Uso de predicciones clave de rendimiento para planificar políticas de almacenamiento

No puedo imaginarme ser un planificador de inventarios en repuestos, distribución o fabricación y tener que crear niveles de stock de seguridad, puntos de reorden y sugerencias de pedidos sin utilizar predicciones clave de rendimiento de niveles de servicio, tasas de cumplimiento y costos de inventario:

Using Key Performance Predictions to Plan Stocking Policies Iventory

La solución de optimización de inventario de Smart genera predicciones de rendimiento clave listas para usar que simulan dinámicamente cómo se desempeñarán sus políticas de almacenamiento actuales frente a posibles demandas futuras. Informa sobre la frecuencia con la que se agotará el stock, el tamaño de los desabastecimientos, el valor de su inventario, los costos de mantenimiento y más. Le permite identificar problemas de forma proactiva antes de que ocurran para poder tomar medidas correctivas en el corto plazo. Puede crear escenarios hipotéticos estableciendo niveles de servicio específicos y modificando los plazos de entrega para poder ver el impacto previsto de estos cambios antes de comprometerse con ellos.

Por ejemplo,

  • Puede ver si una propuesta de cambio del nivel de servicio actual de 90% a un nivel de servicio específico de 97% es financieramente ventajoso.
  • Puede identificar automáticamente si un objetivo de nivel de servicio diferente es aún más rentable para su negocio que el objetivo propuesto.
  • Puede ver exactamente cuánto necesitará para aumentar sus puntos de reorden para adaptarse a un plazo de entrega más largo.

 

Si no equipa a los planificadores con las herramientas adecuadas, se verán obligados a establecer políticas de stock, niveles de stock de seguridad y crear pronósticos de demanda en Excel o con una funcionalidad ERP obsoleta. No saber cómo se prevé que funcionarán las políticas dejará a su empresa mal equipada para asignar adecuadamente el inventario. ¡Contáctenos hoy para saber cómo podemos ayudar!

 

Cada modelo de pronóstico es bueno para lo que está diseñado

​Cuándo se deben utilizar técnicas tradicionales de pronóstico extrapolativo.

Con tanto entusiasmo en torno al nuevo aprendizaje automático (ML) y los métodos de pronóstico probabilístico, los métodos tradicionales de pronóstico estadístico “extrapolativo” o de “series de tiempo” parecen estar recibiendo la espalda. Sin embargo, vale la pena recordar que estas técnicas tradicionales (como el suavizado exponencial simple y doble, los promedios móviles lineales y simples y los modelos de Winters para artículos estacionales) a menudo funcionan bastante bien para datos de mayor volumen. Cada método es bueno para lo que fue diseñado. Simplemente aplique cada uno de manera apropiada, como por ejemplo, no lleve un cuchillo a un tiroteo y no use un martillo neumático cuando un simple martillo de mano será suficiente. 

Los métodos extrapolativos funcionan bien cuando la demanda tiene un gran volumen y no es demasiado granular (es decir, la demanda se clasifica mensual o trimestralmente). También son muy rápidos y no utilizan tantos recursos informáticos como los métodos probabilísticos y de ML. Esto los hace muy accesibles.

¿Son los métodos tradicionales tan precisos como los métodos de pronóstico más nuevos? Smart ha descubierto que los métodos de extrapolación funcionan muy mal cuando la demanda es intermitente. Sin embargo, cuando la demanda es de mayor volumen, solo funcionan ligeramente peor que nuestros nuevos métodos probabilísticos cuando la demanda se divide mensualmente. Dada su accesibilidad, velocidad y el hecho de que va a aplicar anulaciones de pronóstico basadas en el conocimiento empresarial, la diferencia de precisión de referencia aquí no será material.

La ventaja de los modelos más avanzados, como los métodos probabilísticos GEN2 de Smart, es cuando es necesario predecir patrones utilizando grupos más granulares, como datos diarios (o incluso semanales). Esto se debe a que los modelos probabilísticos pueden simular patrones de día de la semana, semana del mes y mes del año que se perderán con técnicas más simples. ¿Alguna vez ha intentado predecir la estacionalidad diaria con un modelo de Winter? Aquí hay una pista: no funcionará y requiere mucha ingeniería.

Los métodos probabilísticos también brindan valor más allá del pronóstico de referencia porque generan escenarios para usar en las pruebas de estrés de los modelos de control de inventario. Esto los hace más apropiados para evaluar, por ejemplo, cómo un cambio en el punto de reorden afectará las probabilidades de desabastecimiento, las tasas de cumplimiento y otros KPI. Al simular miles de posibles demandas durante muchos plazos de entrega (que a su vez se presentan en forma de escenario), tendrá una idea mucho mejor de cómo funcionarán sus políticas de almacenamiento actuales y propuestas. Puede tomar mejores decisiones sobre dónde realizar aumentos y disminuciones de existencias específicas.

Por lo tanto, no deseche lo viejo por lo nuevo todavía. Solo sepa cuándo necesita un martillo y cuándo necesita un martillo neumático.

 

 

 

 

Smart Software ha sido honrado con el Premio a la Excelencia en Marketing ISV de Epicor

Belmont, MA, octubre de 2023 – Smart Software se complace en anunciar que recibió el premio Epicor ISV Marketing Excellence Award, que reconoce el desempeño sobresaliente y las contribuciones de Smart en el impulso de iniciativas, campañas e innovación de marketing exitosas.

Pete Reynolds, vicepresidente de ventas de canales de Smart Software, recibirá el premio a la excelencia en marketing durante la sesión informativa para socios ISV en Ignite. El evento se llevará a cabo en Dallas el lunes 23 de octubre de 2023, de 10:45 am a 12:30 pm en el Gaylord Texan Convention Center.

Greg Hartunian, director ejecutivo de Smart Software, afirmó: “Este reconocimiento es un testimonio de la colaboración entre los equipos de Smart y Epicor. Juntos, hemos creado una gran conciencia sobre los beneficios de una mejor planificación y previsión de inventario. Esperamos ayudar a más clientes el próximo año y llevar nuestra asociación a nuevas alturas”.

Smart Software es Socio Platino de Epicor, la designación más alta en el Programa de Socios ISV.

 

Acerca de Smart Software, Inc.

Fundada en 1981, Smart Software, Inc. es líder en brindar a las empresas soluciones de optimización de inventario, planificación y previsión de la demanda para toda la empresa. Las soluciones de optimización de inventario y previsión de la demanda de Smart Software han ayudado a miles de usuarios en todo el mundo, incluidos clientes como Disney, Arizona Public Service, Ameren y la Cruz Roja Americana. La plataforma de optimización y planificación de inventario de Smart, Smart IP&O, proporciona a los planificadores de la demanda las herramientas para manejar la estacionalidad de las ventas, promociones, productos nuevos y antiguos, jerarquías multidimensionales y piezas de servicio y bienes de capital con demanda intermitente. También proporciona a los administradores de inventario estimaciones precisas del inventario óptimo y del stock de seguridad necesarios para cumplir con los pedidos futuros y lograr los niveles de servicio deseados. Smart Software tiene su sede en Belmont, Massachusetts, y nuestro sitio web es www.smartcorp.com.


Para obtener más información, comuníquese con Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Teléfono: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; Correo electrónico: info@smartcorp.com

 

 

Principales diferencias entre la planificación de inventario para productos terminados y para MRO y repuestos

¿En qué se diferencia la planificación de inventario para mantenimiento, reparación y operaciones (MRO) en comparación con la planificación de inventario en entornos de fabricación y distribución? En resumen, es la naturaleza de los patrones de demanda combinada con la falta de conocimiento empresarial procesable.

Patrones de demanda

Los fabricantes y distribuidores tienden a centrarse en los mejores vendedores que generan la mayor parte de sus ingresos. Estos artículos suelen tener una demanda alta que es relativamente fácil de pronosticar con modelos tradicionales de series de tiempo que aprovechan tendencias y/o estacionales predecibles. Por el contrario, los planificadores de MRO casi siempre se ocupan de una demanda intermitente, que es más escasa, más aleatoria y más difícil de pronosticar. Además, las cantidades fundamentales de interés son diferentes. En última instancia, a los planificadores de MRO les importa más la pregunta “cuándo”: ¿Cuándo se romperá algo? Mientras que los demás se centran en la cuestión de “cuántas” unidades vendidas.

 

Conocimiento del negocio

Los planificadores de fabricación y distribución a menudo pueden contar con la recopilación de comentarios de los clientes y de ventas, que pueden combinarse con métodos estadísticos para mejorar la precisión de los pronósticos. Por otro lado, los rodamientos, engranajes, consumibles y piezas reparables rara vez están dispuestos a compartir sus opiniones. Con MRO, el conocimiento empresarial sobre qué piezas se necesitarán y cuándo simplemente no es confiable (excepto el mantenimiento planificado cuando se reemplazan piezas consumibles de mayor volumen). Por lo tanto, el éxito de la planificación de inventarios MRO llega sólo hasta donde los lleve la capacidad de sus modelos de probabilidad para predecir el uso futuro. Y como la demanda es tan intermitente, no pueden superar Go con los enfoques tradicionales.

 

Métodos para MRO

En la práctica, es común que las empresas de MRO y con uso intensivo de activos administren inventarios recurriendo a niveles mínimos y máximos estáticos basados en múltiplos subjetivos del uso promedio, complementados con anulaciones manuales ocasionales basadas en intuiciones. El proceso se convierte en una mala mezcla de estático y reactivo, con el resultado de que se pierde mucho tiempo y dinero en acelerarlo.

Existen métodos de planificación alternativos basados más en matemáticas y datos, aunque este estilo de planificación es menos común en MRO que en otros dominios. Hay dos enfoques principales para modelar averías de piezas y máquinas: modelos basados en la teoría de la confiabilidad y modelos de “mantenimiento basado en la condición” basados en monitoreo en tiempo real.

 

Modelos de confiabilidad

Los modelos de confiabilidad son los más simples de los dos y requieren menos datos. Suponen que todos los artículos del mismo tipo, digamos una determinada pieza de repuesto, son estadísticamente equivalentes. Su componente clave es una "función de riesgo", que describe el riesgo de fallo en el siguiente breve intervalo de tiempo. La función de riesgo se puede traducir en algo más adecuado para la toma de decisiones: la “función de supervivencia”, que es la probabilidad de que el artículo siga funcionando después de X cantidad de uso (donde X podría expresarse en días, meses, millas, usos, etc.). La Figura 1 muestra una función de riesgo constante y su correspondiente función de supervivencia.

 

MRO and Spare Parts function and its survival function

Figura 1: Función de riesgo constante y su función de supervivencia

 

Una función de riesgo que no cambia implica que sólo los accidentes aleatorios provocarán una falla. Por el contrario, una función de riesgo que aumenta con el tiempo implica que el artículo se está desgastando. Y una función de riesgo decreciente implica que un elemento se está asentando. La Figura 2 muestra una función de riesgo creciente y su correspondiente función de supervivencia.

 

MRO and Spare Parts Increasing hazard function and survival function

Figura 2: Función de riesgo creciente y su función de supervivencia

 

Los modelos de confiabilidad se utilizan a menudo para piezas económicas, como sujetadores mecánicos, cuyo reemplazo puede no ser ni difícil ni costoso (pero aún así puede ser esencial).

 

Mantenimiento bajo condiciones

Los modelos basados en monitoreo en tiempo real se utilizan para respaldar el mantenimiento basado en la condición (CBM) de artículos costosos como los motores a reacción. Estos modelos utilizan datos de sensores integrados en los propios elementos. Estos datos suelen ser complejos y propietarios, al igual que los modelos de probabilidad respaldados por los datos. La ventaja del monitoreo en tiempo real es que se pueden ver los problemas que se avecinan, es decir, el deterioro se hace visible y los pronósticos pueden predecir cuándo el elemento alcanzará su línea roja y, por lo tanto, deberá retirarse del campo de juego. Esto permite un mantenimiento o reemplazo individualizado y proactivo del artículo.

La Figura 3 ilustra el tipo de datos utilizados en CBM. Cada vez que se utiliza el sistema, se contribuye a su desgaste acumulativo. (Sin embargo, tenga en cuenta que a veces el uso puede mejorar el estado de la unidad, como cuando llueve ayuda a mantener fresca una pieza de maquinaria). Puede ver la tendencia general ascendente hacia una línea roja después de la cual la unidad requerirá mantenimiento. Puede extrapolar el desgaste acumulado para estimar cuándo llegará a la línea roja y planificar en consecuencia.

 

MRO and Spare Parts real-time monitoring for condition-based maintenance

Figura 3: Ilustración del monitoreo en tiempo real para el mantenimiento basado en condiciones

 

Que yo sepa, nadie fabrica tales modelos de sus clientes de productos terminados para predecir cuándo y cuánto ordenarán su próximo pedido, tal vez porque los clientes se opondrían a usar monitores cerebrales todo el tiempo. Pero CBM, con su complejo monitoreo y modelado, está ganando popularidad para sistemas que no pueden fallar, como los motores a reacción. Mientras tanto, los modelos clásicos de confiabilidad todavía tienen mucho valor para gestionar grandes flotas de artículos más baratos pero aún esenciales.

 

El enfoque inteligente
Los enfoques de confiabilidad y mantenimiento basados en condiciones anteriores requieren una carga excesiva de recopilación y limpieza de datos que muchas empresas de MRO no pueden manejar. Para esas empresas, Smart ofrece un enfoque que no requiere el desarrollo de modelos de confiabilidad. En cambio, explota los datos de uso de una manera diferente. Aprovecha los modelos basados en probabilidad tanto de uso como de tiempos de entrega de proveedores para simular miles de escenarios posibles para tiempos de entrega de reabastecimiento y demanda. El resultado es una distribución precisa de la demanda y los plazos de entrega para cada pieza consumible que se puede aprovechar para determinar los parámetros óptimos de almacenamiento. La Figura 4 muestra una simulación que comienza con un escenario de demanda de repuestos (gráfico superior) y luego produce un escenario de suministro disponible para opciones particulares de valores mínimos y máximos (línea inferior). Los indicadores clave de rendimiento (KPI) se pueden estimar promediando los resultados de muchas de estas simulaciones.

MRO and Spare Parts simulation of demand and on-hand inventory

Figura 4: Un ejemplo de simulación de demanda de repuestos e inventario disponible

Puede leer sobre el enfoque de Smart para la previsión de repuestos aquí: https://smartcorp.com/wp-content/uploads/2019/10/Probabilistic-Forecasting-for-Intermittent-Demand.pdf

 

 

Soluciones de software para la planificación de repuestos

El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

 

 

Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

 

Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

 

    Creación y explotación de escenarios de pronóstico probabilístico

    Los escenarios probabilísticos son secuencias de puntos de datos generados para representar situaciones potenciales del mundo real. A diferencia de los escenarios de los juegos de guerra u otras simulaciones, se trata de series temporales sintéticas que se utilizan como datos de entrada para los modelos de sistemas o como generadores de intuición para los responsables de la toma de decisiones.

    Por ejemplo, se pueden introducir escenarios de demanda futura de artículos en modelos de simulación Monte Carlo de sistemas de control de inventario, creando así un laboratorio virtual en el que explorar las consecuencias de las decisiones de gestión, como cambiar los puntos de reorden y/o las cantidades de los pedidos. Además, los gráficos de métricas como el inventario disponible o los desabastecimientos pueden ayudar a los planificadores de inventario a profundizar su “sensación” de la aleatoriedad inherente a sus operaciones.

    La Figura 1 muestra escenarios de demanda diaria generados a partir de una única serie de demanda observada registrada durante un año. Tenga en cuenta que el mismo proceso de generación de datos puede “verse muy diferente” en detalle de una muestra a otra. Esto imita la vida real.

    Creating and Exploiting Probabilistic Forecasting Scenarios Sequence 1

    Figura 1: Secuencia de demanda observada y escenarios de demanda derivados de ella.

     

    La Figura 2 muestra dos escenarios de demanda y sus consecuencias para el stock disponible en un sistema de control de inventario particular. La diferencia entre los dos gráficos de inventario ilustra el grado en que la aleatoriedad en la demanda domina el problema. El gráfico superior muestra dos episodios de desabastecimiento, mientras que el gráfico inferior muestra nueve. El promedio de muchos escenarios aclarará los valores típicos de las métricas clave de rendimiento (KPI), como el número promedio de desabastecimientos asociados con cualquier elección de punto de pedido y cantidad de pedido (que son 10 y 25, respectivamente, en la Figura 2).

    Creating and Exploiting Probabilistic Forecasting Scenarios Sequence 2

    Figura 2: Dos escenarios de demanda y sus consecuencias para el inventario disponible

     

    En esta nota, describiremos técnicas para crear escenarios y enumeraremos criterios para evaluar generadores de escenarios.

    Criterios para escenarios

    Como veremos a continuación, hay varias formas de crear escenarios. Independientemente de la fuente, ¿qué criterios definen un escenario “bueno”? Hay cuatro criterios principales: fidelidad, variedad, cantidad y costo. Fidelidad Resume con qué precisión un escenario imita situaciones del mundo real. La alta fidelidad significa que los escenarios reflejan fielmente los acontecimientos reales, proporcionando una base sólida para el análisis y la toma de decisiones. Variedad describe la diversidad de escenarios que un generador puede crear. Un generador versátil puede simular una amplia gama de situaciones potenciales, lo que permite una exploración exhaustiva de posibilidades y riesgos. Cantidad Se refiere a cuántos escenarios puede producir un generador. Un generador que puede crear una gran cantidad de escenarios proporciona amplios datos para el análisis. Costo considera tanto los recursos computacionales como humanos necesarios para producir los escenarios. Un generador de escenarios eficiente equilibra la calidad con el uso de recursos, garantizando que el esfuerzo esté justificado por el valor y la precisión de los resultados.

    Generación de escenarios

    Nuevamente, piense en un escenario como una serie de tiempo. ¿Cómo se crean los escenarios?

    1. Taller de Geppetto: Este enfoque implica la elaboración manual de escenarios por parte de expertos. Si bien puede producir alta fidelidad (realismo), requiere muchos recursos y no puede generar variedad fácilmente, lo que requiere una gran cantidad de escenarios.
    2. Día de la Marmota: Este método implica el uso repetido de una única situación del mundo real como entrada. Si bien es realista por definición y rentable (no se utilizan recursos más allá del registro de los datos), este enfoque carece de variedad y, por lo tanto, no puede reflejar con precisión la diversidad de escenarios del mundo real.
    3. Modelos paramétricos: Ejemplos de modelos paramétricos son los clásicos estudiados en las clases de Estadística 101: el Normal, exponencial, Poisson, etc. Los gráficos de demanda en la Figura 2 se generan paramétricamente, siendo los cuadrados de variables aleatorias de Poisson. Estos modelos generan una cantidad ilimitada de escenarios de bajo costo con buena variedad, pero es posible que no siempre capturen la complejidad de los datos del mundo real, lo que podría comprometer la fidelidad. Cuando la realidad es más complicada, estos modelos generan escenarios demasiado simplificados.
    4. Bootstraps de series temporales no paramétricas: Este enfoque puede obtener buenos resultados en todos los criterios: fidelidad, variedad, cantidad y costo. Es un método versátil que sobresale en la creación de una gran cantidad de escenarios realistas. Los historiales de demanda sintéticos en la Figura 1 son muestras de arranque simples basadas en los valores observados en el gráfico superior. (Para obtener algunos detalles esenciales sobre la generación de escenarios, consulte los enlaces a continuación).

    Escenarios de explotación

    Los escenarios demuestran su valor de dos maneras: como insumos para la toma de decisiones y como generadores de intuición. Por ejemplo, cuando los escenarios de demanda se utilizan como datos de entrada para los modelos de simulación, permiten realizar pruebas de estrés y estimar el rendimiento para el diseño del sistema. Los escenarios también pueden servir como generadores de intuición para los tomadores de decisiones o los operadores de sistemas. Su representación visual ayuda a desarrollar una visión y apreciación de los riesgos involucrados en la toma de decisiones operativas, ya sea para el pronóstico de la demanda o la gestión de inventario.

    El análisis basado en escenarios requiere mucha informática, especialmente cuando los escenarios se generan mediante arranque. En Smart Software, la computación se realiza en la nube. Imagine la carga computacional involucrada en determinar los puntos de reorden y las cantidades de los pedidos para cada una de las decenas de miles de artículos del inventario utilizando cientos o miles de simulaciones de demanda para cada artículo. Imagine además que el software no sólo evalúa un par de punto de reorden/cantidad de pedido específico propuesto, sino que recorre todo el “espacio de diseño” de pares para encontrar el mejor par de parámetros de control para cada artículo. Para que esto sea práctico, aprovechamos el poder de procesamiento paralelo de la nube. Esencialmente, a cada artículo del inventario se le asigna su propia computadora para usar en los cálculos, de modo que todos esos cálculos puedan ocurrir simultáneamente en lugar de secuencialmente. Ahora podemos soltarnos y realmente brindarle los resultados que necesita.

    Aprendiendo más

    Aquellos interesados en más detalles técnicos y referencias pueden encontrar más información aquí.

    ¿Qué constituye un pronóstico probabilístico?

    Pronóstico Probabilístico y Demanda Intermitente