¿Qué hace un pronóstico probabilístico?

¿Qué es todo el alboroto en torno al término "pronóstico probabilístico"? ¿Es solo un término de marketing más reciente que algunos proveedores de software y consultores han acuñado para fingir innovación? ¿Hay alguna diferencia tangible real en comparación con las técnicas anteriores de "mejor ajuste"? ¿No son todos los pronósticos probabilísticos de todos modos?

Para responder a esta pregunta, es útil pensar en lo que realmente le dice el pronóstico en términos de probabilidades. Un pronóstico "bueno" debe ser imparcial y, por lo tanto, arrojar una probabilidad de 50/50 de ser mayor o menor que el real. Un pronóstico "malo" generará amortiguadores subjetivos (o deprimirá artificialmente el pronóstico) y dará como resultado una demanda sesgada hacia arriba o hacia abajo. Considere a un vendedor que reduce intencionalmente su pronóstico al no informar las ventas que espera cerrar para ser "conservador". Sus pronósticos tendrán un sesgo de pronóstico negativo ya que los datos reales casi siempre serán más altos de lo que predijeron. Por otro lado, considere un cliente que proporciona un pronóstico inflado a su fabricante. Preocupados por los desabastecimientos, sobrestiman la demanda para asegurar su suministro. Su pronóstico tendrá un sesgo positivo ya que los datos reales casi siempre serán más bajos de lo que predijeron. 

Estos tipos de pronósticos de un número descritos anteriormente son problemáticos. Nos referimos a estas predicciones como "pronósticos puntuales", ya que representan un punto (o una serie de puntos a lo largo del tiempo) en un gráfico de lo que podría suceder en el futuro. No brindan una imagen completa porque para tomar decisiones comerciales efectivas, como determinar cuánto inventario almacenar o la cantidad de empleados disponibles para respaldar la demanda, se requiere información detallada sobre cuánto más bajo o más alto será el real. En otras palabras, necesita las probabilidades de cada posible resultado que podría ocurrir. Entonces, por sí mismo, el pronóstico puntual no es probabilístico.   

Para obtener un pronóstico probabilístico, debe conocer la distribución de las posibles demandas en torno a ese pronóstico. Una vez que calcula esto, el pronóstico se convierte en "probabilidad". La forma en que los sistemas de pronóstico y los profesionales, como planificadores de demanda, analistas de inventario, gerentes de materiales y directores financieros, determinan estas probabilidades es el núcleo de la pregunta: "¿qué hace que un pronóstico sea probabilístico?"     

Distribuciones normales
La mayoría de los pronósticos y los sistemas/software que los producen comienzan con una predicción de la demanda. Luego, calculan el rango de posibles demandas en torno a ese pronóstico al hacer suposiciones teóricas incorrectas sobre la distribución. Si alguna vez usó un "intervalo de confianza" en su software de pronóstico, esto se basa en una distribución de probabilidad alrededor del pronóstico. La forma en que se determina este rango de demanda es asumiendo un tipo particular de distribución. La mayoría de las veces esto significa asumir una forma de campana, también conocida como distribución normal. Cuando la demanda es intermitente, algunos sistemas de optimización de inventario y previsión de la demanda pueden suponer que la demanda tiene forma de Poisson. 

Después de crear el pronóstico, la distribución supuesta se aplica alrededor del pronóstico de demanda y luego tiene su estimación de probabilidades para cada demanda posible, es decir, un "pronóstico probabilístico". Estas estimaciones de la demanda y las probabilidades asociadas se pueden usar para determinar valores extremos o cualquier valor intermedio si se desea. Los valores extremos en los percentiles superiores de la distribución (es decir, 92%, 95%, 99%, etc.) se utilizan con mayor frecuencia como entradas para los modelos de control de inventario. Por ejemplo, los puntos de pedido de piezas de repuesto críticas en una empresa de servicios eléctricos pueden planificarse en función de un nivel de servicio de 99,51 TP3T o incluso superior. Mientras que una pieza de servicio no crítica podría planificarse en un nivel de servicio 85% o 90%.

El problema de hacer suposiciones sobre la distribución es que estas probabilidades se equivocarán. Por ejemplo, si la demanda no se distribuye normalmente pero está forzando una curva normal/en forma de campana en el pronóstico, entonces, ¿cómo es posible que las probabilidades sean incorrectas? Específicamente, es posible que desee saber el nivel de inventario necesario para lograr una probabilidad 99% de no quedarse sin existencias y la distribución normal le indicará que almacene 200 unidades. Pero cuando se compara con la demanda real, descubre que 200 unidades solo llenaron la demanda por completo en 40/50 observaciones. Entonces, en lugar de obtener un nivel de servicio 99%, ¡solo logró un nivel de servicio 80%! Esta es una falla gigantesca que resulta de intentar encajar una clavija cuadrada en un agujero redondo. El error lo habría llevado a tomar una reducción de inventario incorrecta.

Las distribuciones estimadas empíricamente son inteligentes
Para producir un pronóstico probabilístico inteligente (lectura precisa), primero debe estimar la distribución de la demanda empíricamente sin suposiciones ingenuas sobre la forma de la distribución. Smart Software hace esto mediante la ejecución de decenas de miles de escenarios simulados de demanda y tiempo de entrega. Nuestra solución aprovecha técnicas patentadas que incorporan simulación Monte Carlo, Bootstrapping estadístico y otros métodos. Los escenarios están diseñados para simular la incertidumbre y la aleatoriedad de la vida real tanto de la demanda como de los plazos de entrega. Las observaciones históricas reales se utilizan como entradas principales, pero la solución también le dará la opción de simular a partir de valores no observados. Por ejemplo, el hecho de que 100 unidades hayan sido la demanda histórica máxima no significa que esté garantizado alcanzar un máximo de 100 en el futuro. Después de terminar los escenarios, sabrá la probabilidad exacta de cada resultado. El pronóstico “puntual” se convierte entonces en el centro de esa distribución. Cada período futuro a lo largo del tiempo se expresa en términos de la distribución de probabilidad asociada con ese período.

Líderes en Pronóstico Probabilístico
Smart Software, Inc. fue la primera empresa en introducir el arranque estadístico como parte de un sistema de software de pronóstico de demanda disponible comercialmente hace veinte años. En ese momento se nos otorgó una patente de EE. UU. y se nos nombró finalista en los Premios a la Excelencia Corporativa APICS para la Innovación Tecnológica. Nuestro Investigación patrocinada por la NSF que condujo a este y otros descubrimientos fueron fundamentales para avanzar en la previsión y la optimización del inventario. Estamos comprometidos con la innovación continua, y usted puede encuentre más información sobre nuestra patente más reciente aquí.

 

 

Correlación frente a causalidad: ¿es esto relevante para su trabajo?

Fuera del trabajo, es posible que haya escuchado el famoso dicho "Correlación no es causalidad". Puede sonar como una tontería teórica que, aunque involucrada en un Premio Noble reciente en economía, no es relevante para su trabajo como planificador de la demanda. De ser así, es posible que solo tengas razón en parte.

Modelos extrapolativos vs causales

La mayoría de los pronósticos de demanda utilizan modelos extrapolativos. También llamados modelos de series de tiempo, estos pronostican la demanda usando solo los valores pasados de la demanda de un artículo. Los gráficos de valores pasados revelan la tendencia, la estacionalidad y la volatilidad, por lo que son buenos para muchas cosas. Pero existe otro tipo de modelo, los modelos causales, que potencialmente pueden mejorar la precisión de los pronósticos más allá de lo que puede obtener de los modelos extrapolativos.

Los modelos causales aportan más datos de entrada a la tarea de previsión: información sobre supuestos "impulsores" de previsión externos al historial de demanda de un artículo. Los ejemplos de factores causales potencialmente útiles incluyen variables macroeconómicas como la tasa de inflación, la tasa de crecimiento del PIB y los precios de las materias primas. Los ejemplos que no están vinculados a la economía nacional incluyen las tasas de crecimiento específicas de la industria y el gasto publicitario propio y de la competencia. Estas variables generalmente se utilizan como entradas para los modelos de regresión, que son ecuaciones con la demanda como salida y variables causales como entradas.

Pronóstico utilizando modelos causales

Muchas empresas tienen un proceso S&OP que implica una revisión mensual de pronósticos estadísticos (extrapolativos) en los que la gerencia ajusta los pronósticos según su criterio. A menudo, esta es una forma indirecta y subjetiva de trabajar con modelos causales en el proceso sin hacer el modelo de regresión.

Para hacer realmente un modelo de regresión causal, primero debe designar una lista de variables predictoras causales potencialmente útiles. Estos pueden provenir de su experiencia en la materia. Por ejemplo, suponga que fabrica vidrio para ventanas. Gran parte de su vidrio puede terminar en casas nuevas y edificios de oficinas nuevos. Por lo tanto, la cantidad de casas y oficinas nuevas que se están construyendo son variables predictoras plausibles en una ecuación de regresión.

Aquí hay una complicación: si está usando la ecuación para predecir algo, primero debe predecir los predictores. Por ejemplo, las ventas de vidrio del próximo trimestre pueden estar fuertemente relacionadas con el número de viviendas nuevas y edificios de oficinas nuevos el próximo trimestre. Pero, ¿cuántas casas nuevas habrá el próximo trimestre? Ese es su propio problema de pronóstico. Entonces, tiene un modelo de pronóstico potencialmente poderoso, pero tiene trabajo adicional que hacer para que sea utilizable.

Hay una forma de simplificar las cosas: si las variables predictoras son versiones "retrasadas" de sí mismas. Por ejemplo, la cantidad de nuevos permisos de construcción emitidos hace seis meses puede ser un buen predictor de las ventas de vidrio el próximo mes. No tiene que predecir los datos del permiso de construcción, solo tiene que buscarlos.

¿Es una relación causal o simplemente una correlación espuria?

Los modelos causales son el verdadero negocio: hay un mecanismo real que relaciona la variable predictora con la variable predicha. El ejemplo de predecir las ventas de vidrio a partir de los permisos de construcción es un ejemplo.

Una relación de correlación es más dudosa. Existe una asociación estadística que puede o no proporcionar una base sólida para la previsión. Por ejemplo, suponga que vende un producto que atrae más a los holandeses pero no se da cuenta. Los holandeses son, en promedio, las personas más altas de Europa. Si sus ventas están aumentando y la altura promedio de los europeos está aumentando, puede usar esa relación con buenos resultados. Sin embargo, si la proporción de holandeses en la zona euro está disminuyendo mientras que la estatura promedio está aumentando porque la mezcla de hombres versus mujeres se está desplazando hacia los hombres, ¿qué puede salir mal? Esperará que las ventas aumenten porque la estatura promedio está aumentando. Pero sus ventas son principalmente a los holandeses, y su proporción relativa de la población se está reduciendo, por lo que sus ventas realmente van a disminuir. En este caso, la asociación entre las ventas y la altura del cliente es una correlación espuria.

¿Cómo se puede saber la diferencia entre relaciones verdaderas y espurias? El estándar de oro es hacer un experimento científico riguroso. Pero no es probable que esté en condiciones de hacerlo. En cambio, debe confiar en su “modelo mental” personal de cómo funciona su mercado. Si sus corazonadas son correctas, entonces sus modelos causales potenciales se correlacionarán con la demanda y los modelos causales le darán sus frutos, ya sea para complementar los modelos extrapolables o para reemplazarlos.

 

 

 

 

Tres formas de estimar la precisión del pronóstico

La precisión del pronóstico es una métrica clave para juzgar la calidad de su proceso de planificación de la demanda. (No es el único. Otros incluyen oportunidad y costo; Ver 5 consejos de planificación de la demanda para calcular la incertidumbre del pronóstico.) Una vez que tenga los pronósticos, hay varias formas de resumir su precisión, generalmente designados por acrónimos oscuros de tres o cuatro letras como MAPE, RMSE y MAE. Ver Cuatro formas útiles de medir el error de pronóstico para más detalles.

Un tema menos discutido pero más fundamental es cómo se organizan los experimentos computacionales para calcular el error de pronóstico. Esta publicación compara los tres diseños experimentales más importantes. Uno de ellos es de la vieja escuela y esencialmente equivale a hacer trampa. Otro es el patrón oro. Un tercero es un recurso útil que imita el patrón oro y se considera mejor como una predicción de cómo resultará el patrón oro. La figura 1 es una vista esquemática de los tres métodos.

 

Three Ways to Estimate Forecast Accuracy Software Smart

Figura 1: Tres formas de evaluar el error de pronóstico

 

El panel superior de la Figura 1 muestra la forma en que se evaluó el error de pronóstico a principios de la década de 1980 antes de que moviéramos el estado del arte al esquema que se muestra en el panel central. En los viejos tiempos, los pronósticos se evaluaban con los mismos datos que se usaban para calcular los pronósticos. Después de ajustar un modelo a los datos, los errores calculados no eran para los pronósticos del modelo sino para el modelo. encaja. La diferencia es que los pronósticos son para valores futuros, mientras que los ajustes son para valores concurrentes. Por ejemplo, suponga que el modelo de pronóstico es un promedio móvil simple de las tres observaciones más recientes. En el momento 3, el modelo calcula el promedio de las observaciones 1, 2 y 3. Este promedio luego se compararía con el valor observado en el momento 3. Llamamos a esto hacer trampa porque el valor observado en el momento 3 obtuvo un voto sobre el pronóstico. debería ser en el momento 3. Una evaluación de pronóstico real compararía el promedio de las primeras tres observaciones con el valor del próximo, cuarto, observación. De lo contrario, el pronosticador se queda con una evaluación demasiado optimista de la precisión del pronóstico.

El panel inferior de la Figura 1 muestra la mejor manera de evaluar la precisión del pronóstico. En este esquema, todos los datos históricos de demanda se utilizan para ajustar un modelo, que luego se utiliza para pronosticar valores de demanda futuros desconocidos. Eventualmente, el futuro se desarrolla, los verdaderos valores futuros se revelan y se pueden calcular los errores de pronóstico reales. Este es el estándar de oro. Esta información completa el informe de "pronósticos versus datos reales" en nuestro software.

El panel central representa una medida intermedia útil. El problema con el patrón oro es que debe esperar para saber qué tan bien funcionan los métodos de pronóstico elegidos. Este retraso no ayuda cuando se requiere elegir, en el momento, qué método de pronóstico usar para cada artículo. Tampoco proporciona una estimación oportuna de la incertidumbre del pronóstico que experimentará, lo cual es importante para la gestión de riesgos, como la cobertura del pronóstico. El camino intermedio se basa en el análisis de exclusión, que excluye (“excluye”) las observaciones más recientes y le pide al método de pronóstico que haga su trabajo sin conocer esas verdades fundamentales. Luego, los pronósticos basados en el historial de demanda abreviado se pueden comparar con los valores reales retenidos para obtener una evaluación honesta del error de pronóstico.

 

 

Elefantes y canguros ERP frente a la mejor planificación de demanda de su clase

“A pesar de lo que has visto en tus caricaturas de los sábados por la mañana, los elefantes no pueden saltar, y hay una razón simple: no tienen que hacerlo. La mayoría de los animales nerviosos (canguros, monos y ranas) lo hacen principalmente para alejarse de los depredadores”. — Patrick Monahan, Science.org, 27 de enero de 2016.

Ahora sabe por qué las empresas de ERP más grandes no pueden desarrollar las mejores soluciones de alta calidad. Nunca tuvieron que hacerlo, por lo que nunca evolucionaron para innovar fuera de su enfoque principal. 

Sin embargo, a medida que los sistemas ERP se convirtieron en productos básicos, las brechas en su funcionalidad se volvieron imposibles de ignorar. Los jugadores más grandes buscaron proteger su parte de la cartera de los clientes prometiendo desarrollar aplicaciones complementarias innovadoras para llenar todos los espacios en blanco. Pero sin ese “músculo de la innovación”, muchos proyectos fracasaron y se acumularon montañas de deuda técnica.

Las mejores empresas de su clase evolucionaron para innovar y tener una profunda experiencia funcional en verticales específicos. El resultado es que los mejores complementos de ERP son más fáciles de usar, tienen más funciones y ofrecen más valor que los módulos de ERP nativos que reemplazan. 

Si su proveedor de ERP ya se ha asociado con un innovador proveedor de complementos*, ¡ya está listo! Pero si solo puede obtener lo básico de su ERP, opte por un complemento de primera clase que tenga una integración personalizada con el ERP. 

Un excelente lugar para comenzar su búsqueda es buscar complementos de planificación de la demanda de ERP que agreguen inteligencia a la fuerza del ERP, es decir, aquellos que respaldan la optimización del inventario y la previsión de la demanda. Aproveche las herramientas complementarias como las aplicaciones de pronóstico estadístico, planificación de la demanda y optimización de inventario de Smart para desarrollar pronósticos y políticas de almacenamiento que se retroalimentan al sistema ERP para impulsar los pedidos diarios. 

*Las tiendas de aplicaciones son una licencia para que lo mejor de su clase venda en la base de empresas de ERP, siendo sociedades cotizadas.

 

 

 

 

¿Es su proceso de planificación y previsión de la demanda una caja negra?

Hay una cosa que recuerdo casi todos los días en Smart Software que me desconcierta: la mayoría de las empresas no entienden cómo se crean los pronósticos y cómo se determinan las políticas de almacenamiento. Es una caja negra organizativa. Aquí hay un ejemplo de una llamada de ventas reciente:

¿Cómo pronosticas?
Usamos la historia.

¿Cómo usas la historia?
¿Qué quieres decir?

Bueno, puede tomar un promedio del último año, los últimos dos años, promediar los períodos más recientes o usar algún otro tipo de fórmula para generar el pronóstico.
Estoy bastante seguro de que usamos un promedio de los últimos 12 meses.

¿Por qué 12 meses en lugar de una cantidad diferente de historia?
12 meses es una buena cantidad de tiempo porque no se distorsiona con datos más antiguos, pero es lo suficientemente reciente.

¿Cómo sabes que es más preciso que usar 18 meses o alguna otra longitud de la historia?
no lo sabemos Ajustamos las previsiones en función de los comentarios de las ventas.  

¿Sabes si los ajustes hacen que las cosas sean más precisas o menos que si solo usaras el promedio?
No lo sabemos, pero confiamos en que las previsiones están infladas.

¿Qué hacen entonces los compradores de inventario si creen que los números están inflados?
Tienen mucho conocimiento comercial y ajustan sus compras en consecuencia.

Entonces, ¿es justo decir que ignorarían los pronósticos al menos parte del tiempo?
Sí, algunas veces.

¿Cómo deciden los compradores cuándo pedir más? ¿Tiene un punto de pedido o stock de seguridad especificado en su sistema ERP que ayuda a guiar estas decisiones?
Sí, utilizamos un campo de stock de seguridad.

¿Cómo se calcula el stock de seguridad?
Los compradores determinan esto en función de la importancia del artículo, los plazos de entrega y otras consideraciones, como cuántos clientes compran el artículo, la velocidad del artículo, su costo. Llevarán diferentes cantidades de existencias de seguridad dependiendo de esto.

La discusión continuó. La conclusión principal aquí es que cuando rascas justo debajo de la superficie, se revelan muchas más preguntas que respuestas. Esto a menudo significa que el proceso de planificación de inventario y previsión de la demanda es muy subjetivo, varía de planificador a planificador, el resto de la organización no lo entiende bien y es probable que sea reactivo. Como ha descrito Tom Willemain, es “un caos enmascarado por la improvisación”. El proceso “tal como está” debe estar completamente identificado y documentado. Solo entonces se pueden exponer las brechas y se pueden realizar mejoras.   Aquí hay una lista de 10 preguntas que puede hacer que revelará el verdadero proceso de previsión, planificación de la demanda y planificación del inventario de su organización.