De slimme voorspeller

Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Om de efficiëntievoordelen van prognoses te benutten, hebt u de meest nauwkeurige prognoses nodig: prognoses die zijn gebaseerd op de meest geschikte historische gegevens. De meeste discussies over dit probleem richten zich meestal op de voordelen van het gebruik van vraag versus verzendgeschiedenis - en ik zal hier later op ingaan. Maar laten we het eerst hebben over het gebruik van netto- versus brutogegevens.

Netto versus bruto geschiedenis

Veel planners zijn geneigd om netto-omzetgegevens te gebruiken om hun prognoses te maken. Systemen die verkopen volgen, registreren transacties wanneer ze plaatsvinden en aggregeren de resultaten in wekelijkse of maandelijkse periodieke totalen. In sommige gevallen worden geretourneerde aankopen in verkooprecords als negatieve verkopen verantwoord en wordt een nettototaal berekend. Deze nettocijfers, die vaak echte verkooppatronen maskeren, worden ingevoerd in het prognosesysteem. De gebruikte historische gegevens geven eigenlijk een verkeerd beeld van wat de klant wilde en wanneer hij het wilde. Dit wordt meegenomen in de prognose, met minder dan optimale resultaten.

Stel dat uw verkoopgegevens worden samengevoegd tot maandelijkse totalen. Als er gebruik wordt gemaakt van netto maandcijfers, en de retouren vinden plaats in dezelfde maand als waarin ze zijn gekocht, geen probleem. De netto-activiteit voor de maand weerspiegelt de werkelijke vraag. Maar wat als het product drie of vier maanden na aankoop wordt geretourneerd, zoals vaak gebeurt? De nettocijfers zijn een onderschatting van de interesse in het product voor de maand waarin het rendement wordt geteld, en (het lijkt erop) een overschatting van de vraag voor de maand van de eerste verkoop. Op deze manier de productvraag op het verkeerde moment weergeven, verstoort het vermogen van het voorspellingssysteem om het patroon (of het ontbreken daarvan) in de gegevens correct te identificeren.

Aangezien u bestellingen uitvoert zoals u ze ontvangt, zult u de verzending nauwelijks weigeren omdat u denkt dat ze het product binnen een paar maanden kunnen retourneren. Klanten zouden daar niet voor staan. Dus u wilt natuurlijk weten dat een dergelijke vraag waarschijnlijk zal optreden. Als de bestellingen gaan komen, heb je voorraad nodig in je voorraad om aan de vraag te voldoen, ongeacht latere retouren. Het gebruik van nettocijfers is in deze situaties niet de beste praktijk.

In de meeste gevallen moeten gegevens die worden gebruikt bij het opstellen van prognoses gebaseerd zijn op brutocijfers. Rendementen kunnen worden voorspeld als een afzonderlijke variabele en worden gebruikt als een bron van inkomend aanbod. Dit zal resulteren in minder onnodige bestellingen van nieuwe voorraad. Uiteindelijk legt deze aanpak de ware patronen in de gegevens beter vast: de kern van prognoses.

Verzend- versus vraaggegevens

Een tweede belangrijk onderscheid met betrekking tot historische gegevens lijkt contra-intuïtief. Voorspellers worden bijna altijd aangemoedigd om vraaggegevens te gebruiken, omdat wordt aangenomen dat deze beter weergeven wat de klant wilde en wanneer. Wanneer u echter de keuze heeft, kan het soms slimmer zijn om verzendgegevens te gebruiken.

Een leidend principe is om rekening te houden met de nauwkeurigheid van de gegevens. In de meeste bedrijven geven de verzendgegevens precies weer wat er is verzonden, terwijl de vraaggegevens vaak worden geplaagd door onnauwkeurigheden. Hier zijn een paar voorbeelden:

Klanten kunnen bijvoorbeeld weten dat u hun bestelling niet kunt uitvoeren. In dat geval kunnen ze afzien van het plaatsen van de bestelling en wachten totdat ze denken dat je voorraad bij de hand hebt om aan hun behoeften te voldoen. Aan de andere kant kunnen angstige klanten meerdere elektronische bestellingen indienen, bang dat een miscommunicatie zou kunnen voorkomen dat een essentiële bestelling wordt verwerkt. Als ze er zeker van zijn dat één bestelling is geaccepteerd, kunnen ze de extra bestellingen annuleren. Dan is er het geval van een klant die in het verleden stockouts bij u heeft gehad. Ze kunnen de omvang van hun bestellingen vergroten om de kans te maximaliseren dat de voorraad aan hen wordt toegewezen.

Als dergelijke praktijken uw bestelgeschiedenis teisteren, kan het verstandiger zijn om verzendgegevens te gebruiken. Vervolgens kunt u de functie 'geschiedenis aanpassen' van SmartForecasts gebruiken om de verzendgegevens nauwkeurig af te stemmen, zodat deze beter aansluiten bij de vraag. U kunt zeker hetzelfde doen met onnauwkeurige vraaggegevens, maar vaak zal dit veel meer inspanning vergen dan alleen te corrigeren voor voor de hand liggende gevallen waarin de zendingen de ene maand laag zijn en de andere maand hoog vanwege een voorraad-out situatie.

Voordat u een beslissing neemt over het gebruik van verzend- of vraaggegevens, is het belangrijk om te begrijpen hoe bestellingen en retouren in uw systeem worden verwerkt. Praat met uw klantenservicemedewerkers en vraag hen hoe zij deze situaties kunnen verklaren. Geloof het woord van uw IT-afdeling niet. Oefen uw oordeel om de beste resultaten te krijgen.

Het maken van de juiste gegevenskeuzes zal een grote bijdrage leveren aan het bereiken van waardevolle efficiëntieverbeteringen in de toeleveringsketen. Neem de tijd om te lezen De post van Michael Gilliland over dit onderwerp op de blog van het Institute of Business Forecasting and Planning, op demand-planning.com.

Gregory Hartunian is voorzitter van Smart Software en lid van de raad van bestuur. Daarvoor bekleedde hij de functie van Vice President of Sales.

Laat een reactie achter

gerelateerde berichten

Mastering Automatic Forecasting for Time Series Data

Beheersing van automatische prognoses voor tijdreeksgegevens

In deze blog onderzoeken we de automatische prognose voor vraagprojecties in tijdreeksen. Er zijn meerdere methoden om de toekomstige vraag naar een artikel te voorspellen, en dit wordt complex als het om duizenden artikelen gaat, die elk een andere voorspellingstechniek vereisen vanwege hun unieke vraagpatronen.

Forecast-Based Inventory Management for Better Planning

Op prognoses gebaseerd voorraadbeheer voor een betere planning

Op prognoses gebaseerd voorraadbeheer, of MRP-logica (Material Needs Planning), is een methode voor vooruitplanning die bedrijven helpt aan de vraag te voldoen zonder dat er sprake is van over- of ondervoorraad. Door te anticiperen op de vraag en de voorraadniveaus aan te passen, wordt een evenwicht behouden tussen het voldoen aan de behoeften van de klant en het minimaliseren van overtollige voorraadkosten. Deze aanpak optimaliseert de bedrijfsvoering, vermindert verspilling en verbetert de klanttevredenheid.

Leveraging Epicor Kinetic Planning BOMs with Smart IP&O to Forecast Accurately

Gebruikmaken van Epicor Kinetic Planning BOM's met Smart IP&O voor nauwkeurige prognoses

In deze blog onderzoeken we hoe het gebruik van Epicor Kinetic Planning BOM's met Smart IP&O uw benadering van forecasting in een zeer configureerbare productieomgeving kan transformeren. Ontdek hoe Smart, een geavanceerde AI-gestuurde oplossing voor vraagplanning en voorraadoptimalisatie, de complexiteit van het voorspellen van de vraag naar eindproducten kan vereenvoudigen, vooral als het om verwisselbare componenten gaat. Ontdek hoe het plannen van stuklijsten en geavanceerde prognosetechnieken bedrijven in staat stelt nauwkeuriger te anticiperen op de behoeften van klanten, waardoor de operationele efficiëntie wordt gewaarborgd en een voorsprong behouden in een concurrerende markt.

recente berichten

  • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
    In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
  • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
    De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
  • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
    Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
  • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
    Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
  • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
    Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
      In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
    • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
      De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
    • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
    • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]