Prepare su planificación de repuestos para golpes inesperados

¿Sabías que fue Benjamin Franklin quien inventó el pararrayos para proteger los edificios de la caída de rayos? Ahora, no todos los días debemos preocuparnos por la caída de rayos, pero en el impredecible clima empresarial actual, tenemos que preocuparnos por las interrupciones en la cadena de suministro, los largos plazos de entrega, el aumento de las tasas de interés y la demanda volátil. Con todos estos desafíos, nunca ha sido más vital para las organizaciones pronosticar con precisión el uso de piezas, los niveles de existencias y optimizar las políticas de reabastecimiento, como los puntos de pedido, las existencias de seguridad y las cantidades de los pedidos. En este blog, exploraremos cómo las empresas pueden aprovechar soluciones innovadoras como la optimización de inventario y el software de pronóstico de piezas que utilizan algoritmos de aprendizaje automático, pronóstico probabilístico y análisis para mantenerse a la vanguardia y proteger sus cadenas de suministro de impactos inesperados.

Soluciones de planificación de repuestos
La optimización de piezas de repuesto es un aspecto clave de la gestión de la cadena de suministro para muchas industrias. Implica administrar el inventario de piezas de repuesto para garantizar que estén disponibles cuando se necesiten sin tener un exceso de inventario que pueda ocupar capital y espacio. La optimización del inventario de piezas de repuesto es un proceso complejo que requiere una comprensión profunda de los patrones de uso, los plazos de entrega de los proveedores y la importancia de cada pieza para el negocio.

En este blog, nuestro énfasis principal estará en el aspecto crucial de la optimización del inventario y la previsión de la demanda. Sin embargo, otros enfoques destacados a continuación para la optimización de piezas de repuesto, como el mantenimiento predictivo y la impresión 3D, la gestión de datos maestros y la planificación colaborativa, deben investigarse e implementarse según corresponda.

  1. Mantenimiento predictivo: Usar análisis predictivos para anticipar cuándo es probable que una pieza falle y reemplazarla de manera proactiva, en lugar de esperar a que se averíe. Este enfoque puede ayudar a las empresas a reducir el tiempo de inactividad y los costos de mantenimiento, así como a mejorar la eficacia general del equipo.
  2. Impresión 3d: Los avances en la tecnología de impresión 3D están permitiendo a las empresas producir piezas de repuesto bajo demanda, lo que reduce la necesidad de exceso de inventario. Esto no solo ahorra espacio y reduce costos, sino que también garantiza que las piezas estén disponibles cuando se necesiten.
  3. Gestión de datos maestros: Las plataformas de gestión de datos garantizan que los datos de las piezas se identifiquen, cataloguen, limpien y organicen correctamente. Con demasiada frecuencia, las organizaciones de MRO tienen el mismo número de pieza bajo diferentes SKU. Estas piezas duplicadas tienen el mismo propósito, pero requieren diferentes números de SKU para garantizar el cumplimiento normativo o la seguridad. Por ejemplo, es posible que se requiera que una pieza utilizada para respaldar un contrato gubernamental se obtenga de un fabricante estadounidense para cumplir con las regulaciones de "Buy America". Es fundamental que estos números de pieza se identifiquen y consoliden en un solo SKU, cuando sea posible, para mantener bajo control las inversiones en inventario.
  4. Planificación colaborativa: La colaboración con proveedores y clientes para compartir datos, pronósticos y planificar la demanda puede ayudar a las empresas a reducir los plazos de entrega, mejorar la precisión y reducir los niveles de inventario. La previsión desempeña un papel esencial en la colaboración, ya que compartir información sobre las compras, la demanda y el comportamiento de compra garantiza que los proveedores tengan la información que necesitan para garantizar la disponibilidad de existencias para los clientes.

Optimización del Inventario
Abraham Lincoln fue citado una vez diciendo: “Denme seis horas para talar un árbol, y pasaré las primeras cuatro afilando el hacha”? Lincoln sabía que la preparación y la optimización eran clave para el éxito, al igual que las organizaciones necesitan contar con las herramientas adecuadas, como el software de optimización de inventario, para optimizar su cadena de suministro y mantenerse a la vanguardia en el mercado. Con el software de optimización de inventario, las organizaciones pueden mejorar la precisión de sus pronósticos, reducir los costos de inventario, mejorar los niveles de servicio y reducir los plazos de entrega. Lincoln sabía que era necesario afilar el hacha para realizar el trabajo de manera efectiva sin esforzarse demasiado. La optimización del inventario garantiza que los dólares de inventario se asignen de manera efectiva a miles de piezas, lo que ayuda a garantizar los niveles de servicio y minimiza el exceso de existencias.

Las piezas de repuesto juegan un papel decisivo en el mantenimiento de la eficiencia operativa, y la falta de piezas críticas puede provocar tiempos de inactividad y una reducción de la productividad. La naturaleza esporádica de la demanda de piezas de repuesto hace que sea difícil predecir cuándo se requerirá una pieza específica, lo que genera el riesgo de exceso o falta de existencias, lo que puede generar costos para la organización. Además, la gestión de los plazos de entrega de las piezas de repuesto plantea su propio conjunto de desafíos. Algunas partes pueden tener tiempos de entrega prolongados, lo que requiere el mantenimiento de niveles de inventario adecuados para evitar la escasez. Sin embargo, llevar un exceso de inventario puede ser costoso, ocupando capital y espacio de almacenamiento.

Dada la gran cantidad de desafíos que enfrentan los departamentos de gestión de materiales y los planificadores de piezas de repuesto, la planificación de la demanda, los niveles de existencias y la reposición de piezas de repuesto sin una solución eficaz de optimización del inventario es como intentar cortar un árbol con un hacha muy desafilada. Cuanto más afilada sea el hacha, mejor podrá su organización hacer frente a estos desafíos.

El hacha de Smart Software es la más afilada
El software inteligente de optimización de inventario y planificación de la demanda utiliza un enfoque de pronóstico probabilístico empírico único que da como resultado pronósticos precisos de los requisitos de inventario, incluso cuando la demanda es intermitente. Dado que casi 90% de repuestos y piezas de servicio son intermitentes, se requiere una solución precisa para manejar este tipo de demanda. La solución de Smart se patentó en 2001 y recientemente se patentaron innovaciones adicionales en mayo de 2023 (¡anuncios próximamente!). La solución fue premiada como finalista en la Categoría de Innovación Tecnológica APICS por su papel en ayudar a transformar la industria de gestión de recursos.

El papel de la demanda intermitente
La demanda intermitente no se ajusta a una distribución normal simple o en forma de campana que hace que sea imposible pronosticar con precisión con los métodos de pronóstico tradicionales basados en la suavización. Las piezas y artículos con demanda intermitente, también conocida como demanda irregular, volátil, variable o impredecible, tienen muchos valores de volumen cero o bajo intercalados con picos aleatorios de demanda que a menudo son muchas veces mayores que el promedio. Este problema es especialmente frecuente en las empresas que gestionan grandes inventarios de servicio y piezas de repuesto en industrias como la aviación, aeroespacial, suministro y servicios públicos de energía y agua, automoción, gestión de activos pesados, alta tecnología, así como en MRO (mantenimiento, reparación, y Revisión).

Análisis de escenario
La tecnología patentada y galardonada de Smart genera rápidamente decenas de miles de escenarios posibles de secuencias de demanda futuras y valores de demanda acumulados durante el tiempo de entrega de un artículo. Estos escenarios son estadísticamente similares a los datos observados del artículo y capturan los detalles relevantes de la demanda intermitente sin depender de las suposiciones comúnmente hechas sobre la naturaleza de las distribuciones de la demanda por los métodos de pronóstico tradicionales. El resultado es un pronóstico muy preciso de la distribución completa de la demanda acumulada durante el tiempo de entrega de un artículo. La conclusión es que con la información que brindan estas distribuciones de demanda, las empresas pueden planificar fácilmente los requisitos de inventario de nivel de servicio y existencias de seguridad para miles de artículos demandados intermitentemente con una precisión de casi 100%.

Beneficios
La implementación de soluciones innovadoras de Smart Software, como SmartForecasts para pronósticos estadísticos, Demand Planner para la planificación de piezas por consenso e Inventory Optimization para desarrollar controladores de reabastecimiento precisos, como niveles mínimos/máximos y de existencias de seguridad, brindará a los ejecutivos y planificadores con visión de futuro un mejor control sobre sus operaciones de la organización. Se traducirá en los siguientes beneficios:

  1. Precisión de pronóstico mejorada: La previsión precisa de la demanda es fundamental para cualquier organización que se ocupe de la gestión del inventario de repuestos. El software de optimización de inventario utiliza algoritmos sofisticados para analizar patrones de uso históricos, identificar tendencias y pronosticar la demanda futura con un alto grado de precisión. Con este nivel de precisión en la previsión, las organizaciones pueden evitar el riesgo de exceso o escasez de existencias en su inventario de piezas de repuesto.
  2. Menores costos de inventario: Uno de los principales desafíos que enfrentan los líderes de la cadena de suministro cuando se trata de la gestión del inventario de repuestos es el costo asociado con el mantenimiento de un stock óptimo de repuestos en todo momento. Al optimizar los niveles de inventario utilizando sistemas tecnológicos modernos como la inteligencia artificial (IA), el aprendizaje automático (ML) y el análisis predictivo, las organizaciones pueden reducir los costos de mantenimiento y garantizar que tengan las existencias adecuadas disponibles cuando sea necesario.
  3. Niveles de servicio mejorados: Cuando se trata de servicios de reparación y mantenimiento, ¡el tiempo es oro! El tiempo de inactividad debido a la falta de disponibilidad de repuestos críticos puede resultar en una pérdida de productividad e ingresos para las empresas en todas las industrias, como plantas de fabricación, instalaciones de generación de energía o centros de datos que administran equipos de infraestructura de TI. La optimización de su inventario de piezas de repuesto garantiza que siempre tenga la cantidad correcta a mano, lo que reduce el tiempo de inactividad causado por la espera de las entregas de los proveedores.
  4. Plazos de entrega reducidos: Otro beneficio que se obtiene de la previsión precisa de la demanda a través de las modernas tecnologías de almacenamiento es la reducción del tiempo de entrega, lo que conduce a una mejor satisfacción del cliente, ya que los clientes recibirán sus pedidos más rápido que antes, lo que mejorará la lealtad a la marca. Por lo tanto, la adopción de nuevas estrategias impulsadas por herramientas AI/ML crea valor dentro de las operaciones de la cadena de suministro, lo que conduce a mayores ganancias de eficiencia, no solo reduce el costo del reduccionismo, sino que también agiliza los procesos relacionados con la programación de la producción, la planificación del transporte logístico, entre otros.

Conclusión
Mediante la utilización de software de optimización de inventario y planificación de la demanda, las organizaciones pueden superar varios desafíos, como interrupciones en la cadena de suministro, aumento de las tasas de interés y demanda volátil. Esto les permite reducir los costos asociados con el exceso de espacio de almacenamiento y los artículos de inventario obsoletos. Al aprovechar algoritmos sofisticados, el software de optimización de inventario mejora la precisión de los pronósticos, lo que garantiza que las organizaciones puedan evitar el exceso o la escasez de existencias en su inventario de repuestos. Además, ayuda a reducir los costos de inventario al optimizar los niveles y aprovechar tecnologías como la inteligencia artificial (AI), el aprendizaje automático (ML) y el análisis predictivo. Los niveles de servicio mejorados se logran cuando las organizaciones tienen la cantidad correcta de piezas de repuesto fácilmente disponibles, lo que reduce el tiempo de inactividad causado por la espera de las entregas. Además, la previsión precisa de la demanda reduce los plazos de entrega, mejora la satisfacción del cliente y fomenta la lealtad a la marca. La adopción de tales estrategias impulsadas por herramientas AI/ML no solo reduce los costos, sino que también agiliza los procesos, incluida la programación de la producción y la planificación del transporte logístico, lo que en última instancia aumenta las ganancias de eficiencia dentro de la cadena de suministro.

 

Informe:

Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

 

Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

 

    Por qué las curvas de compensación de piezas de repuesto son de misión crítica para la planificación de piezas

    Apuesto a que sus equipos de mantenimiento y reparación estarían de acuerdo con incurrir en mayores riesgos de falta de existencias uno alguno piezas de repuesto si supieran que los ahorros de reducción de inventario se utilizarían para distribuir la inversión en inventario de manera más efectiva para otro repuestos y aumentar los niveles generales de servicio.

    Duplicaré que su equipo de finanzas, a pesar de que siempre se enfrenta al desafío de reducir los costos, respaldaría un aumento saludable del inventario si pudiera ver claramente que los ingresos se benefician de un mayor tiempo de actividad, menos agilidades y mejoras en el nivel de servicio claramente superan los costos de inventario adicionales y riesgo

    La curva de compensación de piezas de repuesto permitirá a los equipos de planificación de repuestos comunicar adecuadamente los riesgos y costos de cada decisión de inventario. Es una misión crítica para la planificación de piezas y la única forma de ajustar los parámetros de almacenamiento de forma proactiva y precisa para cada pieza. Sin él, los planificadores, para todos los efectos, están "planificando" con los ojos vendados porque no podrán comunicar las verdaderas compensaciones asociadas con las decisiones de almacenamiento.

    Por ejemplo, si se recomienda un aumento propuesto a los niveles mínimos/máximos de un importante grupo de productos básicos de repuestos, ¿cómo sabe si el aumento es demasiado alto, demasiado bajo o correcto? ¿Cómo se puede afinar el cambio para miles de repuestos? No lo harás y no puedes. Su toma de decisiones de inventario se basará en decisiones reactivas, viscerales y generales que causan que los niveles de servicio se resientan y los costos de inventario se disparen.

    Entonces, ¿qué es exactamente una curva de compensación de repuestos?

    Es una predicción numérica basada en hechos que detalla cómo los cambios en los niveles de existencias influirán en el valor del inventario, los costos de mantenimiento y los niveles de servicio. Por cada cambio de unidad en el nivel de inventario hay un costo y un beneficio. La curva de compensación de repuestos identifica estos costos y beneficios a través de diferentes niveles de existencias. Permite a los planificadores descubrir el nivel de existencias que mejor equilibra los costes y los beneficios de cada artículo individual.

    Aquí hay dos ejemplos simplificados. En la Figura 1, la curva de compensación de repuestos muestra cómo cambia el nivel de servicio (probabilidad de no agotarse) según el nivel de pedido. Cuanto mayor sea el nivel de reorden, menor será el riesgo de falta de existencias. Es fundamental saber cuánto servicio está ganando dada la inversión en inventario. Aquí puede justificar que un aumento de inventario de un punto de pedido de 35 a 45 bien vale la pena la inversión de 10 unidades adicionales de stock porque los niveles de servicio saltan de poco menos de 70% a 90%, lo que reduce el riesgo de falta de existencias para la pieza de repuesto de 30% a 10%!

     

    Cost vs Service Levels for inventory planning

    Figura 1: Costo versus nivel de servicio

     

    Size of Inventory vs Service Levels for MRO

    Figura 2: Nivel de servicio frente al tamaño del inventario

    En este ejemplo (Figura 2), la curva de compensación expone un problema común con el inventario de repuestos. A menudo, los niveles de existencias son tan altos que generan rendimientos negativos. Después de una cierta cantidad de existencias, cada unidad adicional de existencias no compra más beneficios en forma de un mayor nivel de servicio. Las disminuciones de inventario pueden justificarse cuando está claro que el nivel de existencias ha superado con creces el punto de rendimientos decrecientes. Una curva de compensación precisa expondrá el punto en el que ya no es ventajoso agregar stock.

    Mediante el aprovechamiento #pronóstico probabilístico para impulsar la planificación de piezas, puede comunicar estas compensaciones con precisión, hacerlo a escala en cientos de miles de piezas, evitar malas decisiones de inventario y equilibrar los niveles de servicio y los costos. En Smart Software, nos especializamos en ayudar a los planificadores de repuestos, directores de administración de materiales y ejecutivos financieros que administran MRO, repuestos y repuestos para comprender y explotar estas relaciones.

     

    Soluciones de software para la planificación de repuestos

    El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

    Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

     

     

    Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

     

    Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

     

      Cómo Pronosticar Repuestos con Bajo Uso

      ¿Qué hace cuando pronostica un artículo con demanda intermitente, como una pieza de repuesto, con una demanda promedio de menos de una unidad por mes? La mayor parte del tiempo la demanda es cero, pero la parte es significativa en un sentido comercial; no se puede ignorar y se debe pronosticar para asegurarse de tener el stock adecuado.

      Tus elecciones tienden a centrarse en algunas opciones:

      Opción 1: Redondea a 1 cada mes, por lo que tu pronóstico anual es 12.

      Opción 2: Redondee a 0 cada mes, de modo que su pronóstico anual sea 0.

      Opción 3: método de pronóstico "igual que el mismo mes del año pasado" para que el pronóstico coincida con el real del año pasado.

      Hay desventajas obvias para cada opción y no mucha ventaja para ninguna de ellas. La opción 1 a menudo resulta en un sobre pronóstico significativo. La opción 2 a menudo da como resultado una previsión significativamente inferior a la esperada. La opción 3 da como resultado un pronóstico que casi garantiza que perderá significativamente el real, ya que no es probable que la demanda aumente exactamente en el mismo período. Si DEBE pronosticar el artículo, normalmente recomendaríamos la opción 3, ya que es la respuesta más probable que el resto de la empresa entendería. 

      Pero una mejor manera es no pronosticarlo en absoluto en el sentido habitual y, en su lugar, utilizar un "punto de reorden predictivo" relacionado con el nivel de servicio deseado. Para calcular un punto de reorden predictivo, puede usar el algoritmo de arranque de Markov patentado de Smart Software para simular todas las demandas posibles que podrían ocurrir durante el tiempo de entrega, luego identifique el punto de reorden que producirá su nivel de servicio objetivo.

      Luego, puede configurar su sistema ERP para pedir más cuando el inventario disponible supere el punto de reorden en lugar de cuando se pronostique que llegará a cero (o cualquier reserva de existencias de seguridad que se ingrese). 

      Esto hace que los pedidos tengan más sentido común sin las suposiciones innecesarias que se requieren para pronosticar una pieza de bajo volumen demandada intermitentemente.

       

      Soluciones de software para la planificación de repuestos

      El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

      Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

       

       

      Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

       

      Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

       

        Repuestos, repuestos OEM, rotables y repuestos inmediatos

        ¿Cuál es la diferencia y por qué es importante para la planificación del inventario?

        Aquellos que son nuevos en el juego de planificación de piezas a menudo se confunden con las muchas variaciones en los nombres de las piezas. Este blog señala distinciones que tienen o no importancia operativa para alguien que administra una flota de piezas de repuesto y cómo esas diferencias afectan la planificación del inventario.

        Por ejemplo, ¿cuál es la diferencia entre piezas de "repuesto" y piezas de "reemplazo"? En este caso, la diferencia es su origen. Se compraría una pieza de repuesto al fabricante del equipo, mientras que una pieza de repuesto se compraría a otra empresa. Para alguien que administra una flota de repuestos, la diferencia sería dos entradas diferentes en su base de datos de piezas: la fuente sería diferente y el precio unitario probablemente sería diferente. Es posible que también haya una diferencia en la vida útil de las piezas de las dos fuentes. Las piezas "OEM" pueden ser más duraderas que las piezas más baratas del "mercado de accesorios". (Ahora tenemos cuatro términos diferentes que describen estas piezas). Estas distinciones serían importantes para optimizar un inventario de repuestos. El software que calcula los puntos de pedido óptimos y las cantidades de los pedidos llegaría a diferentes respuestas para piezas con diferentes costos unitarios y diferentes tasas de reemplazo.

        Quizás la distinción más grande es entre partes "consumibles" y "reparables" o "giratorias". La distinción clave entre ellos es su costo. Es una tontería tratar de reparar un tornillo desgastado; simplemente tíralo y usa otro. Pero también es una tontería tirar un componente de $50,000 si se puede reparar por $5,000. Optimizar la gestión de inventario para flotas de cada tipo de pieza requiere matemáticas muy diferentes. Con los consumibles, las partes pueden considerarse anónimas e intercambiables. Con los “giratorios”, cada parte debe modelarse esencialmente de forma individual. Tratamos a cada uno como un ciclo a través de estados de "operativo", "en reparación" y "en espera/repuesto". Las decisiones sobre piezas reparables a menudo se manejan mediante un proceso de presupuesto de capital, y la pregunta analítica más destacada es "¿cuál debería ser el tamaño de nuestro grupo de repuestos?"

        Hay otras distinciones que se pueden hacer entre las partes. La criticidad es un atributo importante. Las consecuencias de la falla de una pieza pueden variar desde “podemos tomarnos nuestro tiempo para obtener un reemplazo” hasta “esto es una emergencia; que esas máquinas vuelvan a funcionar pronto”. Al determinar cómo administrar las piezas, siempre debemos lograr un equilibrio entre los beneficios de tener un mayor stock de piezas y los costos en dólares. La criticidad cambia el equilibrio hacia ir a lo seguro con inventarios más grandes. A su vez, esto dicta objetivos de planificación más altos para las métricas de disponibilidad de piezas, como los niveles de servicio y las tasas de llenado, lo que conducirá a mayores puntos de pedido y/o cantidades de pedidos.

        Si buscas en Google “tipos de repuestos”, descubrirás otras clasificaciones y distinciones. Desde nuestra perspectiva en Smart Software, las palabras importan menos que los números asociados con las piezas: costos unitarios, tiempo medio antes de la falla, tiempo medio de reparación y otros aportes técnicos a nuestros productos que resuelven cómo administrar las piezas para obtener el máximo beneficio.

         

        Soluciones de software para la planificación de repuestos

        El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

        Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

         

         

        Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

         

        Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

         

          Las 3 razones principales por las que su hoja de cálculo no funcionará para optimizar los puntos de pedido de piezas de repuesto

          A menudo nos encontramos con métodos de planificación de puntos de pedido basados en Excel. En esta publicación, detallamos un enfoque que utilizó un cliente antes de continuar con Smart. Describimos cómo funcionaba su hoja de cálculo, los enfoques estadísticos en los que se basaba, los pasos que los planificadores siguieron en cada ciclo de planificación y sus motivaciones declaradas para usar (y realmente gustarles) esta hoja de cálculo desarrollada internamente.

          Su proceso mensual consistía en actualizar un nuevo mes de datos reales en la "hoja de puntos de pedido". Una fórmula incrustada volvió a calcular el punto de pedido (ROP) y el nivel de pedido hasta (máx.). Funcionó así:

          • ROP = Demanda LT + Stock de Seguridad
          • Demanda LT = demanda diaria promedio x días de tiempo de entrega (se supone constante para simplificar las cosas)
          • Inventario de seguridad para piezas con plazos de entrega prolongados = Desviación estándar x 2,0
          • Stock de seguridad para piezas con plazos de entrega cortos = Desviación estándar x 1,2
          • Max = ROP + cantidad mínima de pedido dictada por el proveedor

          Los promedios históricos y las desviaciones estándar utilizaron 52 semanas de historial continuo (es decir, la semana más nueva reemplazó a la semana más antigua en cada período). La desviación estándar de la demanda se calculó utilizando la función "stdevp" en Excel.

          Cada mes, se volvió a calcular un nuevo ROP. Tanto la demanda promedio como la desviación estándar fueron modificadas por la demanda de la nueva semana, que a su vez actualizó la ROP.

          El ROP predeterminado siempre se basa en la lógica anterior. Sin embargo, los planificadores harían cambios bajo ciertas condiciones:

          1. Los planificadores aumentarían el Min para piezas económicas para reducir el riesgo de recibir un golpe de entrega a tiempo (OTD) en una pieza económica.

          2. La hoja de Excel identificó cualquier parte con una ROP recién calculada que era ± 20% diferente de la ROP actual.

          3. Los planificadores revisaron las piezas que superaban el umbral de excepción, propusieron cambios y obtuvieron la aprobación de un gerente.

          4. Los planificadores revisaron los elementos con aciertos OTD y aumentaron el ROP en función de su intuición. Los planificadores continuaron monitoreando esas partes durante varios períodos y bajaron el ROP cuando sintieron que era seguro.

          5. Una vez que se determinaron el ROP y la cantidad máxima, el archivo de resultados revisados se envió a TI, quien lo cargó en su ERP.

          6. El sistema ERP luego gestionaba el reabastecimiento diario y la gestión de pedidos.

          Objetivamente, este fue quizás un enfoque superior al promedio para la gestión de inventario. Por ejemplo, algunas empresas desconocen el vínculo entre la variabilidad de la demanda y los requisitos de existencias de seguridad y confían exclusivamente en la regla de los métodos o la intuición. Sin embargo, hay problemas con su enfoque:

          1. Actualizaciones manuales de datos
          Las hojas de cálculo requerían actualización manual. Para volver a calcular, se requerían varios pasos, cada uno con su propia dependencia. Primero, era necesario ejecutar un volcado de datos desde el sistema ERP. En segundo lugar, un planificador necesitaría abrir la hoja de cálculo y revisarla para asegurarse de que los datos se hayan importado correctamente. En tercer lugar, necesitaban revisar el resultado para asegurarse de que se calculó como se esperaba. En cuarto lugar, se requerían pasos manuales para devolver los resultados al sistema ERP.

          2. Talla única para todas las existencias de seguridad
          O en este caso, “una de dos tallas sirve para todos”. La elección de utilizar una desviación estándar de 2x y 1,2x para artículos con plazos de entrega largos y cortos, respectivamente, equivale a niveles de servicio de 97,71 TP3T y 88,41 TP3T. Este es un gran problema ya que es lógico que no todas las partes de cada grupo requieran el mismo nivel de servicio. Algunas partes tendrán un mayor dolor por falta de existencias que otras y viceversa. Por lo tanto, los niveles de servicio deben especificarse en consecuencia y ser proporcionales a la importancia del artículo. Descubrimos que estaban experimentando golpes OTD en aproximadamente 20% de sus piezas de repuesto críticas, lo que requería anulaciones manuales del ROP. La causa raíz fue que en todos los artículos con plazos de entrega cortos estaban planificando un objetivo de nivel de servicio de 88.4%. Por lo tanto, lo mejor que pudieron haber obtenido fue almacenar 12% de ese momento, incluso si "según el plan". Hubiera sido mejor planificar objetivos de nivel de servicio de acuerdo con la importancia de la pieza.

          3. El inventario de seguridad es inexacto.  Los artículos que se planean para esta empresa son repuestos para apoyar equipos de diagnóstico. La demanda en la mayoría de estas partes es muy intermitente y esporádica. Por lo tanto, la elección de usar un promedio para calcular la demanda de tiempo de entrega no era irrazonable si acepta la necesidad de ignorar la variabilidad en los tiempos de entrega. Sin embargo, la confianza en un Distribución normal determinar el inventario de seguridad fue un gran error que resultó en inventarios de seguridad inexactos. La empresa declaró que sus niveles de servicio para artículos con plazos de entrega prolongados se encontraban en el rango de 90% en comparación con su objetivo de 97,7%, y que compensaron la diferencia con los envíos urgentes. Los niveles de servicio logrados para artículos con plazos de entrega más cortos fueron de aproximadamente 80%, a pesar de que el objetivo era 88,4%. Calcularon las existencias de seguridad de forma incorrecta porque su demanda no tiene "forma de campana", pero eligieron las existencias de seguridad asumiendo que así era. Esta simplificación da como resultado la falta de objetivos de nivel de servicio, lo que obliga a la revisión manual de muchos elementos que luego deben ser "supervisados manualmente durante varios períodos" por un planificador. ¿No sería mejor asegurarse de que el punto de reorden cumpliera con el nivel de servicio exacto que deseaba desde el principio? Esto garantizaría que alcance sus niveles de servicio y minimice la intervención manual innecesaria.

          Hay un cuarto problema que no está en la lista pero que vale la pena mencionar. La hoja de cálculo no pudo rastrear tendencias o patrones estacionales. Los promedios históricos ignoran la tendencia y la estacionalidad, por lo que la demanda acumulada durante el tiempo de entrega utilizada en el ROP será sustancialmente menos precisa para las piezas de tendencia o estacionales. El equipo de planificación reconoció esto pero no sintió que fuera un problema legítimo, razonando que la mayor parte de la demanda era intermitente y no tenía estacionalidad. Es importante que el modelo detecte la tendencia y la estacionalidad de los datos intermitentes, si existen, pero no encontramos que sus datos exhiban estos patrones. Entonces, acordamos que esto no era un problema. para ellos. Pero a medida que el ritmo de planificación aumenta hasta el punto de que la demanda se reparte a diario, incluso la demanda intermitente muy a menudo resulta tener una estacionalidad de día de la semana y, a veces, de semana del mes. Si no corre a una frecuencia más alta ahora, tenga en cuenta que puede verse obligado a hacerlo pronto para mantenerse al día con una competencia más ágil. En ese momento, el procesamiento basado en hojas de cálculo simplemente no podrá mantenerse al día.

          En conclusión, no use hojas de cálculo. No conducen a análisis hipotéticos significativos, requieren demasiado trabajo y la lógica subyacente debe simplificarse para que el proceso sea lo suficientemente rápido como para que sea útil. En resumen, opte por soluciones especialmente diseñadas. Y asegúrese de que se ejecuten en la nube.

           

          Soluciones de software para la planificación de repuestos

          El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

          Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

           

           

          Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

           

          Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.