Una guía práctica para desarrollar un proceso de pronóstico profesional

Muchas empresas que buscan mejorar su proceso de pronóstico no saben por dónde empezar. Puede ser confuso lidiar con el aprendizaje de nuevos métodos estadísticos, asegurarse de que los datos estén correctamente estructurados y actualizados, acordar quién es el "propietario" del pronóstico, definir qué significa propiedad y medir la precisión. Habiendo visto esto durante más de cuarenta años de práctica, escribimos este blog para delinear el enfoque central y alentarlo a mantenerlo simple desde el principio.

1. Objetividad. Primero, comprenda y comunique que el proceso de Planificación y Pronóstico de la Demanda es un ejercicio de objetividad. El enfoque está en obtener aportes de varias fuentes (partes interesadas, clientes, gerentes funcionales, bases de datos, proveedores, etc.) y decidir si esos aportes agregan valor. Por ejemplo, si anula un pronóstico estadístico y agrega 20% a la proyección, no debe simplemente asumir que lo hizo correctamente automáticamente. En su lugar, sea objetivo y verifique si eso anula el aumento o la disminución de la precisión del pronóstico. Si descubre que sus anulaciones empeoraron las cosas, ha ganado algo: esto informa el proceso y sabe cómo analizar mejor las decisiones de anulación en el futuro.

2. Trabajo en equipo. Reconocer que la previsión y la planificación de la demanda son deportes de equipo. Acuerde quién será el capitán del equipo. El capitán es responsable de crear los pronósticos estadísticos de referencia y de supervisar el proceso de planificación de la demanda. Pero los resultados dependen de que todos los miembros del equipo realicen contribuciones positivas, proporcionen datos, sugieran metodologías alternativas, cuestionen las suposiciones y ejecuten las acciones recomendadas. Los resultados finales son propiedad de la empresa y de cada una de las partes interesadas.

3. Medición. No se obsesione con los puntos de referencia de precisión de los pronósticos de la industria. Cada SKU tiene su propio nivel de "previsibilidad", y es posible que esté gestionando cualquier número de elementos difíciles. En su lugar, cree sus propios puntos de referencia basados en una secuencia de métodos de pronóstico cada vez más avanzados. Los pronósticos estadísticos avanzados pueden parecer abrumadoramente complejos al principio, así que comience de manera simple con un método básico, como pronosticar la demanda promedio histórica. Luego, mida qué tan cerca está ese pronóstico simple de la demanda real observada. A partir de ahí, desarrolle técnicas que se ocupen de complicaciones como la tendencia y la estacionalidad. Mida el progreso utilizando métricas de precisión calculadas por su software, como el error porcentual absoluto medio (MAPE). Esto permitirá que su empresa mejore un poco cada ciclo de pronóstico.

4. Tiempo. Luego concentre sus esfuerzos en hacer que la previsión sea un proceso independiente que no se combine con el complejo proceso de optimización del inventario. La gestión de inventario se basa en una sólida previsión de la demanda, pero se centra en otros temas: qué comprar, cuándo comprar, cantidades mínimas de pedido, existencias de seguridad, niveles de inventario, plazos de entrega de los proveedores, etc. Deje que la gestión de inventario pase a más adelante . Primero construya "músculo de pronóstico" creando, revisando y evolucionando el proceso de pronóstico para tener una cadencia regular. Cuando su proceso haya madurado lo suficiente, póngase al día con la velocidad creciente de los negocios aumentando el ritmo de su proceso de previsión a una cadencia mensual como mínimo.

Observaciones

Revisar el proceso de previsión de una empresa puede ser un paso importante. A veces sucede cuando hay rotación de ejecutivos, a veces cuando hay un nuevo sistema ERP, a veces cuando hay un nuevo software de pronóstico. Cualquiera que sea el evento precipitante, este cambio es una oportunidad para repensar y refinar cualquier proceso que haya tenido antes. Pero tratar de comerse todo el elefante de una sola vez es un error. En este blog, describimos algunos pasos discretos que puede seguir para lograr una evolución exitosa hacia un mejor proceso de pronóstico.

 

 

 

 

Todo el mundo pronostica para impulsar la planificación del inventario. Es solo una cuestión de cómo.

Descubra cómo se utilizan los pronósticos con estas 4 preguntas.

A menudo, las empresas insisten en que "no usan pronósticos" para planificar el inventario. A menudo usan métodos de punto de pedido y tienen dificultades para mejorar la entrega a tiempo, la rotación de inventario y otros KPI. Si bien no piensan en lo que están haciendo como un pronóstico explícito, ciertamente usan estimaciones de la demanda futura para desarrollar puntos de reorden como mínimo/máximo.

Independientemente de cómo se llame, todo el mundo trata de estimar la demanda futura de alguna manera y utiliza esta estimación para establecer políticas de almacenamiento e impulsar pedidos. Para mejorar la planificación del inventario y asegurarse de no realizar pedidos excesivos o insuficientes y crear grandes desabastecimientos e hinchazón del inventario, es importante comprender exactamente cómo utiliza su organización las previsiones. Una vez que comprenda esto, puede evaluar si se puede mejorar la calidad de los pronósticos.

Intente obtener respuestas a las siguientes preguntas. Revelará cómo se utilizan las previsiones en su empresa, incluso si cree que no utiliza previsiones.

1. ¿Es su pronóstico una estimación período por período a lo largo del tiempo que se usa para predecir qué inventario disponible habrá en el futuro y desencadena sugerencias de pedidos en su sistema ERP?

2. ¿O se usa su pronóstico para derivar un punto de reorden pero no se usa explícitamente como un controlador por período para generar órdenes? Aquí, puedo predecir que venderemos 10 por semana según el historial, pero no estamos cargando 10, 10, 10, 10, etc., en el ERP. En su lugar, derivo un punto de reorden o Mín. que cubre el tiempo de entrega de dos períodos + cierta cantidad de reserva para ayudar a proteger contra el agotamiento de existencias. En este caso, pediré más cuando llegue a 25.

3. ¿Su pronóstico se usa como una guía para que el planificador ayude a determinar subjetivamente cuándo debe ordenar más? Aquí, predigo 10 por semana y evalúo el inventario disponible periódicamente, reviso el tiempo de entrega esperado y decido, dadas las 40 unidades que tengo disponibles hoy, que tengo "suficiente". Por lo tanto, no hago nada ahora, pero volveré a consultar en una semana.

4. ¿Se utiliza para configurar pedidos abiertos con proveedores? Aquí, predigo 10 por semana y acepto una orden de compra general con el proveedor de 520 por año. Luego, los pedidos se hacen con anticipación para que lleguen en cantidades de 10 una vez por semana hasta que se consuma el pedido general.

Una vez que obtenga las respuestas, puede preguntar cómo se crean las estimaciones de la demanda. ¿Es un promedio? ¿Está derivando la demanda sobre el tiempo de entrega a partir de un pronóstico de ventas? ¿Hay un pronóstico estadístico generado en alguna parte? ¿Qué métodos se consideran? También será importante evaluar cómo se utilizan las existencias de seguridad para protegerse contra la variabilidad de la oferta y la demanda. Más sobre todo esto en un próximo artículo.

 

Correlación frente a causalidad: ¿es esto relevante para su trabajo?

Fuera del trabajo, es posible que haya escuchado el famoso dicho "Correlación no es causalidad". Puede sonar como una tontería teórica que, aunque involucrada en un Premio Noble reciente en economía, no es relevante para su trabajo como planificador de la demanda. De ser así, es posible que solo tengas razón en parte.

Modelos extrapolativos vs causales

La mayoría de los pronósticos de demanda utilizan modelos extrapolativos. También llamados modelos de series de tiempo, estos pronostican la demanda usando solo los valores pasados de la demanda de un artículo. Los gráficos de valores pasados revelan la tendencia, la estacionalidad y la volatilidad, por lo que son buenos para muchas cosas. Pero existe otro tipo de modelo, los modelos causales, que potencialmente pueden mejorar la precisión de los pronósticos más allá de lo que puede obtener de los modelos extrapolativos.

Los modelos causales aportan más datos de entrada a la tarea de previsión: información sobre supuestos "impulsores" de previsión externos al historial de demanda de un artículo. Los ejemplos de factores causales potencialmente útiles incluyen variables macroeconómicas como la tasa de inflación, la tasa de crecimiento del PIB y los precios de las materias primas. Los ejemplos que no están vinculados a la economía nacional incluyen las tasas de crecimiento específicas de la industria y el gasto publicitario propio y de la competencia. Estas variables generalmente se utilizan como entradas para los modelos de regresión, que son ecuaciones con la demanda como salida y variables causales como entradas.

Pronóstico utilizando modelos causales

Muchas empresas tienen un proceso S&OP que implica una revisión mensual de pronósticos estadísticos (extrapolativos) en los que la gerencia ajusta los pronósticos según su criterio. A menudo, esta es una forma indirecta y subjetiva de trabajar con modelos causales en el proceso sin hacer el modelo de regresión.

Para hacer realmente un modelo de regresión causal, primero debe designar una lista de variables predictoras causales potencialmente útiles. Estos pueden provenir de su experiencia en la materia. Por ejemplo, suponga que fabrica vidrio para ventanas. Gran parte de su vidrio puede terminar en casas nuevas y edificios de oficinas nuevos. Por lo tanto, la cantidad de casas y oficinas nuevas que se están construyendo son variables predictoras plausibles en una ecuación de regresión.

Aquí hay una complicación: si está usando la ecuación para predecir algo, primero debe predecir los predictores. Por ejemplo, las ventas de vidrio del próximo trimestre pueden estar fuertemente relacionadas con el número de viviendas nuevas y edificios de oficinas nuevos el próximo trimestre. Pero, ¿cuántas casas nuevas habrá el próximo trimestre? Ese es su propio problema de pronóstico. Entonces, tiene un modelo de pronóstico potencialmente poderoso, pero tiene trabajo adicional que hacer para que sea utilizable.

Hay una forma de simplificar las cosas: si las variables predictoras son versiones "retrasadas" de sí mismas. Por ejemplo, la cantidad de nuevos permisos de construcción emitidos hace seis meses puede ser un buen predictor de las ventas de vidrio el próximo mes. No tiene que predecir los datos del permiso de construcción, solo tiene que buscarlos.

¿Es una relación causal o simplemente una correlación espuria?

Los modelos causales son el verdadero negocio: hay un mecanismo real que relaciona la variable predictora con la variable predicha. El ejemplo de predecir las ventas de vidrio a partir de los permisos de construcción es un ejemplo.

Una relación de correlación es más dudosa. Existe una asociación estadística que puede o no proporcionar una base sólida para la previsión. Por ejemplo, suponga que vende un producto que atrae más a los holandeses pero no se da cuenta. Los holandeses son, en promedio, las personas más altas de Europa. Si sus ventas están aumentando y la altura promedio de los europeos está aumentando, puede usar esa relación con buenos resultados. Sin embargo, si la proporción de holandeses en la zona euro está disminuyendo mientras que la estatura promedio está aumentando porque la mezcla de hombres versus mujeres se está desplazando hacia los hombres, ¿qué puede salir mal? Esperará que las ventas aumenten porque la estatura promedio está aumentando. Pero sus ventas son principalmente a los holandeses, y su proporción relativa de la población se está reduciendo, por lo que sus ventas realmente van a disminuir. En este caso, la asociación entre las ventas y la altura del cliente es una correlación espuria.

¿Cómo se puede saber la diferencia entre relaciones verdaderas y espurias? El estándar de oro es hacer un experimento científico riguroso. Pero no es probable que esté en condiciones de hacerlo. En cambio, debe confiar en su “modelo mental” personal de cómo funciona su mercado. Si sus corazonadas son correctas, entonces sus modelos causales potenciales se correlacionarán con la demanda y los modelos causales le darán sus frutos, ya sea para complementar los modelos extrapolables o para reemplazarlos.

 

 

 

 

Tipos de problemas de pronóstico que ayudamos a resolver

Estos son ejemplos de problemas de pronóstico que SmartForecasts puede resolver, junto con los tipos de datos comerciales representativos de cada uno.

Pronosticar un artículo en función de su patrón

Dadas las siguientes seis cifras de ventas trimestrales, ¿qué ventas puede esperar para el tercer y cuarto trimestre de 2023?

Forecasting an item based on its pattern

Ventas por Trimestre

SmartForecasts le brinda muchas formas de abordar este problema. Puede hacer sus propios pronósticos estadísticos utilizando cualquiera de los seis Suavizado exponencial y media móvil métodos. O, como la mayoría de los pronosticadores no técnicos, puede usar el comando Automático que ahorra tiempo, que ha sido programado para seleccionar y usar automáticamente el método más preciso para sus datos. Finalmente, para incorporar su juicio comercial en el proceso de pronóstico, puede ajustar gráficamente cualquier resultado de pronóstico estadístico usando SmartForecasts. ajuste de "globo ocular" capacidades.

 

Pronosticar un artículo en función de su relación con otras variables.

Dada la siguiente relación histórica entre las ventas de unidades y la cantidad de representantes de ventas, ¿qué niveles de ventas puede esperar cuando se produzca el aumento planificado del personal de ventas durante los dos últimos trimestres de 2023?

Forecasting an item based on its relationship to other variables.

Ventas y Representantes de Ventas por Trimestre

Puede responder una pregunta como esta usando el poderoso SmartForecasts Regresión comando, diseñado específicamente para facilitar las aplicaciones de pronóstico que requieren soluciones de análisis de regresión. Los modelos de regresión con un número esencialmente ilimitado de variables predictoras/independientes son posibles, aunque la mayoría de los modelos de regresión útiles usan solo un puñado de predictores.

 

Pronosticar simultáneamente una cantidad de artículos de productos y su total

Dadas las siguientes ventas totales de todas las camisas de vestir y la distribución de las ventas por color, ¿cuáles serán las ventas individuales y totales durante los próximos seis meses?

Forecasting an item based on its relationship to other variables.

Ventas mensuales de camisas de vestir por color

Las funciones exclusivas de pronóstico de grupo de SmartForecasts pronostican automática y simultáneamente series de tiempo estrechamente relacionadas, como estos artículos en el mismo grupo de productos. Esto ahorra un tiempo considerable y proporciona resultados de pronóstico no solo para los artículos individuales sino también para su total. Los ajustes de "ojo" tanto a nivel de elemento como de grupo son fáciles de realizar. Puede crear rápidamente pronósticos para grupos de productos con cientos o incluso miles de artículos.

 

Pronóstico de miles de artículos automáticamente

Dado el siguiente registro de demanda de productos a nivel de SKU, ¿cuál puede esperar que sea la demanda durante los próximos seis meses para cada uno de los 5000 SKU?

Forecasting thousands of items automatically

Demanda Mensual de Producto por SKU (Unidad de Mantenimiento de Stock)

En solo unos minutos, la poderosa selección automática de SmartForecasts puede realizar un trabajo de pronóstico de este tamaño, leer los datos de demanda del producto, crear automáticamente pronósticos estadísticos para cada SKU y guardar el resultado. Los resultados están listos para exportarlos a su sistema ERP aprovechando cualquiera de nuestros conectores basados en API o mediante la exportación de archivos. Una vez configurados, los pronósticos se producirán automáticamente en cada ciclo de planificación sin la intervención del usuario.

 

Pronosticar la demanda que en la mayoría de los casos es cero

Un tipo de datos distinto y especialmente desafiante para pronosticar es intermitente demanda, que suele ser cero, pero salta a valores aleatorios distintos de cero en momentos aleatorios. Este patrón es típico de la demanda de lento Moviente artículos, tales como repuestos o grande boleto bienes de equipo.

Por ejemplo, considere la siguiente muestra de demanda de repuestos para aeronaves. Tenga en cuenta la preponderancia de valores cero mezclados con valores distintos de cero, a menudo en ráfagas.

Forecasting demand that is most often zero

SmartForecasts tiene un método único diseñado especialmente para este tipo de datos: la función de pronóstico de Demanda Intermitente. Dado que la demanda intermitente surge con mayor frecuencia en el contexto del control de inventario, esta función se enfoca en pronosticar el rango de valores probables para la demanda total durante un tiempo de anticipación, por ejemplo, la demanda acumulada durante el período del 23 de junio al 23 de agosto en el ejemplo anterior. .

 

Pronóstico de requisitos de inventario

La previsión de necesidades de inventario es una variante especializada de la previsión que se centra en el extremo superior del rango de valores futuros posibles.

Para simplificar, considere el problema de pronosticar los requisitos de inventario para solo un período por delante, digamos un día por delante. Por lo general, el trabajo de pronóstico consiste en estimar el nivel promedio o más probable de demanda del producto. Sin embargo, si el inventario disponible es igual a la demanda promedio, existe una probabilidad de 50% de que la demanda supere el inventario, lo que resultará en pérdida de ventas y/o pérdida de buena voluntad. Establecer el nivel de inventario en, digamos, diez veces la demanda promedio probablemente eliminará el problema de los desabastecimientos, pero seguramente resultará en costos de inventario inflados.

El truco de la optimización del inventario es encontrar un equilibrio satisfactorio entre tener suficiente inventario para satisfacer la mayor parte de la demanda sin comprometer demasiados recursos en el proceso. Por lo general, la solución es una combinación de criterio empresarial y estadísticas. La parte crítica es definir un nivel de servicio de inventario aceptable, como satisfacer 95% de demanda inmediatamente desde el stock. La parte estadística es estimar el percentil 95 de la demanda.

Cuando no se trata de demanda intermitente, SmartForecasts estima el nivel de inventario requerido asumiendo una curva de demanda en forma de campana (Normal), estimando tanto el centro como el ancho de la curva de campana y luego usando una fórmula estadística estándar para estimar el percentil deseado. La diferencia entre el nivel de inventario deseado y el nivel promedio de demanda se denomina stock de seguridad porque protege contra la posibilidad de desabastecimiento.

Cuando se trata de demanda intermitente, la curva en forma de campana es una mala aproximación a la distribución estadística de la demanda. En este caso especial, SmartForecasts utiliza tecnología patentada de pronóstico de demanda intermitente para estimar el nivel de servicio de inventario requerido.

 

 

Tres formas de estimar la precisión del pronóstico

La precisión del pronóstico es una métrica clave para juzgar la calidad de su proceso de planificación de la demanda. (No es el único. Otros incluyen oportunidad y costo; Ver 5 consejos de planificación de la demanda para calcular la incertidumbre del pronóstico.) Una vez que tenga los pronósticos, hay varias formas de resumir su precisión, generalmente designados por acrónimos oscuros de tres o cuatro letras como MAPE, RMSE y MAE. Ver Cuatro formas útiles de medir el error de pronóstico para más detalles.

Un tema menos discutido pero más fundamental es cómo se organizan los experimentos computacionales para calcular el error de pronóstico. Esta publicación compara los tres diseños experimentales más importantes. Uno de ellos es de la vieja escuela y esencialmente equivale a hacer trampa. Otro es el patrón oro. Un tercero es un recurso útil que imita el patrón oro y se considera mejor como una predicción de cómo resultará el patrón oro. La figura 1 es una vista esquemática de los tres métodos.

 

Three Ways to Estimate Forecast Accuracy Software Smart

Figura 1: Tres formas de evaluar el error de pronóstico

 

El panel superior de la Figura 1 muestra la forma en que se evaluó el error de pronóstico a principios de la década de 1980 antes de que moviéramos el estado del arte al esquema que se muestra en el panel central. En los viejos tiempos, los pronósticos se evaluaban con los mismos datos que se usaban para calcular los pronósticos. Después de ajustar un modelo a los datos, los errores calculados no eran para los pronósticos del modelo sino para el modelo. encaja. La diferencia es que los pronósticos son para valores futuros, mientras que los ajustes son para valores concurrentes. Por ejemplo, suponga que el modelo de pronóstico es un promedio móvil simple de las tres observaciones más recientes. En el momento 3, el modelo calcula el promedio de las observaciones 1, 2 y 3. Este promedio luego se compararía con el valor observado en el momento 3. Llamamos a esto hacer trampa porque el valor observado en el momento 3 obtuvo un voto sobre el pronóstico. debería ser en el momento 3. Una evaluación de pronóstico real compararía el promedio de las primeras tres observaciones con el valor del próximo, cuarto, observación. De lo contrario, el pronosticador se queda con una evaluación demasiado optimista de la precisión del pronóstico.

El panel inferior de la Figura 1 muestra la mejor manera de evaluar la precisión del pronóstico. En este esquema, todos los datos históricos de demanda se utilizan para ajustar un modelo, que luego se utiliza para pronosticar valores de demanda futuros desconocidos. Eventualmente, el futuro se desarrolla, los verdaderos valores futuros se revelan y se pueden calcular los errores de pronóstico reales. Este es el estándar de oro. Esta información completa el informe de "pronósticos versus datos reales" en nuestro software.

El panel central representa una medida intermedia útil. El problema con el patrón oro es que debe esperar para saber qué tan bien funcionan los métodos de pronóstico elegidos. Este retraso no ayuda cuando se requiere elegir, en el momento, qué método de pronóstico usar para cada artículo. Tampoco proporciona una estimación oportuna de la incertidumbre del pronóstico que experimentará, lo cual es importante para la gestión de riesgos, como la cobertura del pronóstico. El camino intermedio se basa en el análisis de exclusión, que excluye (“excluye”) las observaciones más recientes y le pide al método de pronóstico que haga su trabajo sin conocer esas verdades fundamentales. Luego, los pronósticos basados en el historial de demanda abreviado se pueden comparar con los valores reales retenidos para obtener una evaluación honesta del error de pronóstico.

 

 

Lo que Silicon Valley Bank puede aprender de la planificación de la cadena de suministro

Si últimamente tenías la cabeza en alto, es posible que hayas notado alguna locura adicional fuera de la cancha de baloncesto: el fracaso del Silicon Valley Bank. Aquellos de nosotros en el mundo de la cadena de suministro tal vez hayamos descartado la quiebra del banco como un problema de otra persona, pero ese lamentable episodio también contiene una gran lección para nosotros: la importancia de hacer bien las pruebas de estrés.

Él El Correo de Washington Recientemente se publicó un artículo de opinión de Natasha Sarin llamado “Los reguladores se perdieron los problemas de Silicon Valley Bank durante meses. Este es el por qué." Sarin describió las fallas en el régimen de pruebas de estrés impuesto al banco por la Reserva Federal. Un problema es que las pruebas de estrés son demasiado estáticas. El factor de estrés de la Fed para el crecimiento del PIB nominal fue un escenario único que enumeraba valores supuestos durante los próximos 13 trimestres (ver Figura 1). Esas 13 proyecciones trimestrales pueden ser la opinión consensuada de alguien sobre cómo se vería un mal día para el cabello, pero esa no es la única forma en que podrían desarrollarse las cosas. Como sociedad, se nos enseña a apreciar una mejor manera de mostrar las contingencias cada vez que el Servicio Meteorológico Nacional nos muestra las trayectorias proyectadas de los huracanes (consulte la Figura 2). Cada escenario representado por una línea de color diferente muestra una posible trayectoria de tormenta, y las líneas concentradas representan la más probable. Al exponer las rutas de menor probabilidad, se mejora la planificación de riesgos.

Al realizar pruebas de estrés en la cadena de suministro, necesitamos escenarios realistas de posibles demandas futuras que podrían ocurrir, incluso demandas extremas. Smart proporciona esto en nuestro software (con mejoras considerables en nuestros métodos Gen2). El software genera una gran cantidad de escenarios de demanda creíbles, suficientes para exponer el alcance completo de los riesgos (consulte la Figura 3). Las pruebas de estrés tienen que ver con la generación de cantidades masivas de escenarios de planificación, y los métodos probabilísticos de Smart son una desviación radical de las aplicaciones S&OP deterministas anteriores, ya que se basan completamente en escenarios.

La otra falla en las pruebas de estrés de la Fed fue que fueron diseñadas con meses de anticipación pero nunca actualizadas para las condiciones cambiantes. Los planificadores de la demanda y los gerentes de inventario aprecian intuitivamente que las variables clave como la demanda de artículos y el tiempo de entrega del proveedor no solo son muy aleatorias, incluso cuando las cosas son estables, sino que también están sujetas a cambios abruptos que deberían requerir una reescritura rápida de los escenarios de planificación (consulte la Figura 4, donde la demanda promedio salta dramáticamente entre las observaciones 19 y 20). Los productos Gen2 de Smart incluyen nueva tecnología para detectar tales "cambios de régimen” y cambiando automáticamente los escenarios en consecuencia.

Los bancos se ven obligados a someterse a pruebas de estrés, por muy defectuosas que sean, para proteger a sus depositantes. Los profesionales de la cadena de suministro ahora tienen una manera de proteger sus cadenas de suministro mediante el uso de un software moderno para realizar pruebas de estrés de sus planes de demanda y decisiones de gestión de inventario.

1 Scenarios used the Fed to stress test banks Software

Figura 1: Escenarios utilizados por la Fed para hacer pruebas de estrés a los bancos.

 

2 Scenarios used by the National Weather Service to predict hurricane tracks

Figura 2: Escenarios utilizados por el Servicio Meteorológico Nacional para predecir las trayectorias de los huracanes

 

3 Demand scenarios of the type generated by Smart Demand Planner

Figura 3: Escenarios de demanda del tipo generado por Smart Demand Planner

 

4 Example of regime change in product demand after observation #19

Figura 4: Ejemplo de cambio de régimen en la demanda del producto después de la observación #19