Una guía práctica para desarrollar un proceso de pronóstico profesional

Muchas empresas que buscan mejorar su proceso de pronóstico no saben por dónde empezar. Puede ser confuso lidiar con el aprendizaje de nuevos métodos estadísticos, asegurarse de que los datos estén correctamente estructurados y actualizados, acordar quién es el "propietario" del pronóstico, definir qué significa propiedad y medir la precisión. Habiendo visto esto durante más de cuarenta años de práctica, escribimos este blog para delinear el enfoque central y alentarlo a mantenerlo simple desde el principio.

1. Objetividad. Primero, comprenda y comunique que el proceso de Planificación y Pronóstico de la Demanda es un ejercicio de objetividad. El enfoque está en obtener aportes de varias fuentes (partes interesadas, clientes, gerentes funcionales, bases de datos, proveedores, etc.) y decidir si esos aportes agregan valor. Por ejemplo, si anula un pronóstico estadístico y agrega 20% a la proyección, no debe simplemente asumir que lo hizo correctamente automáticamente. En su lugar, sea objetivo y verifique si eso anula el aumento o la disminución de la precisión del pronóstico. Si descubre que sus anulaciones empeoraron las cosas, ha ganado algo: esto informa el proceso y sabe cómo analizar mejor las decisiones de anulación en el futuro.

2. Trabajo en equipo. Reconocer que la previsión y la planificación de la demanda son deportes de equipo. Acuerde quién será el capitán del equipo. El capitán es responsable de crear los pronósticos estadísticos de referencia y de supervisar el proceso de planificación de la demanda. Pero los resultados dependen de que todos los miembros del equipo realicen contribuciones positivas, proporcionen datos, sugieran metodologías alternativas, cuestionen las suposiciones y ejecuten las acciones recomendadas. Los resultados finales son propiedad de la empresa y de cada una de las partes interesadas.

3. Medición. No se obsesione con los puntos de referencia de precisión de los pronósticos de la industria. Cada SKU tiene su propio nivel de "previsibilidad", y es posible que esté gestionando cualquier número de elementos difíciles. En su lugar, cree sus propios puntos de referencia basados en una secuencia de métodos de pronóstico cada vez más avanzados. Los pronósticos estadísticos avanzados pueden parecer abrumadoramente complejos al principio, así que comience de manera simple con un método básico, como pronosticar la demanda promedio histórica. Luego, mida qué tan cerca está ese pronóstico simple de la demanda real observada. A partir de ahí, desarrolle técnicas que se ocupen de complicaciones como la tendencia y la estacionalidad. Mida el progreso utilizando métricas de precisión calculadas por su software, como el error porcentual absoluto medio (MAPE). Esto permitirá que su empresa mejore un poco cada ciclo de pronóstico.

4. Tiempo. Luego concentre sus esfuerzos en hacer que la previsión sea un proceso independiente que no se combine con el complejo proceso de optimización del inventario. La gestión de inventario se basa en una sólida previsión de la demanda, pero se centra en otros temas: qué comprar, cuándo comprar, cantidades mínimas de pedido, existencias de seguridad, niveles de inventario, plazos de entrega de los proveedores, etc. Deje que la gestión de inventario pase a más adelante . Primero construya "músculo de pronóstico" creando, revisando y evolucionando el proceso de pronóstico para tener una cadencia regular. Cuando su proceso haya madurado lo suficiente, póngase al día con la velocidad creciente de los negocios aumentando el ritmo de su proceso de previsión a una cadencia mensual como mínimo.

Observaciones

Revisar el proceso de previsión de una empresa puede ser un paso importante. A veces sucede cuando hay rotación de ejecutivos, a veces cuando hay un nuevo sistema ERP, a veces cuando hay un nuevo software de pronóstico. Cualquiera que sea el evento precipitante, este cambio es una oportunidad para repensar y refinar cualquier proceso que haya tenido antes. Pero tratar de comerse todo el elefante de una sola vez es un error. En este blog, describimos algunos pasos discretos que puede seguir para lograr una evolución exitosa hacia un mejor proceso de pronóstico.

 

 

 

 

Tipos de problemas de pronóstico que ayudamos a resolver

Estos son ejemplos de problemas de pronóstico que SmartForecasts puede resolver, junto con los tipos de datos comerciales representativos de cada uno.

Pronosticar un artículo en función de su patrón

Dadas las siguientes seis cifras de ventas trimestrales, ¿qué ventas puede esperar para el tercer y cuarto trimestre de 2023?

Forecasting an item based on its pattern

Ventas por Trimestre

SmartForecasts le brinda muchas formas de abordar este problema. Puede hacer sus propios pronósticos estadísticos utilizando cualquiera de los seis Suavizado exponencial y media móvil métodos. O, como la mayoría de los pronosticadores no técnicos, puede usar el comando Automático que ahorra tiempo, que ha sido programado para seleccionar y usar automáticamente el método más preciso para sus datos. Finalmente, para incorporar su juicio comercial en el proceso de pronóstico, puede ajustar gráficamente cualquier resultado de pronóstico estadístico usando SmartForecasts. ajuste de "globo ocular" capacidades.

 

Pronosticar un artículo en función de su relación con otras variables.

Dada la siguiente relación histórica entre las ventas de unidades y la cantidad de representantes de ventas, ¿qué niveles de ventas puede esperar cuando se produzca el aumento planificado del personal de ventas durante los dos últimos trimestres de 2023?

Forecasting an item based on its relationship to other variables.

Ventas y Representantes de Ventas por Trimestre

Puede responder una pregunta como esta usando el poderoso SmartForecasts Regresión comando, diseñado específicamente para facilitar las aplicaciones de pronóstico que requieren soluciones de análisis de regresión. Los modelos de regresión con un número esencialmente ilimitado de variables predictoras/independientes son posibles, aunque la mayoría de los modelos de regresión útiles usan solo un puñado de predictores.

 

Pronosticar simultáneamente una cantidad de artículos de productos y su total

Dadas las siguientes ventas totales de todas las camisas de vestir y la distribución de las ventas por color, ¿cuáles serán las ventas individuales y totales durante los próximos seis meses?

Forecasting an item based on its relationship to other variables.

Ventas mensuales de camisas de vestir por color

Las funciones exclusivas de pronóstico de grupo de SmartForecasts pronostican automática y simultáneamente series de tiempo estrechamente relacionadas, como estos artículos en el mismo grupo de productos. Esto ahorra un tiempo considerable y proporciona resultados de pronóstico no solo para los artículos individuales sino también para su total. Los ajustes de "ojo" tanto a nivel de elemento como de grupo son fáciles de realizar. Puede crear rápidamente pronósticos para grupos de productos con cientos o incluso miles de artículos.

 

Pronóstico de miles de artículos automáticamente

Dado el siguiente registro de demanda de productos a nivel de SKU, ¿cuál puede esperar que sea la demanda durante los próximos seis meses para cada uno de los 5000 SKU?

Forecasting thousands of items automatically

Demanda Mensual de Producto por SKU (Unidad de Mantenimiento de Stock)

En solo unos minutos, la poderosa selección automática de SmartForecasts puede realizar un trabajo de pronóstico de este tamaño, leer los datos de demanda del producto, crear automáticamente pronósticos estadísticos para cada SKU y guardar el resultado. Los resultados están listos para exportarlos a su sistema ERP aprovechando cualquiera de nuestros conectores basados en API o mediante la exportación de archivos. Una vez configurados, los pronósticos se producirán automáticamente en cada ciclo de planificación sin la intervención del usuario.

 

Pronosticar la demanda que en la mayoría de los casos es cero

Un tipo de datos distinto y especialmente desafiante para pronosticar es intermitente demanda, que suele ser cero, pero salta a valores aleatorios distintos de cero en momentos aleatorios. Este patrón es típico de la demanda de lento Moviente artículos, tales como repuestos o grande boleto bienes de equipo.

Por ejemplo, considere la siguiente muestra de demanda de repuestos para aeronaves. Tenga en cuenta la preponderancia de valores cero mezclados con valores distintos de cero, a menudo en ráfagas.

Forecasting demand that is most often zero

SmartForecasts tiene un método único diseñado especialmente para este tipo de datos: la función de pronóstico de Demanda Intermitente. Dado que la demanda intermitente surge con mayor frecuencia en el contexto del control de inventario, esta función se enfoca en pronosticar el rango de valores probables para la demanda total durante un tiempo de anticipación, por ejemplo, la demanda acumulada durante el período del 23 de junio al 23 de agosto en el ejemplo anterior. .

 

Pronóstico de requisitos de inventario

La previsión de necesidades de inventario es una variante especializada de la previsión que se centra en el extremo superior del rango de valores futuros posibles.

Para simplificar, considere el problema de pronosticar los requisitos de inventario para solo un período por delante, digamos un día por delante. Por lo general, el trabajo de pronóstico consiste en estimar el nivel promedio o más probable de demanda del producto. Sin embargo, si el inventario disponible es igual a la demanda promedio, existe una probabilidad de 50% de que la demanda supere el inventario, lo que resultará en pérdida de ventas y/o pérdida de buena voluntad. Establecer el nivel de inventario en, digamos, diez veces la demanda promedio probablemente eliminará el problema de los desabastecimientos, pero seguramente resultará en costos de inventario inflados.

El truco de la optimización del inventario es encontrar un equilibrio satisfactorio entre tener suficiente inventario para satisfacer la mayor parte de la demanda sin comprometer demasiados recursos en el proceso. Por lo general, la solución es una combinación de criterio empresarial y estadísticas. La parte crítica es definir un nivel de servicio de inventario aceptable, como satisfacer 95% de demanda inmediatamente desde el stock. La parte estadística es estimar el percentil 95 de la demanda.

Cuando no se trata de demanda intermitente, SmartForecasts estima el nivel de inventario requerido asumiendo una curva de demanda en forma de campana (Normal), estimando tanto el centro como el ancho de la curva de campana y luego usando una fórmula estadística estándar para estimar el percentil deseado. La diferencia entre el nivel de inventario deseado y el nivel promedio de demanda se denomina stock de seguridad porque protege contra la posibilidad de desabastecimiento.

Cuando se trata de demanda intermitente, la curva en forma de campana es una mala aproximación a la distribución estadística de la demanda. En este caso especial, SmartForecasts utiliza tecnología patentada de pronóstico de demanda intermitente para estimar el nivel de servicio de inventario requerido.

 

 

Tres formas de estimar la precisión del pronóstico

La precisión del pronóstico es una métrica clave para juzgar la calidad de su proceso de planificación de la demanda. (No es el único. Otros incluyen oportunidad y costo; Ver 5 consejos de planificación de la demanda para calcular la incertidumbre del pronóstico.) Una vez que tenga los pronósticos, hay varias formas de resumir su precisión, generalmente designados por acrónimos oscuros de tres o cuatro letras como MAPE, RMSE y MAE. Ver Cuatro formas útiles de medir el error de pronóstico para más detalles.

Un tema menos discutido pero más fundamental es cómo se organizan los experimentos computacionales para calcular el error de pronóstico. Esta publicación compara los tres diseños experimentales más importantes. Uno de ellos es de la vieja escuela y esencialmente equivale a hacer trampa. Otro es el patrón oro. Un tercero es un recurso útil que imita el patrón oro y se considera mejor como una predicción de cómo resultará el patrón oro. La figura 1 es una vista esquemática de los tres métodos.

 

Three Ways to Estimate Forecast Accuracy Software Smart

Figura 1: Tres formas de evaluar el error de pronóstico

 

El panel superior de la Figura 1 muestra la forma en que se evaluó el error de pronóstico a principios de la década de 1980 antes de que moviéramos el estado del arte al esquema que se muestra en el panel central. En los viejos tiempos, los pronósticos se evaluaban con los mismos datos que se usaban para calcular los pronósticos. Después de ajustar un modelo a los datos, los errores calculados no eran para los pronósticos del modelo sino para el modelo. encaja. La diferencia es que los pronósticos son para valores futuros, mientras que los ajustes son para valores concurrentes. Por ejemplo, suponga que el modelo de pronóstico es un promedio móvil simple de las tres observaciones más recientes. En el momento 3, el modelo calcula el promedio de las observaciones 1, 2 y 3. Este promedio luego se compararía con el valor observado en el momento 3. Llamamos a esto hacer trampa porque el valor observado en el momento 3 obtuvo un voto sobre el pronóstico. debería ser en el momento 3. Una evaluación de pronóstico real compararía el promedio de las primeras tres observaciones con el valor del próximo, cuarto, observación. De lo contrario, el pronosticador se queda con una evaluación demasiado optimista de la precisión del pronóstico.

El panel inferior de la Figura 1 muestra la mejor manera de evaluar la precisión del pronóstico. En este esquema, todos los datos históricos de demanda se utilizan para ajustar un modelo, que luego se utiliza para pronosticar valores de demanda futuros desconocidos. Eventualmente, el futuro se desarrolla, los verdaderos valores futuros se revelan y se pueden calcular los errores de pronóstico reales. Este es el estándar de oro. Esta información completa el informe de "pronósticos versus datos reales" en nuestro software.

El panel central representa una medida intermedia útil. El problema con el patrón oro es que debe esperar para saber qué tan bien funcionan los métodos de pronóstico elegidos. Este retraso no ayuda cuando se requiere elegir, en el momento, qué método de pronóstico usar para cada artículo. Tampoco proporciona una estimación oportuna de la incertidumbre del pronóstico que experimentará, lo cual es importante para la gestión de riesgos, como la cobertura del pronóstico. El camino intermedio se basa en el análisis de exclusión, que excluye (“excluye”) las observaciones más recientes y le pide al método de pronóstico que haga su trabajo sin conocer esas verdades fundamentales. Luego, los pronósticos basados en el historial de demanda abreviado se pueden comparar con los valores reales retenidos para obtener una evaluación honesta del error de pronóstico.

 

 

Quince preguntas que revelan cómo se calculan los pronósticos en su empresa

En un reciente LinkedIn blog, detallé cuatro preguntas que, una vez respondidas, revelarán cómo se realizan los pronósticos. siendo utilizado en tu negocio En este artículo, hemos enumerado preguntas que puede hacer que revelarán cómo se realizan los pronósticos. creado.

1. Cuando preguntamos a los usuarios cómo crean pronósticos, su respuesta suele ser "usamos el historial". Obviamente, esto no es suficiente información, ya que existen diferentes tipos de historial de demanda que requieren diferentes métodos de pronóstico. Si está utilizando datos históricos, asegúrese de averiguar si está utilizando un modelo promedio, un modelo de tendencias, un modelo estacional o algo más para pronosticar.

2. Una vez que sepa el modelo utilizado, pregunte acerca de los valores de los parámetros de esos modelos. El resultado del pronóstico de un "promedio" diferirá, a veces significativamente, según la cantidad de períodos que esté promediando. Entonces, averigüe si está usando un promedio de los últimos 3 meses, 6 meses, 12 meses, etc.

3. Si está utilizando modelos de tendencia, pregunte cómo se establecen los pesos del modelo. Por ejemplo, en un modelo de tendencias, como el suavizado exponencial doble, los pronósticos diferirán significativamente según cómo los cálculos ponderen los datos recientes en comparación con los datos más antiguos (las ponderaciones más altas ponen más énfasis en los datos recientes).

4. Si está utilizando modelos estacionales, los resultados del pronóstico se verán afectados por el "nivel" y las "ponderaciones de tendencia" utilizadas. También debe determinar si los períodos estacionales se pronostican con estacionalidad multiplicativa o aditiva. (La estacionalidad aditiva dice, por ejemplo, "Suma 100 unidades para julio", mientras que la estacionalidad multiplicativa dice "Multiplica por 1,25 para julio"). Finalmente, es posible que no estés usando este tipo de métodos en absoluto. Algunos profesionales utilizarán un método de pronóstico que simplemente promedia períodos anteriores (es decir, el próximo mes de junio se pronosticará con base en el promedio de los tres junios anteriores).

5. ¿Cómo haces para elegir un modelo sobre otro? ¿Depende la elección de la técnica del tipo de datos de demanda o de la disponibilidad de nuevos datos de demanda? ¿Este proceso está automatizado? O si un planificador elige subjetivamente un modelo de tendencia, ¿se seguirá pronosticando ese elemento con ese modelo hasta que el planificador lo cambie de nuevo?

6. ¿Son sus pronósticos “totalmente automáticos”, de modo que la tendencia y/o la estacionalidad se detecten automáticamente? ¿O sus pronósticos dependen de las clasificaciones de artículos que deben mantener los usuarios? Este último requiere más tiempo y atención por parte de los planificadores para definir qué comportamiento constituye tendencia, estacionalidad, etc.

7. ¿Cuáles son las reglas de clasificación de artículos que se utilizan? Por ejemplo, un artículo puede considerarse un artículo de tendencia si la demanda aumenta más de 5% período tras período. Un artículo puede considerarse estacional si el 70% o más de la demanda anual ocurre en cuatro períodos o menos. Tales reglas están definidas por el usuario y, a menudo, requieren suposiciones demasiado amplias. A veces, se configuran cuando un sistema se implementó originalmente, pero nunca se revisó, incluso cuando cambian las condiciones. Es importante asegurarse de que se comprendan las reglas de clasificación y, si es necesario, se actualicen.

8. ¿El pronóstico se regenera automáticamente cuando hay nuevos datos disponibles o tiene que regenerar manualmente los pronósticos?

9. ¿Revisa si hay algún cambio en el pronóstico de un período al siguiente antes de decidir si usa el nuevo pronóstico? ¿O prefieres el nuevo pronóstico por defecto?

10. ¿Cómo se tratan las anulaciones de pronóstico que se realizaron en ciclos de planificación anteriores cuando se crea un nuevo pronóstico? ¿Se reutilizan o se reemplazan?

11. ¿Cómo incorpora las previsiones realizadas por su equipo de ventas o por sus clientes? ¿Estos pronósticos reemplazan el pronóstico de línea base o utiliza estas entradas para hacer anulaciones del planificador al pronóstico de línea base?

12. ¿Bajo qué circunstancias ignoraría el pronóstico de referencia y usaría exactamente lo que le dicen las ventas o los clientes?

13. Si confía en los pronósticos de los clientes, ¿qué hace con los clientes que no brindan pronósticos?

14. ¿Cómo documenta la efectividad de su enfoque de pronóstico? La mayoría de las empresas solo miden la precisión del pronóstico final que se envía al sistema ERP, si es que miden algo. Pero no evalúan predicciones alternativas que podrían haberse utilizado. Es importante comparar lo que está haciendo con los puntos de referencia. Por ejemplo, ¿los métodos que está utilizando superan un pronóstico ingenuo (es decir, "mañana es igual a hoy", que no requiere pensar), o lo que vio el año pasado, o el promedio de los últimos 12 meses? La evaluación comparativa de su pronóstico de referencia asegura que está exprimiendo la mayor precisión posible de los datos.

15. ¿Mide si las anulaciones de ventas, clientes y planificadores mejoran o empeoran el pronóstico? Esto es tan importante como medir si sus enfoques estadísticos están superando al método ingenuo. Si no sabe si las anulaciones están ayudando o perjudicando, la empresa no puede mejorar en la previsión; necesita saber qué pasos están agregando valor para que pueda hacer más y mejorar aún más. Si no está documentando la precisión del pronóstico y realizando un análisis de "valor agregado del pronóstico", entonces no podrá evaluar adecuadamente si los pronósticos que se producen son los mejores que podría hacer. Perderá oportunidades para mejorar el proceso, aumentar la precisión y educar a la empresa sobre qué tipo de error de pronóstico se espera.

 

 

Cómo interpretar y manipular los resultados del pronóstico con diferentes métodos de pronóstico

Smart IP&O funciona con el motor de pronóstico SmartForecasts® que selecciona automáticamente el método más apropiado para cada artículo. Los métodos de Smart Forecast se enumeran a continuación:

  • Promedio móvil simple y suavizado exponencial único para datos planos y ruidosos
  • Promedio móvil lineal y suavizado exponencial doble para datos de tendencias
  • Winters Aditivo y Winters Multiplicativo para datos estacionales y estacionales y de tendencias.

Este blog explica cómo funciona cada modelo utilizando diagramas de tiempo de datos históricos y de pronóstico. Describe cómo elegir qué modelo usar. Los ejemplos a continuación muestran el mismo historial, en rojo, pronosticado con cada método, en verde oscuro, en comparación con el método ganador elegido por Smart, en verde claro.

 

Estacionalidad
Si desea forzar (o evitar) que se muestre la estacionalidad en el pronóstico, elija los modelos Winters. Ambos métodos requieren 2 años completos de historial.

Multiplicativo de Winters determinará el tamaño de los picos o valles de los efectos estacionales en función de una diferencia porcentual de un volumen promedio de tendencia. No es una buena opción para artículos de muy bajo volumen debido a la división por cero al determinar ese porcentaje. Observe en la imagen a continuación que se proyecta que la gran caída porcentual en la demanda estacional en el historial continúe durante el horizonte de pronóstico, lo que hace que parezca que no hay demanda estacional a pesar de usar un método estacional.

 

Winter’s multiplicative Forecasting method software

Pronóstico estadístico elaborado con el método multiplicativo de Winter. 

 

Aditivo de Winters determinará el tamaño de los picos o valles de los efectos estacionales con base en una unidad de diferencia del volumen promedio. No es un buen ajuste si hay una tendencia significativa en los datos. Tenga en cuenta en la imagen de abajo que sla estacionalidad ahora se pronostica con base en el cambio unitario promedio en la estacionalidad. Por lo tanto, el pronóstico aún refleja claramente el patrón estacional a pesar de la tendencia a la baja tanto en el nivel como en los picos/valles estacionales.

Winter’s additive Forecasting method software

Pronóstico estadístico producido con el método aditivo de Winter.

 

Tendencia

Si desea forzar (o evitar) que la tendencia hacia arriba o hacia abajo se muestre en el pronóstico, restrinja los métodos elegidos a (o elimine los métodos de) Promedio móvil lineal y Suavizado exponencial doble.

 Suavizado exponencial doble retomará una tendencia a largo plazo. No es una buena opción si hay pocos puntos de datos históricos.

Double exponential smoothing Forecasting method software

Pronóstico estadístico producido con Doble Suavización Exponencial

 

Media móvil lineal recogerá las tendencias a corto plazo. No es una buena opción para datos altamente volátiles.

Linear moving average Forecasting method software

 

Datos no de tendencia y no estacionales
Si desea forzar (o evitar) que se muestre un promedio en el pronóstico, restrinja los métodos elegidos a (o elimine los métodos de) Promedio móvil simple y Suavizado exponencial único.

Suavizado exponencial simple sopesará más los datos más recientes y producirá un pronóstico de línea plana. No es una buena opción para datos de tendencias o estacionales.

Single exponential smoothing Forecasting method software

Pronóstico estadístico utilizando Suavización Exponencial Simple

media móvil simple encontrará un promedio para cada período, a veces pareciendo moverse, y mejor para el promedio a más largo plazo. No es una buena opción para datos de tendencias o estacionales.

Simple moving average Forecasting method software

Pronóstico estadístico utilizando la media móvil simple