Bel een Audible om proactief ruis in de supply chain tegen te gaan

 

U kent de situatie: u berekent de beste manier om elk voorraadartikel te beheren door de juiste bestelpunten en aanvullingsdoelen te berekenen, vervolgens de gemiddelde vraag stijgt of daalt, of de vraagvolatiliteit verandert, of de doorlooptijden van leveranciers veranderen, of uw eigen kosten veranderen . Nu zijn uw oude polissen (herbestelpunten, veiligheidsvoorraden, Min/Max-niveaus, enz.) achterhaald - net op het moment dat u denkt dat u ze goed heeft. Door gebruik te maken van geavanceerde software voor planning en voorraadoptimalisatie, kunt u proactief inspelen op de steeds veranderende invloeden van buitenaf op uw voorraad en vraag. Om dit te doen, moet u de voorraadparameters regelmatig opnieuw kalibreren op basis van de steeds veranderende vraag en doorlooptijden.

Onlangs hebben enkele potentiële klanten hun bezorgdheid geuit dat door regelmatig de parameters voor voorraadbeheer te wijzigen, ze "ruis" introduceren en complicaties toevoegen aan hun activiteiten. Een bezoeker van onze stand op de Microsoft Dynamics User Group Conference van vorige week merkte op:

“We willen de operaties niet in de war sturen door het beleid te vaak te veranderen en ruis in het systeem te introduceren. Dat geluid maakt het systeem nerveus en zorgt voor verwarring bij het inkoopteam.”

Deze visie is gebaseerd op de paradigma's van gisteren. Hoewel u over het algemeen een onmiddellijke productierun niet moet wijzigen, zal het negeren van wijzigingen op korte termijn in het beleid dat de toekomstige productieplanning en orderaanvulling stuurt, grote schade aanrichten aan uw activiteiten. Of je het nu leuk vindt of niet, de ruis is er al in de vorm van extreme vraag en variabiliteit in de toeleveringsketen. Door aanvullingsparameters vast te stellen, ze niet vaak bij te werken of alleen te beoordelen op het moment van bestelling, kan uw Supply Chain Operations alleen op problemen reageren in plaats van ze proactief te identificeren en corrigerende maatregelen te nemen.

Het aanpassen van het beleid met herkalibraties op korte termijn is aanpassen aan een veranderlijke situatie in plaats van eraan vast te zitten. We kunnen kijken naar de NFL-games van afgelopen weekend voor een eenvoudige analogie. Stelt u zich eens voor dat de quarterback van uw favoriete team consequent weigert een hoorbare te roepen (wijzig het spel net voordat de bal wordt geknapt) nadat hij de verdedigende formatie heeft gezien. Dit zou resulteren in veel gemiste kansen, inefficiëntie en vastgelopen ritten die het team een overwinning zouden kunnen kosten. Wat zou je willen dat je quarterback doet?

Vraag, doorlooptijden, kosten en zakelijke prioriteiten veranderen vaak, en zoals de afgelopen 18 maanden hebben bewezen, veranderen ze vaak aanzienlijk. Als Supply Chain-leider heeft u de keuze: parameters vast houden, wat resulteert in een groot aantal razendsnelle versnellingen en orderannuleringen, of proactief de parameters voor voorraadbeheer wijzigen. Het hoorbare oproepen door uw beleid opnieuw te kalibreren als vraag- en aanbodsignalen veranderen, is de juiste zet.

Hier is een voorbeeld. Stel dat u een kritiek artikel beheert door het bestelpunt (ROP) op 25 eenheden en de bestelhoeveelheid (OQ) op 48 te regelen. U voelt zich misschien een rots van stabiliteit door aan die twee nummers vast te houden, maar door dit te doen, kunt u andere getallen dramatisch laten fluctueren. Met name uw toekomstige serviceniveaus, opvullingspercentages en bedrijfskosten zouden allemaal uit het zicht kunnen worden gereset terwijl u zich fixeert op het vasthouden aan de ROP en OQ van gisteren. Toen het beleid oorspronkelijk werd vastgesteld, was de vraag stabiel en waren de doorlooptijden voorspelbaar, wat een serviceniveau van 99% op een belangrijk item opleverde. Maar nu neemt de vraag toe en zijn de doorlooptijden langer. Verwacht je echt hetzelfde resultaat (99%-serviceniveau) met dezelfde input-sets nu vraag en doorlooptijden zo verschillend zijn? Natuurlijk niet. Stel dat u wist dat u, gezien de recente veranderingen in vraag en doorlooptijd, de ROP moest verhogen tot 35 eenheden om hetzelfde serviceniveaudoel van 99% te bereiken. Als u de ROP op 25 eenheden zou houden, zou uw serviceniveau dalen tot 92%. Is het beter om dit van tevoren te weten of om gedwongen te worden om te reageren als u te maken heeft met stockouts?

Wat software voor voorraadoptimalisatie en -planning doet, is de verbanden tussen prestatiestatistieken zoals servicesnelheid en controleparameters zoals ROP en ROQ zichtbaar maken. Het onzichtbare wordt zichtbaar, zodat u beredeneerde aanpassingen kunt maken die uw statistieken houden waar u ze nodig hebt door de bedieningshendels aan te passen die beschikbaar zijn voor uw gebruik. Door probabilistische prognosemethoden te gebruiken, kunt u Key Performance Predictions (KPP's) van prestaties en kosten genereren, terwijl u corrigerende acties op korte termijn identificeert, zoals gerichte voorraadbewegingen die problemen helpen voorkomen en kansen benutten. Als u dit niet doet, komt uw supply chain-planning in een keurslijf terecht, net zoals de quarterback die weigert te horen.

Toegegeven, een voortdurend veranderende zakelijke omgeving vereist constante waakzaamheid en af en toe een reactie. Maar de juiste software voor voorraadoptimalisatie en vraagvoorspelling kan uw controleparameters met een paar muisklikken op schaal herberekenen en uw ERP-systeem aanwijzingen geven hoe alles op koers te houden ondanks de constante turbulentie.  De ruis zit al in uw systeem in de vorm van vraag- en aanbodvariabiliteit. Ga je proactief hoorbaar of vasthouden aan een ouder plan en duimen dat het goed komt?

 

 

Laat een reactie achter
gerelateerde berichten
You Need to Team up with the Algorithms

Je moet samenwerken met de algoritmen

Dit artikel gaat over de echte kracht die voortkomt uit de samenwerking tussen u en onze software die binnen handbereik plaatsvindt. We schrijven vaak over de software zelf en wat er ‘onder de motorkap’ gebeurt. Deze keer is het onderwerp hoe je het beste met de software kunt samenwerken.

Top Differences Between Inventory Planning for Finished Goods and for MRO and Spare Parts

Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen

In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren.

Electric Power Utility selecteert Smart Software voor voorraadoptimalisatie

Smart IP&O gaat over 90 dagen live en vermindert de voorraad in de eerste zes maanden met $9 miljoen

Belmont, Massachusetts, 2021Smart Software, Inc., leverancier van toonaangevende oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie, heeft vandaag de selectie, aankoop en implementatie aangekondigd van zijn vlaggenschipproduct, Smart IP&O, door een groot Amerikaans elektriciteitsbedrijf. Het platform wordt nu gebruikt om meer dan 250.000 reserveonderdelen te plannen met een waarde van meer dan $500.000.000 in het multi-echelon distributienetwerk van het hulpprogramma. Smart IP&O is in slechts 90 dagen geïmplementeerd en is gecrediteerd voor het verminderen van de voorraad met $9 miljoen met behoud van serviceniveaus binnen de eerste zes maanden van gebruik.

De implementatie van Smart IP&O maakt deel uit van het Strategic Supply Chain Optimization (SCO)-initiatief van het nutsbedrijf ter vervanging van twintig jaar oude legacy-software. Volgende fasen van de Smart Software-implementatie zullen Smart IP&O integreren in hun IBM Maximo Asset Management-systeem.

De sleutel tot de selectie en het succes van het project tot nu toe is de bewezen staat van dienst van Smart Software voor het plannen van intermitterende vraag naar reserve- en serviceonderdelen. Intermitterende of klonterige vraag wordt gekenmerkt door frequente perioden van nulvraag, afgewisseld met grote pieken van niet-nulvraag die schijnbaar willekeurig voorkomen. Het nutsbedrijf schat dat meer dan 80% van zijn onderdelen een intermitterende vraag hebben. Smart Software maakt gebruik van probabilistische prognoses die duizenden mogelijke toekomstige uitkomsten van vraag en doorlooptijden creëren. Het bewezen vermogen van de technologie om de vereiste voorraad nauwkeurig te voorspellen om de hoge serviceniveaus te bereiken die het nutsbedrijf nodig heeft, en om dit op grote schaal te doen, waren cruciale onderscheidende factoren.

De implementatie vond plaats binnen 90 dagen na de start van het project. In de daaropvolgende zes maanden maakte Smart IP&O de aanpassing van de voorraadparameters voor enkele duizenden artikelen mogelijk, wat resulteerde in een voorraadvermindering van $9,0 miljoen terwijl de beoogde serviceniveaus werden gehandhaafd. Aanzienlijke extra besparingen - en verbetering van de serviceniveaus voor kritieke reserveonderdelen - worden verwacht in het komende jaar, aangezien voorraden voor extra faciliteiten in het systeem worden gebracht.

"We hebben veel zeer sterke successen geboekt door klanten in activa-intensieve industrieën te helpen hun onderdelenvoorraad te optimaliseren", zegt Greg Hartunian, CEO van Smart Software. “Gecombineerd met de ondersteuning van het hulpprogramma van bovenaf, hands-on betrokkenheid van IT en het enthousiasme van gebruikers om een nieuwe aanpak te omarmen, hadden we een geweldig recept voor succes. We kijken ernaar uit om voort te bouwen op ons vroege succes om samen nog meer waarde te leveren.”

Over Smart Software, Inc.
Smart Software, Inc., opgericht in 1981, is een leider in het leveren van bedrijfsbrede oplossingen voor vraagprognose, planning en voorraadoptimalisatie voor bedrijven. Smart Inventory Planning & Optimization is een multi-tenant webplatform dat vraagplanners de tools geeft om seizoensinvloeden, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en periodiek gevraagde serviceonderdelen en kapitaalgoederen af te handelen. De oplossing biedt voorraadbeheerders nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts, en is te vinden op: www.smartcorp.com.

 

SmartForecasts en Smart IP&O zijn gedeponeerde handelsmerken van Smart Software, Inc. Alle andere handelsmerken zijn eigendom van hun respectieve eigenaren.


Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Telefoon: 1-800-SMART-99 (800-762-7899); E-mail: info@smartcorp.com

 

Slimme software voltooit SOC 2 Type II-audit. Veilig cloudplatform

Smart Software voltooit SOC 2 Type II beveiligingsaudit

Belmont, Massachusetts, 1 juni 2020 – Smart Software, Inc. heeft vandaag aangekondigd dat het bedrijf zijn Service Organization Control for Service Organizations (SOC)-audit heeft voltooid en het hoogste niveau van gegevensbeveiliging en betrouwbaarheid levert.

"Alle diensten van Smart Software zijn afhankelijk van een veilige, beveiligde en private opslag en overdracht van informatie", aldus Chief Technology Officer, Sreekumar Menon. “Vertrouwen en gegevensbeveiliging zijn nu belangrijk voor elke oplossing die cloudgebaseerde analyses, prognoses, vraagmodellering en voorraadplanning biedt. Sinds dag 1 van onze cloudreis hebben we aanzienlijke investeringen gedaan om onze klanten een veilige en betrouwbare omgeving te bieden. De afronding van deze audit bevestigt deze inspanningen.”

Bedrijven die de SOC 2 Type II-audit voltooien, hebben de mogelijkheid om op een of meer categorieën te worden beoordeeld; Smart Software voldeed of overtrof de toonaangevende norm in alle vier onderstaande categorieën:

  • Beveiliging - Verifiëren dat het systeem is beschermd tegen ongeoorloofde toegang, gebruik of wijziging om te voldoen aan de verplichtingen en systeemvereisten van de entiteit.
  • Beschikbaarheid - Verifiëren of het systeem beschikbaar is voor gebruik en gebruik om te voldoen aan de verplichtingen en systeemvereisten van de entiteit.
  • Verwerkingsintegriteit - Verifiëren dat de systeemverwerking volledig, geldig, nauwkeurig, tijdig en geautoriseerd is om te voldoen aan de verplichtingen en systeemvereisten van de entiteit.
  • Vertrouwelijkheid - Verifiëren dat informatie die als vertrouwelijk is aangemerkt, wordt beschermd om te voldoen aan de verplichtingen en systeemvereisten van de entiteit.

SOC 2-onderzoeken mogen alleen worden uitgevoerd door een erkend CPA-bedrijf. Kahn, Litwin, Renza & Co., Ltd ("KLR"), een toonaangevende leverancier van SOC-diensten, voerde de service-audit van Smart Software uit. "Door regelmatig een SOC 2-certificering te behalen, blijft Smart Software zijn toewijding aan zijn Smart IP&O-klanten aantonen door vertrouwen op te bouwen in de diensten die het levert op het gebied van beveiliging, beschikbaarheid, verwerkingsintegriteit en vertrouwelijkheid." zei Daniel M. Andrea, Partner en SOC Services Practice Leader van KLR.

Over Smart Software, Inc.

Smart Software, een toonaangevende innovator op het gebied van software voor vraagplanning, statistische prognoses en voorraadoptimalisatie, biedt Smart IP&O, een geïntegreerde suite van applicaties voor vraagplanning, voorraadoptimalisatie en supply chain-analyse in de cloud. Smart, opgericht in 1981, bedient een breed scala aan productie-, distributie- en transportorganisaties, waaronder The Home Depot, FedEx, DisneyLand Resorts, MARS, BC Transit, Metro-North Railroad en nog veel, veel meer.

 

Meer informatie op:  www.smartcorp.com


Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Telefoon: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; E-mail: info@smartcorp.com

 

 

Smart Software Senior VP/Research presenteert op Military Operations Research Society (MORS) Emerging Techniques Forum

Smart Software heeft vandaag aangekondigd dat mede-oprichter en Senior VP of Research, Dr. Thomas Willemain, is geselecteerd om te presenteren op het prestigieuze MORS Emerging Techniques Forum van 4 tot 5 december 2019 in Alexandria, VA.

MORS is de Military Operations Research Society, gefinancierd door de marine, het leger, de luchtmacht, het marinekorps, het bureau van de minister van Defensie en het ministerie van Binnenlandse Veiligheid. Haar missie is het verbeteren van de kwaliteit van de analyse die de nationale en binnenlandse veiligheidsbeslissingen informeert.

Het Emerging Techniques Forum biedt de defensieanalytische gemeenschap uitgebreide inhoud over opkomende analytische onderwerpen en technieken. Willemain zal een van de weinige experts zijn die spreken in de track Computational Advances in Analytics. Deze track behandelt nieuwe tools en technieken die gebruikmaken van meer rekenkracht en beschikbaarheid van gegevens.

Het onderwerp van Willemain is "Het valideren van vraagscenariogeneratoren voor voorraadoptimalisatie". Dit onderzoek maakt deel uit van het voortdurende werk van Smart Software om de stand van de techniek te verbeteren in het beheer van vloten van reserveonderdelen en moeilijk te voorspellen items. Deze verbeteringen zullen worden opgenomen in Smart IP&O, het multi-tenant webgebaseerde platform van het bedrijf voor prognoses, voorraadplanning en optimalisatie. Het onderzoek begon met de promovendi van dr. Willemain aan het Rensselaer Polytechnic Institute, waar hij actief blijft als emeritus hoogleraar Industrial and Systems Engineering.

 

Over Smart Software, Inc.

Smart Software, Inc., opgericht in 1981, is toonaangevend in het leveren van bedrijfsbrede oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie aan bedrijven. De oplossingen voor vraagvoorspelling en voorraadoptimalisatie van Smart Software hebben duizenden gebruikers over de hele wereld geholpen, waaronder klanten bij middelgrote ondernemingen en Fortune 500-bedrijven, zoals Mitsubishi, Siemens, Disney, FedEx, MARS en The Home Depot. Smart Inventory Planning & Optimization geeft vraagplanners de tools om om te gaan met seizoensinvloeden in de verkoop, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en af en toe gevraagde serviceonderdelen en kapitaalgoederen. Het biedt voorraadbeheerders ook nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts en is te vinden op het World Wide Web op www.smartcorp.com.

SmartForecasts en Smart IP&O zijn gedeponeerde handelsmerken van Smart Software, Inc. Alle andere handelsmerken zijn eigendom van hun respectieve eigenaren.


Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Telefoon: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; E-mail: info@smartcorp.com

 

Onthul uw werkelijke voorraadplanning en prognosebeleid door deze 10 vragen te beantwoorden

De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

In een andere blog we stelden de vraag: hoe weet je zeker dat je echt een beleid hebt voor voorraadplanning en vraagprognoses? We legden uit hoe het gebrek aan begrip van een organisatie over de basisprincipes (hoe een prognose tot stand komt, hoe veiligheidsvoorraadbuffers worden bepaald en hoe/waarom deze waarden worden aangepast) bijdraagt aan slechte prognosenauwkeurigheid, verkeerd toegewezen voorraad en gebrek aan vertrouwen in het geheel Verwerken.

In deze blog bekijken we 10 specifieke vragen die u kunt stellen om erachter te komen wat er echt speelt in uw bedrijf. We beschrijven de typische antwoorden die worden gegeven wanneer er niet echt een beleid voor prognoses/voorraadplanning bestaat, leggen uit hoe deze antwoorden moeten worden geïnterpreteerd en geven duidelijk advies over wat u eraan kunt doen.

Begin altijd met een simpele hypothetisch voorbeeld. Als u zich concentreert op een specifiek probleem dat u zojuist hebt ervaren, zal dit ongetwijfeld defensieve antwoorden uitlokken die het volledige verhaal verbergen. Het doel is om de daadwerkelijke benadering te ontdekken die wordt gebruikt om inventaris en prognoses te plannen die in de mentale wiskunde of spreadsheets is ingebakken. Hier is een voorbeeld:

Stel dat u 100 eenheden bij de hand heeft, de doorlooptijd om aan te vullen 3 maanden is en de gemiddelde maandelijkse vraag 20 eenheden is? Wanneer bestel je meer? Hoeveel zou jij bestellen? Hoe zal uw antwoord veranderen als de verwachte ontvangsten van 10 per maand zouden aankomen? Hoe verandert uw antwoord als het artikel een A-, B- of C-artikel is, de prijs van het artikel hoog of laag is, de doorlooptijd van het artikel lang of kort is? Simpel gezegd, wanneer u een productietaak plant of een nieuwe bestelling plaatst bij een leverancier, waarom deed u dat dan? Wat was de aanleiding voor de beslissing om meer te krijgen? Welke planningsinputs werden overwogen?

Wanneer u antwoorden op de bovenstaande vraag krijgt, concentreer u dan op het vinden van antwoorden op de volgende vragen:

1. Wat is de onderliggende aanvullingsbenadering? Dit is meestal een van Min/Max, prognose/veiligheidsvoorraad, bestelpunt/bestelhoeveelheid, periodieke beoordeling/bestelling tot of zelfs een vreemde combinatie

2. Hoe worden de planningsparameters, zoals vraagprognoses, bestelpunten of Min/Max, daadwerkelijk berekend? Het is niet voldoende om te weten dat u Min/Max gebruikt. U moet precies weten hoe deze waarden worden berekend. Antwoorden als “We gebruiken geschiedenis” of “We gebruiken een gemiddelde” zijn niet specifiek genoeg. U hebt antwoorden nodig die duidelijk aangeven hoe geschiedenis wordt gebruikt. Bijvoorbeeld, “We nemen een gemiddelde van de afgelopen 6 maanden, delen dat door 30 om een daggemiddelde te krijgen en vermenigvuldigen dat met de doorlooptijd in dagen. Voor 'A'-artikelen vermenigvuldigen we vervolgens de gemiddelde doorlooptijd met 2 en voor 'B'-artikelen gebruiken we een vermenigvuldiger van 1,5.” (Hoewel dat geen bijzonder goede technische benadering is, heeft het tenminste een duidelijke logica.)

Zodra u een goed gedefinieerd beleid heeft, kunt u de zwakke punten identificeren om het te verbeteren. Maar als het gegeven antwoord niet veel verder komt dan “We gebruiken geschiedenis”, dan heb je geen beleid om mee te beginnen. Uit antwoorden blijkt vaak dat verschillende planners geschiedenis op verschillende manieren gebruiken. Sommigen houden alleen rekening met de meest recente vraag, anderen slaan misschien in op basis van het gemiddelde van de perioden met de hoogste vraag, enz. Met andere woorden, het kan zijn dat u in feite meerdere ondoordachte "polissen" heeft.

3. Worden prognoses gebruikt om de bevoorradingsplanning aan te sturen en, zo ja, hoe? Veel bedrijven zullen zeggen dat ze voorspellen, maar hun prognoses worden op een andere manier berekend en gebruikt. Wordt de prognose gebruikt om te voorspellen welke voorraad er in de toekomst zal zijn, waardoor een order wordt geactiveerd? Of wordt het gebruikt om een bestelpunt af te leiden, maar niet om te voorspellen wanneer ik moet bestellen (dat wil zeggen, ik voorspel dat we er 10 per week zullen verkopen, dus om te helpen voorkomen dat de voorraad op is, zal ik meer bestellen als de voorraad op 15 komt)? Wordt het gebruikt als een leidraad voor de planner om subjectief te helpen bepalen wanneer ze meer moeten bestellen? Wordt het gebruikt om raamcontracten met leveranciers op te stellen? Sommigen gebruiken het om MRP aan te drijven. U moet deze details kennen. Een grondig antwoord op deze vraag zou er als volgt uit kunnen zien: “Mijn voorspelling is 10 per week en mijn doorlooptijd is 3 weken, dus ik maak mijn bestelpunt een veelvoud van die voorspelling, meestal 2 x de doorlooptijdvraag of 60 eenheden voor belangrijke artikelen en ik gebruik een kleiner veelvoud voor minder belangrijke artikelen. (Nogmaals, geen geweldige technische benadering, maar duidelijk.)

4. Welke techniek wordt eigenlijk gebruikt om de prognose te genereren? Is het een gemiddelde, een trending model zoals dubbele exponentiële afvlakking, een seizoensmodel? Hangt de keuze van de techniekverandering af van het type vraaggegevens of wanneer er nieuwe vraaggegevens beschikbaar zijn? (Reserveonderdelen en artikelen met een hoog volume hebben zeer verschillende vraagpatronen.) Hoe kiest u het prognosemodel? Is dit proces geautomatiseerd? Hoe vaak wordt de modelkeuze heroverwogen? Hoe vaak worden de modelparameters opnieuw berekend? Wat is het proces dat wordt gebruikt om uw aanpak te heroverwegen? Het antwoord documenteert hier hoe de basisprognoses tot stand komen. Eenmaal bepaald, kunt u een analyse uitvoeren om te bepalen of andere prognosemethoden zouden verbeteren nauwkeurigheid van de voorspelling. Als u de nauwkeurigheid van de prognoses niet documenteert en geen analyse van de toegevoegde waarde van de prognose uitvoert, bent u niet in staat om goed te beoordelen of de geproduceerde prognoses de beste zijn die ze kunnen zijn. U loopt kansen mis om het proces te verbeteren, de nauwkeurigheid van prognoses te vergroten en het bedrijf te informeren over welk type prognosefout normaal is en moet worden verwacht.

5. Hoe gebruik je veiligheidsvoorraad? Merk op dat de vraag niet was: "Gebruikt u veiligheidsvoorraad?" In deze context, en om het simpel te houden, betekent de term "veiligheidsvoorraad" voorraad die wordt gebruikt om voorraad te bufferen tegen variabiliteit van vraag en aanbod. Alle bedrijven gebruiken op de een of andere manier buffermethoden. Er zijn echter enkele uitzonderingen. Misschien bent u een werkplaatsfabrikant die alle onderdelen op bestelling aanschaft en vinden uw klanten het helemaal prima om weken of maanden op u te wachten om materiaal te vinden, te produceren, QA te leveren en te verzenden. Of misschien bent u een grote fabrikant met tonnen koopkracht, zodat uw leveranciers lokale magazijnen opzetten die volledig gevuld zijn en klaar om u vrijwel onmiddellijk van voorraad te voorzien. Als deze beschrijvingen uw bedrijf niet beschrijven, heeft u zeker een soort buffer om u te beschermen tegen variabiliteit in vraag en aanbod. U gebruikt het veld "veiligheidsvoorraad" misschien niet in uw ERP, maar u bent zeker aan het bufferen.

Er kunnen antwoorden worden gegeven zoals "We gebruiken geen veiligheidsvoorraad omdat we prognoses maken." Helaas, een goede voorspelling zal een 50/50 kans hebben om boven/onder de daadwerkelijke vraag te zijn. Dit betekent dat u 50% van de tijd een voorraad krijgt zonder dat er een veiligheidsvoorraadbuffer aan de prognose is toegevoegd. Voorspellingen zijn alleen perfect als er geen willekeur is. Aangezien er altijd willekeur is, moet u bufferen als u geen bodemloze serviceniveaus wilt hebben.

Als het antwoord niet wordt onthuld, kunt u wat meer onderzoeken hoe de verschillende aanvullingshendels worden gebruikt om mogelijke buffers toe te voegen, wat leidt tot vragen 6 en 7.

6. Verlengt u wel eens de doorlooptijd of bestelt u wel eens eerder dan nodig is?
In ons hypothetische voorbeeld heeft uw leverancier doorgaans 4 weken nodig om te leveren en is redelijk consistent. Maar om u te beschermen tegen stockouts, bestelt uw koper routinematig 6 weken uit in plaats van 4 weken. Het veiligheidsvoorraadveld in uw ERP-systeem staat misschien op nul omdat "we geen veiligheidsvoorraad gebruiken", maar in werkelijkheid heeft de bestelbenadering van de koper zojuist 2 weken buffervoorraad toegevoegd.

7. Vult u de vraagprognose in?
In ons voorbeeld verwacht de planner 10 eenheden per maand te verbruiken, maar "voor het geval dat" een prognose van 20 per maand invoert. Het veiligheidsvoorraadveld in het MRP-systeem is blanco gelaten, maar de nu vermomde buffervoorraad is de vraagprognose binnengesmokkeld. Dit is een fout die 'voorspellingsbias' introduceert. Niet alleen zullen uw prognoses minder nauwkeurig zijn, maar als er geen rekening wordt gehouden met de vertekening en de veiligheidsvoorraad wordt toegevoegd door andere afdelingen, zult u te veel bevoorraden.

Het ad-hockarakter van de bovenstaande benaderingen verergert de problemen door geen rekening te houden met de daadwerkelijke vraag of het aanbod variabiliteit van het artikel. De planner kan bijvoorbeeld gewoon een vuistregel maken die de doorlooptijdprognose voor belangrijke artikelen verdubbelt. Eén maat past niet allemaal als het gaat om voorraadbeheer. Deze benadering zal de voorspelbare artikelen substantieel overbevoorraden, terwijl de periodiek gevraagde artikelen substantieel onderbezet zijn. Jij kunt lezen "Pas op voor eenvoudige vuistregels voor voorraadbeheer” om meer te weten te komen over waarom dit soort aanpak zo kostbaar is.

De ad-hoc aard van de benaderingen negeert ook wat er gebeurt als het bedrijf wordt geconfronteerd met een enorme overstock of stock out. Bij het proberen te begrijpen wat er is gebeurd, zal het vermelde beleid worden onderzocht. In het geval van een overstock zal het systeem een veiligheidsvoorraad nul tonen. De bedrijfsleiders zullen aannemen dat ze geen veiligheidsvoorraad bij zich hebben, hun hoofd krabben en uiteindelijk de voorspelling de schuld geven, verklaren "Ons bedrijf kan niet worden voorspeld" en strompelen verder. Ze kunnen de leverancier zelfs de schuld geven voor het te vroeg verzenden en ervoor zorgen dat ze meer vasthouden dan nodig is. In het geval dat de voorraad op is, denken ze dat ze niet genoeg op voorraad hebben en voegen ze willekeurig meer voorraad toe aan veel items, zonder zich te realiseren dat er in feite veel extra veiligheidsvoorraad in het proces is ingebakken. Dit maakt het waarschijnlijker dat voorraden in de toekomst moeten worden afgeschreven.

8. Wat is de exacte inventaristerminologie die wordt gebruikt? Definieer wat u bedoelt met veiligheidsvoorraad, Min, bestelpunt, EOQ, enz. Hoewel er standaard technische definities het is mogelijk dat er iets anders is, en miscommunicatie zal hier problematisch zijn. Sommige bedrijven verwijzen bijvoorbeeld naar Min als de hoeveelheid voorraad die nodig is om aan de doorlooptijdvraag te voldoen, terwijl sommigen Min definiëren als inclusief zowel doorlooptijdvraag als veiligheidsvoorraad om te bufferen tegen vraagvariabiliteit. Anderen kunnen de minimale bestelhoeveelheid betekenen.

9. Is de aanwezige voorraad in overeenstemming met het beleid? Wanneer uw detectivewerk is voltooid en alles is gedocumenteerd, opent u uw spreadsheet of ERP-systeem en bekijkt u de beschikbare hoeveelheid. Het zou min of meer in overeenstemming moeten zijn met uw planningsparameters (dwz als Min/Max 20/40 is en de typische doorlooptijdvraag 10 is, dan zou u op elk moment ongeveer 10 tot 40 eenheden bij de hand moeten hebben. Verrassend genoeg, voor veel bedrijven is er vaak een enorme inconsistentie. We hebben situaties waargenomen waarin de min/max-instelling 20/40 is, maar de voorhanden voorraad 300+ is. Dit geeft aan dat het beleid dat is voorgeschreven gewoon niet wordt gevolgd. Dat is een groter probleem.

10. Wat ga je nu doen?

Vraagprognoses en voorraadopslagbeleid moeten goed gedefinieerde processen zijn die door alle betrokkenen worden begrepen en geaccepteerd.  Er zou nul mysterie moeten zijn.

Om dit goed te doen, moeten de vraag- en aanbodvariabiliteit worden geanalyseerd en gebruikt om de juiste niveaus van veiligheidsvoorraad te berekenen. Buffers toevoegen zonder een impliciet begrip van wat elke extra eenheid buffervoorraad u oplevert in termen van service, is als willekeurig een handvol ingrediënten in een cakerecept gooien. Een kleine verandering in ingrediënten kan een enorme impact hebben op wat er uit de oven komt: de ene hap is te zoet, de volgende te zuur. Zo is het ook met voorraadbeheer. Een beetje extra hier, een beetje minder daar, en al snel zit je met kostbare overtollige voorraad in sommige gebieden, pijnlijke tekorten in andere, geen idee hoe je daar bent gekomen, en met weinig begeleiding om dingen beter te maken.

Modern Inventory optimization en software voor vraagplanning met zijn geavanceerde analyses en sterke basis in prognoseanalyse kan veel helpen bij dit probleem. Maar zelfs de beste software helpt niet als deze inconsistent wordt gebruikt.

Laat een reactie achter

gerelateerde berichten

You Need to Team up with the Algorithms

Je moet samenwerken met de algoritmen

Dit artikel gaat over de echte kracht die voortkomt uit de samenwerking tussen u en onze software die binnen handbereik plaatsvindt. We schrijven vaak over de software zelf en wat er ‘onder de motorkap’ gebeurt. Deze keer is het onderwerp hoe je het beste met de software kunt samenwerken.

Top Differences Between Inventory Planning for Finished Goods and for MRO and Spare Parts

Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen

In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren.

recente berichten

  • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
    In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
  • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
    De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
  • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
    Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
  • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
    Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
  • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
    Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
      In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
    • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
      De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
    • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
    • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

      De gemiddelde maandelijkse vraag is 20 stuks en de doorlooptijd is 90 dagen Wanneer moet u meer bestellen? Cloud computing-bedrijven met unieke server- en hardwareonderdelen, e-commerce, online retailers, leveranciers van thuis- en kantoorbenodigdheden, meubilair op locatie, energiebedrijven, intensief onderhoud van bedrijfsmiddelen of opslag voor watervoorzieningsbedrijven hebben hun activiteit tijdens de pandemie opgevoerd. Garages die auto-onderdelen en vrachtwagenonderdelen verkopen, farmaceutische producten, producenten van gezondheidszorg of medische benodigdheden en leveranciers van veiligheidsproducten hebben te maken met een toenemende vraag. Bezorgservicebedrijven, schoonmaakdiensten, slijterijen en magazijnen voor conserven of potten, woonwinkels, tuinleveranciers, tuinonderhoudsbedrijven, hardware-, keuken- en bakbenodigdhedenwinkels, leveranciers van woonmeubelen met een grote vraag worden geconfronteerd met voorraadtekorten, lange doorlooptijden, voorraad tekortkosten, hogere bedrijfskosten en bestelkosten.