Por qué las empresas de MRO deberían preocuparse por el exceso de inventario

¿Las empresas de MRO realmente priorizan la reducción del exceso de inventario de repuestos? Desde un punto de vista organizativo, nuestra experiencia sugiere que no necesariamente. Las discusiones en las salas de juntas generalmente giran en torno a la expansión de flotas, la adquisición de nuevos clientes, el cumplimiento de acuerdos de nivel de servicio (SLA), la modernización de la infraestructura y la maximización del tiempo de actividad. En industrias donde los activos respaldados por repuestos cuestan cientos de millones o generan ingresos significativos (por ejemplo, minería o petróleo y gas), el valor del inventario simplemente no sorprende y las organizaciones tienden a pasar por alto cantidades masivas de inventario excesivo.

Considere una agencia de transporte público. En la mayoría de las ciudades importantes, los presupuestos operativos anuales superarán los $3 mil millones. Los gastos de capital para trenes, vagones de metro e infraestructura pueden alcanzar cientos de millones al año. En consecuencia, un inventario de repuestos valorado en $150 millones podría no captar la atención del director financiero o del director general, ya que representa un pequeño porcentaje del balance. Además, en las industrias basadas en MRO, muchas piezas necesitan soportar flotas de equipos durante una década o más, lo que hace que el stock adicional sea un activo necesario. En algunos sectores, como el de los servicios públicos, incluso se puede incentivar la tenencia de existencias adicionales para garantizar que los equipos se mantengan en buen estado.

Hemos visto surgir preocupaciones sobre el exceso de existencias cuando el espacio del almacén es limitado. Recuerdo que, al principio de mi carrera, fui testigo del patio ferroviario de una agencia de transporte público lleno de ejes oxidados valorados en más de $100.000 cada uno. Me dijeron que los ejes se vieron obligados a quedar expuestos a los elementos debido a la falta de espacio en el almacén. El costo de oportunidad asociado con el espacio consumido por el stock adicional se convierte en una consideración cuando se agota la capacidad del almacén. La consideración principal que prevalece sobre todas las demás decisiones es cómo el stock garantiza altos niveles de servicio para los clientes internos y externos. Los planificadores de inventarios se preocupan mucho más por las consecuencias de los desabastecimientos que por las compras excesivas. Cuando una pieza faltante provoca un incumplimiento del SLA o una línea de producción caída, lo que genera multas millonarias y una producción irrecuperable, es comprensible.

A las empresas con uso intensivo de activos se les escapa un punto importante. Eso es el El stock adicional no protege contra el desabastecimiento; les contribuye. Cuanto más exceso tenga, menor será su nivel general de servicio porque el efectivo necesario para comprar piezas es finito y el efectivo gastado en exceso de existencias significa que no hay efectivo disponible para las piezas que lo necesitan.. Incluso las empresas MRO financiadas con fondos públicos, como las agencias de servicios públicos y de tránsito, reconocen la necesidad de optimizar el gasto, ahora más que nunca. Como compartió un gerente de materiales: “Ya no podemos solucionar los problemas con bolsas de dinero en efectivo de Washington”. Por lo tanto, deben hacer más con menos, asegurando una asignación óptima entre las decenas de miles de piezas que gestionan.

Aquí es donde entra en juego el software de optimización de inventario de última generación, que predice el inventario requerido para niveles de servicio específicos, identifica cuándo los niveles de existencias generan retornos negativos y recomienda reasignaciones para mejorar los niveles de servicio generales. Smart Software ha ayudado a las empresas basadas en MRO con uso intensivo de activos a optimizar los niveles de reorden en cada pieza durante décadas. Llámenos para obtener más información. 

 

 

Soluciones de software para la planificación de repuestos

El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

 

 

Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

 

Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

 

    Juego constructivo con gemelos digitales

    Aquellos de ustedes que siguen temas candentes estarán familiarizados con el término "gemelo digital". Aquellos que han estado demasiado ocupados con el trabajo tal vez quieran seguir leyendo y ponerse al día.

    ¿Qué es un gemelo digital?

    Si bien existen varias definiciones de gemelo digital, aquí hay una que funciona bien:

    Un gemelo digital es una dinámica copia virtual de un activo físico, proceso, sistema o entorno que se parece y se comporta de manera idéntica a su contraparte del mundo real. Un gemelo digital ingiere datos y replica procesos así que puedes predecir posibles resultados de rendimiento y problemas que podría sufrir el producto del mundo real. [Fuente: unidad.com]. Para obtener información adicional, puede visitar Mckinsey.com.

    ¿Cuál es la diferencia entre un gemelo digital (en adelante DT) y un modelo? Principalmente, un DT se conecta a datos en tiempo real para mantener el modelo como una representación actualizada del sistema con el que está trabajando.

    Nuestros productos actuales podrían denominarse “DT en cámara lenta” porque generalmente se usan con datos que no están en tiempo real (aunque no con datos obsoletos, ya que se actualizan durante la noche) y se aplican a problemas como planificar las compras de materias primas del próximo trimestre o establecer parámetros de inventario durante un mes o más.

    ¿La gente utiliza gemelos digitales en mi industria?

    Mi impresión es que la penetración de los DT puede ser mayor en las industrias aeroespacial y nuclear. La mayoría de nuestros clientes están en otros lugares: en la fabricación, la distribución y los servicios públicos como el transporte y la energía. Pronto ofreceremos nuevos productos que se acercarán más a la definición estricta de un DT que está íntimamente conectado con el sistema que representa.

    Vista previa de DT

    La mayoría de los usuarios de Smart Inventory Optimization (SIO) ejecuta la aplicación periódicamente, normalmente mensualmente. SIO analiza la demanda actual de artículos de inventario y los plazos de entrega recientes de los proveedores, convirtiéndolos en escenarios de oferta y demanda, respectivamente. Luego, los usuarios, ya sea de forma interactiva (para artículos individuales) o automáticamente (a escala), establecen parámetros de control de inventario que proporcionarán el rendimiento promedio a largo plazo que desean, equilibrando los objetivos competitivos de minimizar el inventario y al mismo tiempo garantizar un nivel suficiente de disponibilidad de artículos.

    Smart Supply Planner (SSP) opera de forma más inmediata para reaccionar ante contingencias. Cualquier día podría generar un pedido anómalo que aumente la demanda, como cuando un nuevo cliente realiza un pedido de almacenamiento inicial sorprendente. O un proveedor clave podría experimentar un problema en su fábrica y verse obligado a retrasar el envío de sus pedidos de reabastecimiento planificados. A largo plazo, estas contingencias se promedian y justifican las recomendaciones que surgen de SIO. Sin embargo, SSP le brindará una forma de reaccionar a corto plazo para aprovechar oportunidades o esquivar balas.

    En esencia, SSP opera como SIO en el sentido de que está impulsado por escenarios. Las diferencias son que utiliza horizontes de planificación cortos y condiciones iniciales en tiempo real como base para sus simulaciones del desempeño del sistema de inventario. Luego brindará recomendaciones en tiempo real para intervenciones que compensen las perturbaciones causadas por las contingencias. Estos incluirían cancelar o acelerar las órdenes de reabastecimiento.

    Resumen

    Los gemelos digitales le permiten probar planes "in silico" antes de implementarlos en la fábrica o el almacén. En esencia, se encuentran los modelos matemáticos de su operación, pero conectados a datos en tiempo real. Proporcionan una “zona de pruebas digital” en la que puedes probar ideas y obtener predicciones inmediatas sobre qué tan bien funcionarán. Mucho más que una hoja de cálculo, las DT pronto serán la herramienta clave en su caja de herramientas de planificación de inventario.

     

    ¿Estás jugando al juego de adivinar el inventario?

    Algunas empresas invierten en software que les ayude a gestionar su inventario, ya sean repuestos o productos terminados. Pero un número sorprendente de personas juegan el juego de adivinar el inventario todos los días, confiando en un “tripa dorada” imaginario o en la simple suerte para establecer sus parámetros de control de inventario. Pero, ¿qué tipo de resultados espera con ese enfoque?

    ¿Qué tan bueno eres para intuir los valores correctos? Esta publicación de blog lo desafía a adivinar los mejores valores mínimos y máximos para un artículo de inventario hipotético. Le mostraremos su historial de demanda, le brindaremos algunos datos relevantes, luego podrá elegir los valores mínimos y máximos y ver qué tan bien funcionarían. ¿Listo?

    El reto

    La Figura 1 muestra el historial de demanda diaria del artículo. La demanda promedio es de 2 unidades por día. El plazo de reposición es de 10 días constantes (lo cual no es realista pero juega a su favor). Los pedidos que no se pueden completar inmediatamente desde el stock no se pueden retrasar y se pierden. Desea lograr al menos una tasa de cumplimiento de 80%, pero no a cualquier costo. También desea minimizar la cantidad promedio de unidades disponibles y al mismo tiempo lograr al menos una tasa de llenado de 80%. ¿Qué valores mínimos y máximos producirían una tasa de llenado del 80% con el número promedio más bajo de unidades disponibles? [Grabe sus respuestas para comprobarlas más tarde. La solución aparece a continuación, al final del artículo.]

    Are You Playing the Inventory Guessing Game-1

    Calcular los mejores valores mínimos y máximos

    La forma de determinar los mejores valores es utilizar un gemelo digital, también conocido como simulación de Monte Carlo. El análisis crea una multitud de escenarios de demanda y los pasa a través de la lógica matemática del sistema de control de inventario para ver qué valores tomarán los indicadores clave de desempeño (KPI).

    Construimos un gemelo digital para este problema y lo ejercitamos sistemáticamente con 1085 pares de valores mínimos y máximos. Para cada par, simulamos 365 días de funcionamiento un total de 100 veces. Luego promediamos los resultados para evaluar el desempeño del par Mínimo/Máximo en términos de dos KPI: tasa de cumplimiento e inventario disponible promedio.

    La Figura 2 muestra los resultados. La compensación inherente entre el tamaño del inventario y la tasa de cumplimiento es clara en la figura: si desea una tasa de cumplimiento más alta, debe aceptar un inventario más grande. Sin embargo, en cada nivel de inventario hay un rango de tasas de llenado, por lo que el juego consiste en encontrar el par mínimo/máximo que produzca la tasa de llenado más alta para cualquier tamaño de inventario determinado.

    Una forma diferente de interpretar la Figura 2 es centrarse en la línea verde discontinua que marca la tasa de llenado objetivo del 80%. Hay muchos pares Min/Max que pueden alcanzar cerca del objetivo 80%, pero difieren en el tamaño del inventario de aproximadamente 6 a aproximadamente 8 unidades. La Figura 3 amplía esa región de la Figura 2 para mostrar una gran cantidad de pares Mín/Máx que son competitivos.

    Clasificamos los resultados de las 1.085 simulaciones para identificar lo que los economistas llaman la frontera eficiente. La frontera eficiente es el conjunto de pares mínimo/máximo más eficientes para explotar el equilibrio entre la tasa de llenado y las unidades disponibles. Es decir, es una lista de pares mínimo/máximo que proporciona la forma más económica de lograr cualquier tasa de llenado deseada, no solo 80%. La Figura 4 muestra la frontera eficiente para este problema. Moviéndose de izquierda a derecha, puede leer el precio más bajo que tendría que pagar (medido por el tamaño promedio del inventario) para lograr cualquier tasa de cumplimiento objetivo. Por ejemplo, para lograr una tasa de llenado del 90%, tendría que tener un inventario promedio de aproximadamente 10 unidades.

    Las figuras 2, 3 y 4 muestran resultados para varios pares Mín/Máx, pero no muestran los valores de Mín y Máx detrás de cada punto. La Tabla 1 muestra todos los datos de la simulación: los valores mínimo, máximo, unidades promedio disponibles y tasa de llenado. La respuesta al juego de adivinanzas está resaltada en la primera línea de la tabla: Mín=7 y Máx=131. ¿Obtuviste la respuesta correcta o algo parecido?2? ¿Quizás llegaste a la frontera eficiente?

    Conclusiones

    Tal vez tuviste suerte, o tal vez tengas un intestino dorado, pero es más probable que no hayas obtenido la respuesta correcta, y es aún más probable que ni siquiera lo hayas intentado. Encontrar la respuesta correcta es extremadamente difícil sin utilizar el gemelo digital. Adivinar no es profesional.

    Un paso adelante de las conjeturas es “adivinar y ver”, en el que implementas tu conjetura y luego esperas un tiempo (¿meses?) para ver si te gustan los resultados. Esa táctica es al menos “científica”, pero es ineficiente.

    Ahora considere el esfuerzo de encontrar los mejores pares (Min, Max) para miles de artículos. A esa escala, hay aún menos justificación para jugar el Juego de Adivinar el Inventario. La respuesta correcta es jugarlo... Inteligente3.

    1 Esta respuesta tiene una ventaja, ya que logra una tasa de llenado un poco mayor que 80% con un tamaño de inventario promedio más bajo que la combinación Mín./Máx. que alcanzó exactamente 80%. En otras palabras, (7,13) está en la frontera eficiente.

    2 Debido a que estos resultados provienen de una simulación en lugar de una ecuación matemática exacta, existe un cierto margen de error asociado con cada tasa de llenado y nivel de inventario estimados. Sin embargo, debido a que los resultados promedio se basaron en 100 simulaciones cada 365 días, los márgenes de error son pequeños. En todos los experimentos, los errores estándar promedio en la tasa de llenado y el inventario medio fueron, respectivamente, sólo 0,009% y 0,129 unidades.

    3 En caso de que no lo sepas, uno de los fundadores de Smart Software fue... Charlie Smart.

    Are You Playing the Inventory Guessing Game-111

    Are You Playing the Inventory Guessing Game-Table 1

     

    Encontrar su lugar en la curva de compensación

    Acto de equilibrio

    La gestión del inventario, como la gestión de cualquier cosa, implica equilibrar prioridades en competencia. ¿Quieres un inventario ajustado? ¡Sí! ¿Quiere poder decir "Está en stock" cuando un cliente quiere comprar algo? ¡Sí!

    ¿Pero puedes tener ambas cosas? Sólo hasta cierto punto. Si se inclina por inclinar su inventario de manera demasiado agresiva, corre el riesgo de quedarse sin existencias. Si eliminas los desabastecimientos, creas un exceso de inventario. Se ve obligado a encontrar un equilibrio satisfactorio entre los dos objetivos en competencia: un inventario reducido y una alta disponibilidad de artículos.

    Lograr un equilibrio

    ¿Cómo se logra ese equilibrio? Demasiados planificadores de inventarios “intuyen” el camino hacia algún tipo de respuesta. O encuentran una respuesta inteligente una vez y esperan que tenga una fecha de caducidad lejana y sigan usándola mientras se concentran en otros problemas. Desafortunadamente, los cambios en la demanda y/o los cambios en el desempeño de los proveedores y/o los cambios en las prioridades de su propia empresa dejarán obsoletos los viejos planes de inventario y lo devolverán al punto de partida.

    Es inevitable que todo plan tenga una vida útil y deba actualizarse. Sin embargo, definitivamente no es una buena práctica reemplazar una suposición por otra. En cambio, cada ciclo de planificación debería aprovechar el software moderno de la cadena de suministro para reemplazar las conjeturas con análisis basados en hechos utilizando matemáticas de probabilidad.

    Conocete a ti mismo

    Lo único que el software no puede hacer es calcular la mejor respuesta sin conocer sus prioridades. ¿Cuánto prioriza el inventario eficiente sobre la disponibilidad de artículos? El software predecirá los niveles de inventario y disponibilidad causados por cualquier decisión que tome sobre cómo administrar cada artículo en su inventario, pero solo usted puede decidir si un conjunto determinado de indicadores clave de desempeño es consistente con lo que desea.

    Saber lo que quieres en un sentido general es fácil: lo quieres todo. Pero saber qué prefiere al comparar escenarios específicos es más difícil. Es útil poder ver una variedad de posibilidades realizables y reflexionar sobre cuál parece mejor cuando se presentan una al lado de la otra.

    Ver lo que sigue

    El software de cadena de suministro puede brindarle una visión de la curva de compensación. En general, usted sabe que el inventario reducido y la alta disponibilidad de artículos se compensan entre sí, pero ver las curvas de compensación de artículos específicos agudiza su atención.

    ¿Por qué hay una curva? Porque tienes opciones sobre cómo gestionar cada elemento. Por ejemplo, si verifica el estado del inventario continuamente, ¿qué valores asignará a los Mínimo y máximo valores que rigen cuándo pedir reabastecimientos y cuánto pedir. La curva de compensación surge porque elegir diferentes valores mínimos y máximos conduce a diferentes niveles de inventario disponible y diferentes niveles de disponibilidad de artículos, por ejemplo, medidos por tasa de relleno.

     

    Un escenario para el análisis

    Para ilustrar estas ideas, utilicé un gemelo digital  para estimar cómo se comportarían varios valores de Min y Max en un escenario particular. El escenario se centró en una pieza de repuesto teórica con una demanda puramente aleatoria que tenía un nivel moderadamente alto de intermitencia (37% de días con demanda cero). Los plazos de reposición fueron de entre 7 y 14 días. Los valores Min y Max fueron variados sistemáticamente: Min de 20 a 40 unidades, Max de Min+1 unidades a 2xMin unidades. Cada par (Min,Max) se simuló durante 365 días de operación un total de 1000 veces, luego los resultados se promediaron para estimar tanto el número promedio de unidades disponibles como la tasa de cumplimiento, es decir, el porcentaje de demandas diarias que se cumplieron inmediatamente desde existencias. Si no había stock disponible, se encontraba pendiente de entrega.

     

    Resultados

    El experimento produjo dos tipos de resultados:

    • Gráficos que muestran la relación entre los valores mínimos y máximos y dos indicadores clave de rendimiento: tasa de cumplimiento y unidades promedio disponibles.
    • Una curva de compensación que muestra cómo la tasa de cumplimiento y las unidades disponibles se compensan entre sí.

    La Figura 1 muestra el inventario disponible en función de los valores de Min y Max. El experimento arrojó niveles manuales que oscilaban entre cerca de 0 y aproximadamente 40 unidades. En general, mantener Min constante y aumentar Max da como resultado más unidades disponibles. La relación con Min es más compleja: mantener Max constante y aumentar Min primero aumenta el inventario, pero en algún momento lo reduce.

    La Figura 2 muestra la tasa de llenado en función de los valores de Min y Max. El experimento arrojó niveles de tasa de llenado que van desde cerca de 0% hasta 100%. En general, las relaciones funcionales entre la tasa de llenado y los valores de Min y Max reflejaron las de la Figura 1.

    La Figura 3 destaca el punto clave, mostrando cómo variar Min y Max produce un emparejamiento perverso de los indicadores clave de desempeño. En términos generales, los valores de Min y Max que maximizan la disponibilidad del artículo (tasa de cumplimiento) son los mismos valores que maximizan el costo del inventario (unidades promedio disponibles). Este patrón general está representado por la curva azul. Los experimentos también produjeron algunas ramificaciones de la curva azul que están asociadas con malas elecciones de Min y Max, en el sentido de que otras opciones las dominan al producir la misma tasa de cumplimiento con un inventario más bajo.

     

    Conclusiones

    La Figura 3 deja en claro que su elección de cómo administrar un artículo del inventario lo obliga a equilibrar el costo del inventario y la disponibilidad del artículo. Puede evitar algunas combinaciones ineficientes de valores mínimos y máximos, pero no puede escapar de la compensación.

    El lado bueno de esta realidad es que no tienes que adivinar qué sucederá si cambias tus valores actuales de Min y Max por otros. El software le dirá cuánto le permitirá comprar esa mudanza y cuánto le costará. Puedes quitarte el sombrero de Guestimator y hacer lo tuyo con confianza.

    Figure 1 On Hand Inventory as a function of Min and Max values

    Figura 1 Inventario disponible en función de los valores mínimos y máximos

     

     

    Figure 2 Fill Rate as a function of Min and Max values

    Figura 2 Tasa de llenado en función de los valores mínimo y máximo

     

     

    Figure 3 Tradeoff curve between Fill Rate and On Hand Inventory

    Figura 3 Curva de compensación entre tasa de cumplimiento e inventario disponible

     

     

     

    Directo al cerebro del jefe: análisis e informes de inventario

    Empezaré con una confesión: soy un tipo de algoritmos. Mi corazón vive en la “sala de máquinas” de nuestro software, donde los cálculos ultrarrápidos van y vienen a través de la nube de AWS, generando escenarios de oferta y demanda que se utilizan para guiar decisiones importantes sobre el pronóstico de la demanda y la gestión de inventario.

    Pero reconozco que el objetivo de todo ese hermoso y furioso cálculo es el cerebro del jefe, la persona responsable de garantizar que la demanda de los clientes se satisfaga de la manera más eficiente y rentable. Entonces, este blog trata sobre Analítica operativa inteligente (SOA), que crea informes para la gestión. O, como se les llama en el ejército, sit-reps.

    Todos los cálculos guiados por los planificadores que utilizan nuestro software finalmente se resumen en los informes SOA para la gestión. Los informes se centran en cinco áreas: análisis de inventario, desempeño del inventario, tendencias del inventario, desempeño de los proveedores y anomalías de la demanda.

    Análisis de inventario

    Estos informes controlan los niveles actuales de inventario e identifican áreas que necesitan mejoras. La atención se centra en los recuentos de inventario actuales y su estado (disponible, en tránsito, en cuarentena), rotación de inventario y excesos frente a escasez.

    Rendimiento del inventario

    Estos informes rastrean indicadores clave de rendimiento (KPI), como tasas de cumplimiento, niveles de servicio y costos de inventario. Los cálculos analíticos en otras partes del software lo guían hacia el logro de sus objetivos de KPI mediante el cálculo de predicciones clave de rendimiento (KPP) basadas en configuraciones recomendadas para, por ejemplo, puntos de reorden y cantidades de pedidos. Pero a veces ocurren sorpresas o las políticas operativas no se ejecutan según lo recomendado, por lo que siempre habrá algún desfase entre los KPP y los KPI.

    Tendencias del inventario

    Saber dónde están las cosas hoy es importante, pero también es valioso ver dónde están las tendencias. Estos informes revelan tendencias en la demanda de artículos, eventos de desabastecimiento, días promedio disponibles, tiempo promedio de envío y más.

    Rendimiento de los proveedores

    Su empresa no puede rendir al máximo si sus proveedores la están hundiendo. Estos informes monitorean el desempeño de los proveedores en términos de la precisión y rapidez en el cumplimiento de los pedidos de reabastecimiento. Cuando tienes varios proveedores para el mismo artículo, te permiten compararlos.

    Anomalías de la demanda

    Todo su sistema de inventario está impulsado por la demanda y todos los parámetros de control de inventario se calculan después de modelar la demanda de los artículos. Entonces, si sucede algo extraño en el lado de la demanda, debe estar atento y prepararse para volver a calcular cosas como mínimos y máximos para elementos que comienzan a actuar de manera extraña.

    Resumen

    El punto final de todos los cálculos masivos de nuestro software es el panel que muestra a la administración qué está pasando, qué sigue y dónde centrar la atención. Smart Inventory Analytics es la parte de nuestro ecosistema de software dirigido al C-Suite de su empresa.

     Smart Reporting Studio Inventory Management Supply Software

    Figura 1: Algunos informes de muestra en forma gráfica

     

    Necesitas formar equipo con los algoritmos

    Hace más de cuarenta años, Smart Software estaba formada por tres amigos que trabajaban para iniciar una empresa en el sótano de una iglesia. Hoy, nuestro equipo se ha expandido para operar desde múltiples ubicaciones en Massachusetts, New Hampshire y Texas, con miembros del equipo en Inglaterra, España, Armenia e India. Como muchos de ustedes en sus trabajos, hemos encontrado formas de hacer que los equipos distribuidos trabajen para nosotros y para usted.

    Esta nota trata sobre un tipo diferente de trabajo en equipo: la colaboración entre usted y nuestro software que ocurre al alcance de su mano. A menudo escribo sobre el software en sí y lo que sucede "debajo del capó". Esta vez, mi tema es cuál es la mejor forma de asociarse con el software.

    Nuestro paquete de software, Smart Inventory Planning and Optimization (Smart IP&O™) es capaz de realizar cálculos enormemente detallados de la demanda futura y los parámetros de control de inventario (por ejemplo, puntos de reorden y cantidades de pedidos) que administrarían esa demanda de manera más efectiva. Pero se requiere su participación para aprovechar al máximo todo ese poder. Necesitas formar equipo con los algoritmos.

    Esa interacción puede adoptar varias formas. Puede comenzar simplemente evaluando cómo se encuentra ahora. Las funciones de redacción de informes en Smart IP&O (Smart Operational Analytics™) pueden recopilar y analizar todos sus datos transaccionales para medir sus indicadores clave de rendimiento (KPI), tanto financieros (por ejemplo, inversión en inventario) como operativos (por ejemplo, tasas de cumplimiento).

    El siguiente paso podría ser utilizar SIO (Smart Inventory Optimization™), el análisis de inventario dentro de SIP&O, para jugar juegos de “qué pasaría si” con el software. Por ejemplo, podría preguntar "¿Qué pasaría si redujéramos la cantidad del pedido del artículo 1234 de 50 a 40?" El software calcula los números para hacerle saber cómo se desarrollaría y luego usted reacciona. Esto puede resultar útil, pero ¿qué pasa si tienes que considerar 50.000 elementos? Querría hacer juegos hipotéticos para algunos elementos críticos, pero no para todos.

    El verdadero poder proviene del uso de la capacidad de optimización automática en SIO. Aquí puedes formar equipo con los algoritmos a escala. Utilizando su criterio empresarial, puede crear "grupos", es decir, colecciones de elementos que comparten algunas características críticas. Por ejemplo, podría crear un grupo para “repuestos críticos para clientes de servicios eléctricos” que consta de 1200 piezas. Luego, recurriendo nuevamente a su criterio comercial, podría especificar qué estándar de disponibilidad de artículos debe aplicarse a todos los artículos de ese grupo (por ejemplo, “al menos 95% de posibilidades de no desabastecerse en un año”). Ahora el software puede tomar el control y calcular automáticamente los mejores puntos de reorden y cantidades de pedidos para cada uno de esos artículos para lograr la disponibilidad de artículos requerida al menor costo total posible. Y eso, querido lector, es un poderoso trabajo en equipo.