La planificación de piezas de repuesto no es tan difícil como cree

Al administrar piezas de servicio, no sabe qué fallará y cuándo porque las fallas de las piezas son aleatorias y repentinas. Como resultado, los patrones de demanda suelen ser extremadamente intermitentes y carecen de una tendencia significativa o una estructura estacional. El número de combinaciones de pieza por ubicación suele ser de cientos de miles, por lo que no es factible revisar manualmente la demanda de piezas individuales. No obstante, es mucho más sencillo implementar un sistema de planificación y previsión para respaldar la planificación de repuestos de lo que podría pensar.

Esta conclusión se basa en cientos de implementaciones de software que hemos dirigido a lo largo de los años. Los clientes que gestionan repuestos y piezas de servicio (estas últimas para consumo interno/MRO) y, en menor medida, piezas del mercado de accesorios (para reventa a bases instaladas), han implementado constantemente nuestro software de planificación de piezas más rápido que sus pares en fabricación y distribución.

La razón principal es el papel en la fabricación y distribución del conocimiento comercial sobre lo que podría suceder en el futuro. En un entorno tradicional de fabricación y distribución B2B, hay clientes y equipos de ventas y marketing que venden a esos clientes. Hay objetivos de ventas, expectativas de ingresos y presupuestos. Esto significa que hay mucho conocimiento comercial sobre lo que se comprará, lo que se promocionará, cuyas opiniones deben tenerse en cuenta. Se requiere un ciclo de planificación complejo. En cambio, a la hora de gestionar repuestos, cuentas con un equipo de mantenimiento que repara los equipos cuando se estropean. Aunque a menudo hay programas de mantenimiento como guía, lo que se necesita más allá de una lista estándar de piezas consumibles a menudo se desconoce hasta que una persona de mantenimiento está en el sitio. En otras palabras, simplemente no hay el mismo tipo de conocimiento comercial disponible para los planificadores de piezas cuando toman decisiones de almacenamiento.

Sí, eso es una desventaja, pero también tiene una ventaja: no hay necesidad de producir un pronóstico de demanda consensuado período por período con todo el trabajo que requiere. Al planificar las piezas de repuesto, normalmente puede omitir muchos de los pasos necesarios para un fabricante, distribuidor o minorista típico. Estos pasos saltables incluyen:  

  1. Creación de pronósticos en diferentes niveles del negocio, como familia de productos o región.
  2. Compartir el pronóstico de la demanda con ventas, marketing y clientes.
  3. Revisar anulaciones de pronósticos de ventas, marketing y clientes.
  4. Acordar una previsión consensuada que combine estadística y conocimiento empresarial.
  5. Medir el “valor agregado de pronóstico” para determinar si las anulaciones hacen que el pronóstico sea más preciso.
  6. Ajuste de la previsión de demanda para futuras promociones conocidas.
  7. Contabilización de la canibalización (es decir, si vendo más del producto A, venderé menos del producto B).

Liberados de un proceso de creación de consenso, los planificadores de repuestos y los administradores de inventario pueden confiar directamente en su software para predecir el uso y las políticas de almacenamiento requeridas. Si tienen acceso a un solución probada en el campo que aborda la demanda intermitente, pueden "ponerse en marcha" rápidamente con pronósticos de demanda más precisos y estimaciones de puntos de pedido, existencias de seguridad y sugerencias de pedidos. Su atención se puede centrar en obtener datos precisos sobre el uso y el tiempo de entrega del proveedor. La parte "política" del trabajo puede limitarse a obtener el consenso de la organización sobre los objetivos de nivel de servicio y los presupuestos de inventario.

Soluciones de software para la planificación de repuestos

El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

 

 

Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

 

Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

 

    El papel de la confianza en el proceso de pronóstico de la demanda Parte 2: ¿En qué confías?

    “Independientemente de cuánto esfuerzo se invierta en capacitar a los pronosticadores y desarrollar sistemas elaborados de apoyo a los pronósticos, los tomadores de decisiones modificarán o descartarán las predicciones si no confían en ellas”. — Dilek Onkal, International Journal of Forecasting 38:3 (julio-septiembre de 2022), p.802.

    Las palabras citadas arriba me llamaron la atención y provocaron esta publicación. Aquellos con una persuasión geek, como su blogger, se inclinan a pensar en los pronósticos como un problema estadístico. Si bien eso es obviamente cierto, aquellos de cierta edad, como tu blogger, entienden que la previsión también es una actividad social y, por lo tanto, tiene un gran componente humano.

    ¿En qué confías?

    Hay una dimensión relacionada con la confianza: no en quién confías sino en qué confías. Con esto me refiero tanto a los datos como al software.

    Confianza en los datos

    La confianza en los datos sustenta la confianza en el pronosticador que utiliza los datos. La mayoría de nuestros clientes tienen sus datos en un sistema ERP. Estos datos deben entenderse como un activo corporativo clave. Para que los datos sean confiables, deben tener las “tres C”, es decir, deben ser correctos, completos y actuales.

    La corrección es obviamente fundamental. Una vez tuvimos un cliente que estaba implementando un proceso de pronóstico nuevo y sólido, pero encontró que los resultados estaban completamente en desacuerdo con su sentido de lo que estaba sucediendo en el negocio. Resultó que varios de sus flujos de datos eran incorrectos por un factor de dos, lo cual es un gran error. Por supuesto, esto retrasó el proceso de implementación hasta que pudieron identificar y corregir todos los errores graves en sus datos de demanda.

    Hay un punto menos obvio que hacer sobre la corrección. Es decir, los datos son aleatorios, por lo que lo que ve ahora no es probable que sea lo que verá a continuación. Planificar la producción basándose en la suposición de que la demanda de la próxima semana será exactamente la misma que la demanda de esta semana es claramente una tontería, pero los modelos clásicos de pronóstico basados en fórmulas, como el suavizado exponencial mencionado anteriormente, proyectarán el mismo número a lo largo del horizonte de pronóstico. Aquí es donde planificación basada en escenarios es esencial para hacer frente a las inevitables fluctuaciones de variables clave como las demandas de los clientes y los plazos de reposición de los proveedores.

    La integridad es el segundo requisito para que los datos sean confiables. En última instancia, nuestro software obtiene gran parte de su valor al exponer los vínculos entre las decisiones operativas (p. ej., seleccionar los puntos de pedido que rigen la reposición de existencias) y las métricas relacionadas con el negocio, como los costos de inventario. Sin embargo, a menudo la implementación del software de pronóstico se retrasa porque la información sobre la demanda de artículos está disponible en algún lugar, pero no así los costos de mantenimiento, pedido y/o escasez. O, para citar otro ejemplo reciente, un cliente pudo dimensionar adecuadamente solo la mitad de su inventario de repuestos para piezas reparables porque nadie había estado rastreando cuándo se averiaba la otra mitad, lo que significa que no había información sobre el tiempo medio antes de la falla (MTBF) , por lo que no fue posible modelar el comportamiento ante averías de la mitad de la flota de repuestos reparables.

    Finalmente, la vigencia de los datos es importante. A medida que aumenta la velocidad de los negocios y los ciclos de planificación de la empresa pasan de un ritmo trimestral o mensual a un ritmo semanal o diario, se vuelve deseable explotar la agilidad que brindan las cargas nocturnas de datos transaccionales diarios en la nube. Esto permite ajustes de alta frecuencia de pronósticos y/o parámetros de control de inventario para artículos que experimentan alta volatilidad y cambios repentinos en la demanda. Cuanto más frescos sean los datos, más fiable será el análisis.

    Confíe en el software de previsión de la demanda

    Incluso con datos de alta calidad, los pronosticadores aún deben confiar en el software analítico que procesa los datos. Esta confianza debe extenderse tanto al propio software como al entorno informático en el que funciona.

    Si los pronosticadores usaron software local, deben confiar en sus propios departamentos de TI para salvaguardar los datos y mantenerlos disponibles para su uso. Si, en cambio, desean explotar el poder de los análisis basados en la nube, los clientes deben confiar su información confidencial a sus proveedores de software. El software de nivel profesional, como el nuestro, justifica la confianza de los clientes a través de la certificación SOC 2. La certificación SOC 2 fue desarrollada por el Instituto Americano de CPA y define los criterios para administrar los datos de los clientes en función de cinco "principios de servicio de confianza": seguridad, disponibilidad, integridad de procesamiento, confidencialidad y privacidad.

    ¿Qué pasa con el software en sí? ¿Qué se necesita para que sea confiable? Los criterios principales aquí son la corrección de los algoritmos y la fiabilidad funcional. Si el proveedor tiene un proceso de desarrollo de programas profesional, habrá pocas posibilidades de que el software termine calculando los números incorrectos debido a un error de programación. Y si el proveedor tiene un riguroso proceso de aseguramiento de la calidad, habrá pocas posibilidades de que el software se bloquee justo cuando el pronosticador tiene una fecha límite o debe lidiar con un análisis emergente para una situación especial.

    Resumen

    Para ser útiles, los responsables de la toma de decisiones deben confiar en los pronosticadores y sus pronósticos. Esa confianza depende de las características de los pronosticadores y sus procesos y comunicación. También depende de la calidad de los datos y el software utilizado para crear los pronósticos.

     

    Lee la 1ra parte de este Blog “En quién confías” aquí: https://smartcorp.com/forecasting/the-role-of-trust-in-the-demand-forecasting-process-part-1-who/

     

     

     

    Cómo seleccionar el método de pronóstico correcto con Epicor Smart IPO

    Smart Software se complace en presentar nuestra nueva serie de seminarios web educativos, ofrecidos exclusivamente para usuarios de Epicor. En este seminario web, Erik Subatis, ingeniero de soluciones empresariales de Smart Software, revelará los modelos estadísticos que utiliza Epicor Smart IP&O para pronosticar y cómo funciona el sistema automático de "mejor elección". Si bien el modelado automático es invaluable para el pronóstico a gran escala, en ocasiones, estos pronósticos no reflejan nuestras expectativas y/o conocimiento comercial. Comprender cómo y cuándo anular la selección del modelo puede ser una herramienta valiosa en la caja de herramientas de un pronosticador. Finalmente, la presentación concluirá mostrando cómo aumentar la rentabilidad con procesos de planificación de inventario mejorados por software en una demostración en vivo.

    Al asistir a este seminario web, aprenderá sobre los modelos estadísticos que utiliza Smart IP&O para pronosticar y cómo detectar las excepciones para que pueda aprovechar al máximo su herramienta de pronóstico.

    FORMULARIO DE REGISTRO AL SEMINARIO WEB

     

    Regístrese para asistir al seminario web. Si está interesado pero no puede asistir, regístrese de todos modos: grabaremos nuestra sesión y le enviaremos un enlace a la repetición.

    ¡Esperamos que pueda unirse a nosotros!

     

    SmartForecasts y Smart IP&O son marcas comerciales registradas de Smart Software, Inc. Todas las demás marcas comerciales son propiedad de sus respectivos dueños.


    Para obtener más información, comuníquese con Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
    Teléfono: 1-800-SMART-99 (800-762-7899); Correo electrónico: info@smartcorp.com

     

    Planificación basada en el nivel de servicio para empresas de piezas de servicio en el espacio de Dynamics 365

    La planificación de piezas de servicio impulsada por el nivel de servicio para Microsoft Dynamics BC o F&SC es un proceso de cuatro pasos que se extiende más allá de la previsión simplificada y las existencias de seguridad de la regla empírica. Proporciona a los planificadores de piezas de servicio un soporte de decisiones basado en datos y ajustado al riesgo.

     

    Las matemáticas para determinar este nivel de planificación simplemente no existen en la funcionalidad D365. Requiere matemáticas e inteligencia artificial que pasan miles de veces a través de cálculos para cada parte y centro de parte (ubicaciones). Las matemáticas y la IA como esta son exclusivas de Smart. Para entender más, por favor sigue leyendo. 

     

    Paso 1. Asegúrese de que todas las partes interesadas estén de acuerdo con las métricas que importan. 

    Todos los participantes en el proceso de planificación del inventario de piezas de servicio deben ponerse de acuerdo sobre las definiciones y qué métricas son más importantes para la organización. Niveles de servicio detalle el porcentaje de tiempo que puede satisfacer completamente el uso requerido sin agotar existencias. Tasas de relleno detallar el porcentaje del uso solicitado que se completa inmediatamente con el stock. (Para obtener más información sobre las diferencias entre los niveles de servicio y la tasa de llenado, vea esta lección de 4 minutos aquí.) Disponibilidad detalla el porcentaje de repuestos activos con un inventario disponible de al menos una unidad. Costos de mantenimiento son los costos anualizados de tenencia de existencias teniendo en cuenta la obsolescencia, los impuestos, los intereses, el almacenamiento y otros gastos. costos de escasez son el costo de quedarse sin existencias, incluido el tiempo de inactividad del vehículo/equipo, expediciones, pérdida de ventas y más. gastos de pedido son los costos asociados con la colocación y recepción de pedidos de reabastecimiento.

     

    Paso 2. Compare el rendimiento del nivel de servicio actual histórico y previsto.

    Todos los participantes en el proceso de planificación del inventario de piezas de servicio deben tener una comprensión común de los niveles de servicio futuros previstos, las tasas de llenado y los costos y sus implicaciones para las operaciones de piezas de servicio. Es crítico medir tanto la historia Indicadores clave de rendimiento (KPI) y sus equivalentes predictivos, Predicciones clave de rendimiento (KPP). Al aprovechar el software moderno, puede comparar el rendimiento anterior y aprovechar los métodos de pronóstico probabilístico para simular el rendimiento futuro. Prácticamente todas las soluciones de planificación de la demanda se detienen aquí. Smart va más allá pruebas de estrés sus políticas actuales de almacenamiento de inventario frente a todos los escenarios plausibles de demanda futura. Son estos miles de cálculos los que construyen nuestros KPP. La precisión de esto mejora la capacidad de D365 para equilibrar los costos de tener demasiado con los costos de no tener suficiente. Sabrá de antemano cómo es probable que funcionen las políticas de existencias actuales y propuestas.

     

    Paso 3. Acuerde los niveles de servicio específicos para cada pieza de repuesto y tome medidas correctivas proactivas cuando se prevea que no cumplirán los objetivos. 

    Los planificadores de piezas, el liderazgo de la cadena de suministro y los equipos mecánicos/de mantenimiento deben acordar los objetivos de nivel de servicio deseados con una comprensión completa de las compensaciones entre el riesgo de falta de existencias y el costo del inventario. Una llamada aquí es que nuestros clientes de D365 casi siempre están sorprendidos por la diferencia de niveles de existencias entre la disponibilidad de 100% y 99.5%. Con la lógica de casi 10,000 escenarios, ese medio por ciento de interrupción casi nunca se alcanza. Usted logra una política de almacenamiento completo con costos mucho más bajos. Encuentra las piezas que no tienen suficientes existencias y las corrige. El punto de equilibrio suele ser una reducción de 7-12% en los costos de inventario. 

    Este aprovechamiento de escenarios hipotéticos en nuestro software de planificación de piezas brinda a la gerencia y a los compradores la capacidad de comparar fácilmente políticas de almacenamiento alternativas e identificar aquellas que mejor cumplen con los objetivos comerciales. Para algunas piezas, un pequeño desabastecimiento está bien. Para otros, necesitamos esa disponibilidad de piezas 99.5%. Una vez que se acuerdan estos límites, usamos el Poder de D365 para optimizar el inventario utilizando el ERP principal de D365 como debe ser. La planificación se carga automáticamente para involucrar a Dynamics con puntos de reorden modificados, niveles de existencias de seguridad y/o parámetros Mín./Máx. Esto admite un único punto central empresarial y las personas no utilizan múltiples sistemas para la gestión y compra diaria de piezas.

     

    Paso 4. Hazlo así y mantenlo así. 

    Capacite al equipo de planificación con el conocimiento y las herramientas que necesita para asegurarse de lograr el equilibrio acordado entre los niveles de servicio y los costos. Esto es crítico e importante. También es importante usar Dynamics F&SC o BC para ejecutar sus transacciones de ERP. Estos dos Dynamics ERP tienen el nivel más alto de crecimiento de nuevos ERP en el planeta. Usarlos como están destinados a ser utilizados tiene sentido. También tiene sentido llenar el espacio en blanco para los cálculos matemáticos y de inteligencia artificial para la gestión de mantenimiento y piezas. Esto requiere una solución más compleja y específica para ayudar. Smart Software Inventory Optimization para EAM y Dynamics ERP tiene la respuesta.    

    Recuerde: la recalibración de su política de inventario de piezas de servicio es un mantenimiento preventivo tanto contra los desabastecimientos como contra el exceso de existencias. Ayuda con los costos, libera capital para otros usos y respalda las mejores prácticas para su equipo. 

     

    Amplíe Microsoft 365 F&SC y AX con Smart IP&O

    Para ver una grabación del seminario web de Microsoft Dynamics Communities que muestra Smart IP&O, regístrese aquí:

    https://smartcorp.com/inventory-planning-with-microsoft-365-fsc-and-ax/

     

     

     

     

    El papel de la confianza en el proceso de previsión de la demanda Parte 1: En quién confiar

     

    “Independientemente de cuánto esfuerzo se invierta en capacitar a los pronosticadores y desarrollar sistemas elaborados de apoyo a los pronósticos, los tomadores de decisiones modificarán o descartarán las predicciones si no confían en ellas”. — Dilek Onkal, International Journal of Forecasting 38:3 (julio-septiembre de 2022), p.802.

    Las palabras citadas arriba me llamaron la atención y provocaron esta publicación. Aquellos con una persuasión geek, como su blogger, se inclinan a pensar en los pronósticos como un problema estadístico. Si bien eso es obviamente cierto, aquellos de cierta edad, como tu blogger, entienden que la previsión también es una actividad social y, por lo tanto, tiene un gran componente humano.

    ¿En quién confías?

    La confianza es siempre una calle de doble sentido, pero permanezcamos del lado del pronosticador de la demanda. ¿Qué características y acciones de los pronosticadores y planificadores de la demanda generan confianza en su trabajo? La profesora Onkal citada anteriormente revisó la investigación académica sobre este tema que se remonta a 2006. Resumió los resultados de encuestas a profesionales que identificaron factores clave de confianza relacionados con las características del pronosticador, el proceso de pronóstico y la comunicación del pronóstico.

    Características del pronosticador

    La clave para generar confianza entre los usuarios de los pronósticos son las percepciones de la competencia y objetividad del pronosticador y del planificador de la demanda. La competencia tiene un componente matemático, pero muchos gerentes confunden las habilidades informáticas con las habilidades analíticas, por lo que los usuarios de software de pronóstico generalmente pueden superar este obstáculo. Sin embargo, dado que los dos no son lo mismo, vale la pena absorber la capacitación de su proveedor y aprender no solo las matemáticas sino también la jerga de su software de pronóstico. En mi observación, la confianza también puede incrementarse mostrando conocimiento del negocio de la empresa.

    La objetividad es también una clave para la confiabilidad. Puede ser incómodo para el pronosticador estar en medio de disputas departamentales ocasionales, pero surgirán y deben manejarse con tacto. ¿Peleas? Bueno, los silos existen y se inclinan en diferentes direcciones. Los departamentos de ventas favorecen las previsiones de demanda más altas que impulsan los aumentos de producción, de modo que nunca tengan que decir "Lo siento, acabamos de salir de eso". Los gerentes de inventario desconfían de los pronósticos de alta demanda, porque el "exceso de entusiasmo" puede dejarlos con la bolsa en la mano, sentados sobre un inventario inflado.

    A veces el pronosticador se convierte en un de facto árbitro, y en este papel debe mostrar signos evidentes de objetividad. Eso puede significar primero reconocer que cada decisión de gestión implica compensaciones de cosas buenas contra otras cosas buenas, por ejemplo, disponibilidad del producto versus operaciones ajustadas, y luego ayudar a las partes a lograr un equilibrio doloroso pero tolerable al mostrar los vínculos entre las decisiones operativas y las métricas clave de rendimiento. que le importan a personas como los directores financieros.

    El proceso de previsión

    Se puede pensar que el proceso de pronóstico tiene tres fases: entradas de datos, cálculos y salidas. Se pueden tomar acciones para aumentar la confianza en cada fase.

     

    En cuanto a las entradas:

    La confianza se puede aumentar si las entradas obviamente relevantes se reconocen al menos si no se usan directamente en los cálculos. Por lo tanto, factores como el sentimiento de las redes sociales y los instintos de los gerentes de ventas regionales pueden ser partes legítimas de un proceso de consenso de pronóstico. Sin embargo, la objetividad requiere que estos predictores putativos de ganancias sean probados objetivamente. Por ejemplo, un proceso de pronóstico de nivel profesional bien puede incluir un ajuste subjetivo a los pronósticos estadísticos, pero luego también debe evaluar si los ajustes realmente terminan mejorando la precisión, no solo haciendo que algunas personas se sientan escuchadas.

    En cuanto a la segunda fase, los cálculos:

    Se confiará en el pronosticador en la medida en que pueda implementar más de una forma de calcular los pronósticos y luego articular una buena razón por la que eligió el método finalmente utilizado. Además, el pronosticador debe ser capaz de explicar en un lenguaje accesible cómo funcionan incluso las técnicas más complicadas. Es difícil confiar en un método de “caja negra” tan opaco que resulta inescrutable. La importancia de la explicabilidad se amplifica por el hecho de que el superior del pronosticador debe ser capaz de justificar la elección de la técnica para su supervisor.

    Por ejemplo, el suavizado exponencial usa esta ecuación: S(t) = αX(t)+(1-α)S(t-1). Muchos pronosticadores están familiarizados con esta ecuación, pero muchos usuarios de pronósticos no. Hay una historia que explica la ecuación en términos de promediar el "ruido" irrelevante en el historial de demanda de un artículo y la necesidad de lograr un equilibrio entre suavizar el ruido y ser capaz de reaccionar ante cambios repentinos en el nivel de demanda. El pronosticador que pueda contar esa historia será más creíble. (Mi propia versión de esa historia usa frases de los deportes, es decir, "falsificaciones de cabeza" y "jukes". Encontrar análogos campechanos apropiados para su audiencia específica siempre paga dividendos).

    Un punto final: las mejores prácticas exigen que cualquier pronóstico vaya acompañado de una evaluación honesta de su incertidumbre. Un pronosticador que trata de generar confianza siendo demasiado específico ("Las ventas del próximo trimestre serán de 12,184 unidades") siempre fallará. Un pronosticador que dice "Las ventas del próximo trimestre tendrán una probabilidad de 90% de caer entre 12,000 y 12,300 unidades" será correcto con más frecuencia y también más útil para los tomadores de decisiones. Después de todo, la previsión es esencialmente un trabajo de gestión de riesgos, por lo que la mejor forma de tomar decisiones es conocer los riesgos.

    Comunicación de previsión:

    Finalmente, considere la tercera fase, la comunicación de los resultados del pronóstico. La investigación sugiere que la comunicación continua con los usuarios del pronóstico genera confianza. Evita esos horribles y desalentadores momentos en los que un informe con un buen formato es derribado debido a algún defecto fatal que podría haberse previsto: "Esto no es bueno porque no tuvo en cuenta X, Y o Z" o "Realmente queríamos presentar los resultados acumulados en la parte superior de las jerarquías de productos (o por región de ventas o por línea de productos o…)”.

    Incluso cuando todos están alineados en cuanto a lo que se espera, la confianza aumenta al presentar los resultados mediante gráficos bien elaborados, con tablas numéricas masivas proporcionadas como respaldo, pero no como la forma principal de comunicar los resultados. Mi experiencia ha sido que, al igual que un dispositivo de control de reuniones, un gráfico suele ser mucho mejor que una gran tabla numérica. Con un gráfico, la atención de todos se centra en lo mismo y muchos aspectos del análisis son inmediatamente (y literalmente) visibles. Con una tabla de resultados, la mesa de participantes a menudo se divide en conversaciones paralelas en las que cada voz se enfoca en diferentes piezas de la mesa.

    Onkal resume la investigación de esta manera: "Las conclusiones para quienes hacen pronósticos y quienes los utilizan convergen en torno a la claridad de la comunicación, así como a las percepciones de competencia e integridad".

    ¿En qué confías?

    Hay una dimensión relacionada con la confianza: no en quién confías sino en qué confías. Con esto me refiero tanto a los datos como al software….  Lee la 2da parte de este Blog “En qué Confías” aquí  https://smartcorp.com/forecasting/the-role-of-trust-in-the-demand-forecasting-process-part-2-what/