Eenvoudig is goed, behalve als dat niet het geval is

In deze blog sturen we het gesprek in de richting van het transformatieve potentieel van technologie op het gebied van voorraadbeheer. De discussie draait om de beperkingen van eenvoudig denken bij het beheren van voorraadbeheerprocessen en de noodzaak van het adopteren van systematische softwareoplossingen. Dr. Tom Willemain benadrukt het contrast tussen Smart Software en de basale, zij het comfortabele, benaderingen die doorgaans door veel bedrijven worden toegepast. Deze elementaire methoden, die vaak de voorkeur genieten vanwege hun gebruiksgemak en nulkosten, worden onder de loep genomen vanwege hun tekortkomingen bij het aanpakken van de dynamische uitdagingen van voorraadbeheer.

Het belang van dit onderwerp ligt in de cruciale rol die voorraadbeheer speelt in de operationele efficiëntie van een bedrijf en de directe impact ervan op klanttevredenheid en winstgevendheid. Dr. Tom Willemain wijst op de veelvoorkomende valkuilen van het vertrouwen op te eenvoudige vuistregels, zoals het grillige kinderrijmpje dat door een bedrijf wordt gebruikt om de herschikkingspunten te bepalen, of de onderbuikgevoel-methode, die afhangt van niet-kwantificeerbare intuïtie in plaats van van gegevens. Hoewel deze benaderingen aantrekkelijk zijn in hun eenvoud, slagen ze er niet in zich aan te passen aan marktschommelingen, de betrouwbaarheid van leveranciers of veranderingen in de vraag, waardoor aanzienlijke risico's voor het bedrijf ontstaan. De video bekritiseert ook de praktijk van het vaststellen van herschikkingspunten op basis van veelvouden van de gemiddelde vraag, waarbij de minachting voor de volatiliteit van de vraag wordt benadrukt, een fundamentele overweging in de voorraadtheorie.

Concluderend pleit de presentator voor een meer geavanceerde, datagestuurde benadering van voorraadbeheer. Door gebruik te maken van geavanceerde softwareoplossingen zoals die van Smart Software, kunnen bedrijven complexe vraagpatronen nauwkeurig modelleren en voorraadregels stresstesten aan de hand van talloze toekomstscenario's. Deze wetenschappelijke methode maakt het mogelijk om bestelpunten in te stellen die rekening houden met de reële variabiliteit, waardoor het risico op voorraadtekorten en de daaraan verbonden kosten worden geminimaliseerd. De video benadrukt dat, hoewel eenvoudige heuristieken verleidelijk kunnen zijn vanwege hun gebruiksgemak, ze niet geschikt zijn voor de huidige dynamische marktomstandigheden. De presentator moedigt kijkers aan om technologische oplossingen te omarmen die professionele nauwkeurigheid en aanpassingsvermogen bieden en duurzaam zakelijk succes garanderen.

 

 

Onzekerheid overwinnen met technologie voor service- en voorraadoptimalisatie

In deze blog bespreken we de snelle en onvoorspelbare markt van vandaag en de voortdurende uitdagingen waarmee bedrijven worden geconfronteerd bij het efficiënt beheren van hun voorraad- en serviceniveaus. Het hoofdonderwerp van deze discussie, geworteld in het concept van ‘probabilistische voorraadoptimalisatie’, richt zich op de manier waarop moderne technologie kan worden ingezet om optimale service- en voorraaddoelstellingen te bereiken te midden van onzekerheid. Deze aanpak pakt niet alleen de traditionele problemen met voorraadbeheer aan, maar biedt ook een strategische voorsprong bij het omgaan met de complexiteit van vraagschommelingen en verstoringen van de toeleveringsketen.

Het begrijpen en implementeren van voorraadoptimalisatietechnologie is om verschillende redenen belangrijk. Ten eerste heeft het een directe invloed op het vermogen van een bedrijf om snel aan de eisen van de klant te voldoen, waardoor de klanttevredenheid en loyaliteit worden beïnvloed. Ten tweede houdt effectief voorraadbeheer de operationele kosten onder controle, waardoor onnodige voorraad wordt verminderd en het risico op stockouts of overstock wordt geminimaliseerd. In een tijdperk waarin de marktomstandigheden snel veranderen, kan het hebben van een robuust systeem om deze aspecten te beheren het verschil zijn tussen bloeien en alleen maar overleven.

De kern van voorraadbeheer ligt in een paradox: de noodzaak om voorbereid te zijn op de fluctuerende vraag, zonder te bezwijken voor de valkuilen van overbevoorrading, wat kan leiden tot hogere voorraadkosten, veroudering en verspilling van hulpbronnen. Omgekeerd kan een tekort aan voorraad resulteren in voorraadtekorten, omzetverlies en verminderde klanttevredenheid, wat uiteindelijk gevolgen heeft voor de reputatie en het bedrijfsresultaat van een bedrijf. De onvoorspelbare aard van de marktvraag, verergerd door mogelijke verstoringen van de toeleveringsketen en veranderend consumentengedrag, maakt deze evenwichtsoefening ingewikkelder.

Technologie speelt hier een cruciale rol. Moderne software voor voorraadoptimalisatie integreert probabilistische modellen, geavanceerde voorspellingsalgoritmen en simulatiemogelijkheden. Deze systemen helpen bedrijven snel te reageren op veranderende marktomstandigheden. Bovendien bevordert de adoptie van dergelijke technologie een cultuur van datagestuurde besluitvorming, waardoor bedrijven niet alleen maar reageren op onzekerheden, maar proactief strategieën ontwikkelen om de gevolgen ervan te verzachten.

Hier volgen korte discussies over de relevante algoritmische technologieën.

Probabilistische voorraadoptimalisatie: Traditionele benaderingen van voorraadbeheer zijn gebaseerd op deterministische modellen die uitgaan van een statische, voorspelbare wereld. Deze modellen wankelen als ze geconfronteerd worden met variabiliteit en onzekerheid. Maak kennis met probabilistische voorraadoptimalisatie, een paradigma dat de willekeur omarmt die inherent is aan supply chain-processen. Deze aanpak maakt gebruik van statistische modellen om de onzekerheden in vraag en aanbod weer te geven, waardoor bedrijven rekening kunnen houden met een volledig scala aan mogelijke uitkomsten.

Geavanceerde prognoses:  Een hoeksteen van effectieve voorraadoptimalisatie is het vermogen om nauwkeurig te anticiperen op de toekomstige vraag. Geavanceerde voorspellingstechnieken, zoals [we verkopen dit niet buiten SmartForecasts of misschien zelfs niet meer daar, dus vermeld het niet], tijdreeksanalyse en machinaal leren, extraheren exploiteerbare patronen uit historische gegevens.

Berekening van de veiligheidsvoorraad: een schild tegen onzekerheid:

Prognoses die schattingen van hun eigen onzekerheid bevatten, maken berekeningen van de veiligheidsvoorraad mogelijk. De veiligheidsvoorraad fungeert als buffer tegen de onvoorspelbaarheid van de doorlooptijden van vraag en aanbod. Het bepalen van het optimale niveau van de veiligheidsvoorraad is een cruciale uitdaging die probabilistische modellen goed kunnen aanpakken. Met de juiste veiligheidsvoorraden kunnen bedrijven een hoog serviceniveau handhaven, waardoor de productbeschikbaarheid wordt gegarandeerd zonder de last van overmatige voorraad.

Scenarioplanning: voorbereiden op meerdere toekomsten:

De toekomst is inherent onzeker en één enkele voorspelling kan nooit alle mogelijke scenario's omvatten. Geavanceerde methoden die een reeks realistische vraagscenario's creëren, zijn de essentiële vorm van probabilistische voorraadoptimalisatie. Met deze technieken kunnen bedrijven de implicaties van meerdere toekomsten onderzoeken, van best-case tot worst-case situaties. Door op deze scenario’s te anticiperen, kunnen bedrijven hun veerkracht vergroten in het licht van de marktvolatiliteit.

Met vertrouwen door de toekomst navigeren

Het onzekere landschap van de huidige zakelijke omgeving maakt een verschuiving noodzakelijk van traditionele voorraadbeheerpraktijken naar meer geavanceerde, probabilistische benaderingen. Door de principes van probabilistische voorraadoptimalisatie te omarmen, kunnen bedrijven een duurzaam evenwicht vinden tussen uitmuntende service en kostenefficiëntie. Door geavanceerde voorspellingstechnieken, strategische veiligheidsvoorraadberekeningen en scenarioplanning te integreren, ondersteund door Smart Inventory Planning and Optimization (Smart IP&O), kunnen bedrijven onzekerheid omzetten van een uitdaging in een kans. Bedrijven die deze aanpak omarmen, melden aanzienlijke verbeteringen in serviceniveaus, verlagingen van voorraadkosten en verbeterde flexibiliteit van de toeleveringsketen.

Minder kritieke artikelen die naar verwachting een serviceniveau van 99%+ zullen bereiken, vertegenwoordigen bijvoorbeeld mogelijkheden om de voorraad te verminderen. Door lagere serviceniveaus te richten op minder kritieke artikelen, zal de voorraad in de loop van de tijd “de juiste omvang” hebben voor het nieuwe evenwicht, waardoor de voorraadkosten en de waarde van de aanwezige voorraad afnemen. Een groot openbaarvervoersysteem verminderde de voorraad met ruim $4.000.000, terwijl het serviceniveau verbeterde.

Het optimaliseren van de voorraadniveaus betekent ook dat de besparingen die op één subset van artikelen worden gerealiseerd, opnieuw kunnen worden toegewezen aan een bredere portefeuille van artikelen die op voorraad zijn, waardoor inkomsten kunnen worden gerealiseerd die anders verloren zouden gaan. Een toonaangevende distributeur was in staat een breder portfolio aan onderdelen op voorraad te houden dankzij de besparingen dankzij voorraadreducties en een grotere beschikbaarheid van onderdelen door 18%.

 

 

 

Dagelijkse vraagscenario's

In deze videoblog leggen we uit hoe tijdreeksvoorspellingen naar voren zijn gekomen als een cruciaal hulpmiddel, vooral op dagelijks niveau, waarmee Smart Software sinds de oprichting ruim veertig jaar geleden pionierde. De evolutie van bedrijfspraktijken van jaarlijkse naar meer verfijnde temporele stappen zoals maandelijkse en nu dagelijkse data-analyse illustreert een significante verschuiving in operationele strategieën.

Aanvankelijk, in de jaren tachtig, werd de gebruikelijke praktijk van het gebruik van jaarlijkse gegevens voor prognoses en de introductie van maandelijkse gegevens als innovatief beschouwd. Deze periode markeerde het begin van een trend in de richting van het verhogen van de resolutie van data-analyse, waardoor bedrijven snellere verschuivingen in de marktdynamiek kunnen opvangen en hierop kunnen reageren. Naarmate we verder kwamen in de jaren 2000, was de norm van maandelijkse data-analyse ingeburgerd, maar de 'cool kids' – vernieuwers aan de rand van business analytics – begonnen te experimenteren met wekelijkse data. Deze verschuiving werd gedreven door de noodzaak om de bedrijfsactiviteiten te synchroniseren met de steeds volatielere marktomstandigheden en het consumentengedrag dat snellere reacties vergde dan maandelijkse cycli konden bieden. Tegenwoordig, in de jaren 2020, is de grens weliswaar nog steeds gebruikelijk, maar is de grens opnieuw verschoven, dit keer naar dagelijkse data-analyse, waarbij sommige pioniers zich zelfs aan uuranalyses wagen.

De echte kracht van dagelijkse data-analyse ligt in het vermogen om een gedetailleerd beeld te geven van de bedrijfsvoering, waarbij dagelijkse schommelingen worden vastgelegd die door maandelijkse of wekelijkse gegevens over het hoofd kunnen worden gezien. De complexiteit van dagelijkse gegevens vereist echter geavanceerde analytische benaderingen om betekenisvolle inzichten te verkrijgen. Op dit niveau vereist het begrijpen van de vraag het worstelen met concepten als wisselvalligheid, seizoensinvloeden, trends en volatiliteit. Intermittentie, of het optreden van dagen zonder vraag, wordt duidelijker bij een dagelijkse granulariteit en vereist gespecialiseerde voorspellingstechnieken zoals de methode van Croston voor nauwkeurige voorspellingen. Seizoensgebondenheid op dagelijks niveau kan meerdere patronen aan het licht brengen, zoals hogere verkopen in het weekend of op feestdagen, die maandelijkse gegevens zouden maskeren. Trends kunnen worden waargenomen als stijgingen of dalingen van de vraag op de korte termijn, waardoor flexibele aanpassingsstrategieën nodig zijn. Ten slotte wordt de volatiliteit op dagelijks niveau geaccentueerd, wat significantere schommelingen in de vraag laat zien dan uit maandelijkse of wekelijkse analyses blijkt, wat van invloed kan zijn op de voorraadbeheerstrategieën en de behoefte aan buffervoorraden. Dit niveau van complexiteit onderstreept de behoefte aan geavanceerde analytische hulpmiddelen en expertise op het gebied van dagelijkse data-analyse.

Kortom, de evolutie van minder frequente naar dagelijkse tijdreeksvoorspellingen markeert een substantiële verschuiving in de manier waarop bedrijven data-analyse benaderen. Deze transitie weerspiegelt niet alleen het steeds snellere tempo van het bedrijfsleven, maar onderstreept ook de behoefte aan tools die een grotere granulariteit van de gegevens aankunnen. De toewijding van Smart Software aan het verfijnen van de analytische mogelijkheden voor het beheren van dagelijkse gegevens benadrukt de bredere beweging van de sector naar meer dynamische, responsieve en datagestuurde besluitvorming. Deze verschuiving gaat niet alleen over het bijhouden van de tijd, maar over het benutten van gedetailleerde inzichten om concurrentievoordelen te creëren in een steeds veranderende zakelijke omgeving.

 

Leren van voorraadmodellen

In deze videoblog onderzoeken we de integrale rol die voorraadmodellen spelen bij het vormgeven van de besluitvormingsprocessen van professionals in verschillende sectoren. Deze modellen, of het nu tastbare computersimulaties zijn of immateriële mentale constructies, dienen als cruciale hulpmiddelen bij het beheersen van de complexiteit van moderne zakelijke omgevingen. De discussie begint met een overzicht van hoe deze modellen worden gebruikt om resultaten te voorspellen en activiteiten te stroomlijnen, waarbij de relevantie ervan in een voortdurend evoluerend marktlandschap wordt benadrukt.

De discussie onderzoekt verder hoe verschillende modellen strategische besluitvormingsprocessen duidelijk beïnvloeden. De mentale modellen die professionals door ervaring ontwikkelen, vormen bijvoorbeeld vaak een leidraad voor de eerste reacties op operationele uitdagingen. Deze modellen zijn subjectief en opgebouwd op basis van persoonlijke inzichten en ervaringen uit het verleden met vergelijkbare situaties, waardoor snelle, intuïtieve besluitvorming mogelijk is. Aan de andere kant bieden computergebaseerde modellen een objectiever raamwerk. Ze gebruiken historische gegevens en algoritmische berekeningen om toekomstige scenario's te voorspellen en bieden zo een kwantitatieve basis voor beslissingen waarbij rekening moet worden gehouden met meerdere variabelen en mogelijke uitkomsten. In dit gedeelte worden specifieke voorbeelden belicht, zoals de impact van het aanpassen van bestelhoeveelheden op voorraadkosten en bestelfrequentie of de effecten van fluctuerende doorlooptijden op serviceniveaus en klanttevredenheid.

Concluderend: terwijl mentale modellen een raamwerk bieden dat is gebaseerd op ervaring en intuïtie, bieden computermodellen een gedetailleerder en getalsmatig perspectief. Het combineren van beide typen modellen zorgt voor een robuuster besluitvormingsproces, waarbij theoretische kennis in evenwicht wordt gebracht met praktische ervaring. Deze aanpak vergroot het inzicht in de voorraaddynamiek en geeft professionals de tools in handen om zich effectief aan veranderingen aan te passen, waardoor duurzaamheid en concurrentievermogen op hun respectieve vakgebieden worden gewaarborgd.

 

 

Een vraagvoorspelling doorstaan

Voor sommige van onze klanten heeft het weer een grote invloed op de vraag. Extreme weersomstandigheden op de korte termijn, zoals branden, droogtes, hittegolven, enzovoort, kunnen op de korte termijn een aanzienlijke invloed hebben op de vraag.

Er zijn twee manieren om het weer mee te nemen in een vraagvoorspelling: indirect en direct. De indirecte route is eenvoudiger met behulp van de scenariogebaseerde aanpak van Smart Demand Planner. De directe aanpak vereist een speciaal project op maat dat aanvullende gegevens en handgemaakte modellen vereist.

Indirecte boekhouding voor het weer

Het standaardmodel ingebouwd Smart Demand Planner (SDP) houdt op vier manieren rekening met weerseffecten:

  1. Als de wereld gestaag warmer/kouder/droger/natter wordt op manieren die van invloed zijn op uw omzet, detecteert SDP deze trends automatisch en neemt deze op in de vraagscenario's die het genereert.
  2. Als uw bedrijf een regelmatig ritme heeft waarin bepaalde dagen van de week of bepaalde maanden van het jaar een consistent hogere of lager dan gemiddelde vraag hebben, detecteert SDP deze seizoensinvloeden ook automatisch en neemt deze op in zijn vraagscenario's.
  3. Vaak is het de vervloekte willekeur van het weer die de nauwkeurigheid van de voorspellingen in de weg staat. We noemen dit effect vaak ‘ruis’. Lawaai is een verzamelnaam die allerlei willekeurige problemen omvat. Naast het weer kunnen ook een geopolitieke opflakkering, de verrassende mislukking van een regionale bank of een schip dat vastloopt in het Suezkanaal voor verrassingen zorgen en de vraag naar producten vergroten. SDP beoordeelt de volatiliteit van de vraag en reproduceert deze in zijn vraagscenario's.
  4. Beheeroverschrijvingen. Meestal laten klanten SDP aan de slag om automatisch tienduizenden vraagscenario's te genereren. Maar als gebruikers de behoefte voelen om specifieke prognoses aan te passen met behulp van hun voorkennis, kan SDP dat mogelijk maken door managementoverrides.

Directe boekhouding voor het weer

Soms kan een gebruiker inhoudelijke expertise onder woorden brengen door factoren buiten zijn bedrijf (zoals rentetarieven of grondstofkosten of technologietrends) te koppelen aan zijn eigen totale omzet. In deze situaties kan Smart Software eenmalige speciale projecten verzorgen die alternatieve (“causale”) modellen bieden als aanvulling op onze standaard statistische voorspellingsmodellen. Neem contact op met uw Smart Software-vertegenwoordiger om een mogelijk causaal modelleringsproject te bespreken.

Vergeet intussen uw paraplu niet.