra veiligheidsvoorraad in het proces is ingebakken. Dit maakt het waarschijnlijker dat voorraden in de toekomst moeten worden afgeschreven.

                    8. Wat is de exacte inventaristerminologie die wordt gebruikt? Definieer wat u bedoelt met veiligheidsvoorraad, Min, bestelpunt, EOQ, enz. Hoewel er standaard technische definities het is mogelijk dat er iets anders is, en miscommunicatie zal hier problematisch zijn. Sommige bedrijven verwijzen bijvoorbeeld naar Min als de hoeveelheid voorraad die nodig is om aan de doorlooptijdvraag te voldoen, terwijl sommigen Min definiëren als inclusief zowel doorlooptijdvraag als veiligheidsvoorraad om te bufferen tegen vraagvariabiliteit. Anderen kunnen de minimale bestelhoeveelheid betekenen.

                    9. Is de aanwezige voorraad in overeenstemming met het beleid? Wanneer uw detectivewerk is voltooid en alles is gedocumenteerd, opent u uw spreadsheet of ERP-systeem en bekijkt u de beschikbare hoeveelheid. Het zou min of meer in overeenstemming moeten zijn met uw planningsparameters (dwz als Min/Max 20/40 is en de typische doorlooptijdvraag 10 is, dan zou u op elk moment ongeveer 10 tot 40 eenheden bij de hand moeten hebben. Verrassend genoeg, voor veel bedrijven is er vaak een enorme inconsistentie. We hebben situaties waargenomen waarin de min/max-instelling 20/40 is, maar de voorhanden voorraad 300+ is. Dit geeft aan dat het beleid dat is voorgeschreven gewoon niet wordt gevolgd. Dat is een groter probleem.

                    10. Wat ga je nu doen?

                    Vraagprognoses en voorraadopslagbeleid moeten goed gedefinieerde processen zijn die door alle betrokkenen worden begrepen en geaccepteerd.  Er zou nul mysterie moeten zijn.

                    Om dit goed te doen, moeten de vraag- en aanbodvariabiliteit worden geanalyseerd en gebruikt om de juiste niveaus van veiligheidsvoorraad te berekenen. Buffers toevoegen zonder een impliciet begrip van wat elke extra eenheid buffervoorraad u oplevert in termen van service, is als willekeurig een handvol ingrediënten in een cakerecept gooien. Een kleine verandering in ingrediënten kan een enorme impact hebben op wat er uit de oven komt: de ene hap is te zoet, de volgende te zuur. Zo is het ook met voorraadbeheer. Een beetje extra hier, een beetje minder daar, en al snel zit je met kostbare overtollige voorraad in sommige gebieden, pijnlijke tekorten in andere, geen idee hoe je daar bent gekomen, en met weinig begeleiding om dingen beter te maken.

                    Modern Inventory optimization en software voor vraagplanning met zijn geavanceerde analyses en sterke basis in prognoseanalyse kan veel helpen bij dit probleem. Maar zelfs de beste software helpt niet als deze inconsistent wordt gebruikt.

                    Laat een reactie achter

                    gerelateerde berichten

                    The Importance of Clear Service Level Definitions in Inventory Management

                    Het belang van duidelijke definities van serviceniveaus bij voorraadbeheer

                    Voorraadoptimalisatiesoftware die 'wat als'-analyse ondersteunt, legt de afweging tussen voorraadtekorten en extra kosten van verschillende serviceniveaudoelen bloot. Maar eerst is het belangrijk om te identificeren hoe ‘serviceniveaus’ worden geïnterpreteerd, gemeten en gerapporteerd. Dit voorkomt miscommunicatie en het valse gevoel van veiligheid dat kan ontstaan als er minder strenge definities worden gebruikt. Als u duidelijk definieert hoe het serviceniveau wordt berekend, staan alle belanghebbenden op één lijn. Dit vergemakkelijkt een betere besluitvorming.

                    The Cost of Spreadsheet Planning

                    De kosten van spreadsheetplanning

                    Bedrijven die afhankelijk zijn van spreadsheets voor vraagplanning, prognoses en voorraadbeheer worden vaak beperkt door de inherente beperkingen van de spreadsheet. Dit artikel onderzoekt de nadelen van traditionele voorraadbeheerbenaderingen veroorzaakt door spreadsheets en de daarmee samenhangende kosten, en contrasteert deze met de aanzienlijke voordelen die worden behaald door het omarmen van de modernste planningstechnologieën.

                    Leveraging Epicor Kinetic Planning BOMs with Smart IP&O to Forecast Accurately

                    Gebruikmaken van Epicor Kinetic Planning BOM's met Smart IP&O voor nauwkeurige prognoses

                    In deze blog onderzoeken we hoe het gebruik van Epicor Kinetic Planning BOM's met Smart IP&O uw benadering van forecasting in een zeer configureerbare productieomgeving kan transformeren. Ontdek hoe Smart, een geavanceerde AI-gestuurde oplossing voor vraagplanning en voorraadoptimalisatie, de complexiteit van het voorspellen van de vraag naar eindproducten kan vereenvoudigen, vooral als het om verwisselbare componenten gaat. Ontdek hoe het plannen van stuklijsten en geavanceerde prognosetechnieken bedrijven in staat stelt nauwkeuriger te anticiperen op de behoeften van klanten, waardoor de operationele efficiëntie wordt gewaarborgd en een voorsprong behouden in een concurrerende markt.

                    recente berichten

                    • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
                      In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
                    • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
                      De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
                    • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
                      Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
                    • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
                      Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
                    • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
                      Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

                      Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

                      • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
                        In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
                      • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
                        De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
                      • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
                        Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
                      • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
                        In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

                        Het probleem met bochten

                        De slimme voorspeller

                         Het nastreven van best practices op het gebied van vraagplanning,

                        prognoses en voorraadoptimalisatie

                        Tijdens onze reizen door de industriële scene merken we dat veel bedrijven meer aandacht besteden aan inventarisatiebeurten dan zou moeten. We willen een deel van deze aandacht verleggen naar meer consequente prestatiestatistieken.

                        Denk aan de definitie: Turns = Jaarlijkse dollarkosten van verkochte goederen / Gemiddelde dollarwaarde van voorraad. Als je in een jaar $1 miljoen spullen verkoopt en elke dag gemiddeld $100.000 aan spullen op de plank hebt liggen, heb je een indrukwekkende 10 beurten (Walmart draait rond de 8). Vermoedelijk duidt het hebben van hoge Turns op efficiënt beheer, en het houden van uw Turns hoger dan die van concurrenten duidt op concurrentievoordeel.

                        Maar zoals gebeurt met de meeste prestatiestatistieken, is er meer aan de hand. Turns kunnen erg opvallend zijn voor de CFO, maar ze kunnen een keurslijf zijn voor de COO. Dit komt omdat beurten niet direct verband houden met klantenservice; in feite kunnen hoge beurten synoniem zijn met lage serviceniveaus en opvullingspercentages. S&OP-consultant Darrin Oliver noemt Turns zijn 'pet peeve metric' omdat 'de klant niets om Turns geeft'.

                        Stel dat u niet tevreden bent met uw huidige Turns-waarde. Wat kun je doen om het aantal te verhogen? Aangezien Turns een verhouding is, kunt u deze verhogen door de teller (verkochte goederen) te verhogen of de noemer (voorraad) te verkleinen. Het verhogen van de verkoop is moeilijker omdat het de medewerking van de klant vereist. Afnemend voorraad is eenvoudiger omdat u het volledig onder controle heeft: voer gewoon kleinere aanvullingsorders uit, wat ook op korte termijn geld bespaart. Inderdaad, je kunt heel enthousiast worden en inventaris tot op het bot snijden. Je krijgt uiteindelijk een beter uitziend nummer voor Turns - en een serieus probleem met stockouts, backorders, verloren verkopen, verloren klantvriendelijkheid en verloren marktaandeel. Wie heeft er nu spijt?

                        Hier is een licht bewerkte versie van een verhaal over dit onderwerp, verteld door een zeer wijze beoefenaar. “In mijn andere leven draaiden ze allemaal om het verbeteren van bochten. Waarom, ik heb geen idee. Dus wees ik op de risico's die je loopt. En ze waren echt niet geïnteresseerd. Dus brachten we onze wereldwijde voorraden terug naar [een lager niveau], en braken toen dagelijks links en rechts op voorraad. Onze beurten waren geweldig, maar we verdienden geen geld, omdat we niets de deur uit konden krijgen, omdat we het niet bezaten. Hoe hoger je beurten, hoe lager je inventaris zal moeten zijn, anders krijg je gewoon een heel goede stroom. En in onze branche is dat heel, heel moeilijk om te bereiken. Dus als we redelijke beurten kunnen hebben maar nog steeds op voorraad zijn, denk ik dat dat is wat we willen doen. In een operationele wereld kan het erg frustrerend zijn om te proberen uit te leggen wat we elke dag doen en wat de risico's voor het bedrijf zijn wanneer de financiële mensen slechts naar een of twee statistieken kijken. Ze proberen het bedrijf eigenlijk in een vacuüm te plannen, en dat is erg moeilijk en erg riskant.”

                        Thomas Willemain, PhD, was medeoprichter van Smart Software en is momenteel Senior Vice President for Research. Dr. Willemain is ook emeritus hoogleraar Industrial and Systems Engineering aan het Rensselear Polytechnic Institute en als lid van de onderzoeksstaf van het Centre for Computing Sciences, Institute for Defence Analyses.

                        Laat een reactie achter

                        gerelateerde berichten

                        Smart Software Announces Next-Generation Patent

                        Smart Software kondigt patent van de volgende generatie aan

                        Smart Software is verheugd de toekenning van US Patent 11,656,887 aan te kondigen. Het patent leidt “technische oplossingen voor het analyseren van historische vraaggegevens van middelen in een technologieplatform om het beheer van een geautomatiseerd proces in het platform te vergemakkelijken.

                        Do your statistical forecasts suffer from the wiggle effect?

                        Hebben uw statistische prognoses last van het wiggle-effect?

                        Wat is het wiggle-effect? Het is wanneer uw statistische prognose de ups en downs die zijn waargenomen in uw vraaggeschiedenis onjuist voorspelt terwijl er echt geen patroon is. Het is belangrijk om ervoor te zorgen dat uw prognoses niet schommelen, tenzij er een echt patroon is. Hier is een transcriptie van een recente klant waar dit probleem werd besproken:

                        How to Handle Statistical Forecasts of Zero

                        Hoe om te gaan met statistische prognoses van nul

                        Een statistische voorspelling van nul kan veel verwarring veroorzaken bij voorspellers, vooral wanneer de historische vraag niet nul is. Natuurlijk, het is duidelijk dat de vraag naar beneden neigt, maar moet deze naar nul evolueren?

                        recente berichten

                        • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
                          In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
                        • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
                          De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
                        • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
                          Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
                        • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
                          Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
                        • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
                          Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

                          Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

                          • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
                            In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
                          • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
                            De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
                          • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
                            Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
                          • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
                            In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]