Dominar el pronóstico automático para datos de series temporales

En este blog, analizaremos el pronóstico automático para proyecciones de demanda de series temporales, centrándonos en técnicas, desafíos y mejores prácticas clave. Existen múltiples métodos para predecir la demanda futura de un artículo, y esto se vuelve complejo cuando se trata de miles de artículos, cada uno de los cuales requiere una técnica de pronóstico diferente debido a sus patrones de demanda únicos. Algunos artículos tienen una demanda estable, otros tienen una tendencia al alza o a la baja y algunos presentan estacionalidad. Seleccionar el método correcto para cada elemento puede resultar abrumador. Aquí exploraremos cómo la previsión automática simplifica este proceso.

La previsión automática se vuelve fundamental en la gestión de proyecciones de demanda a gran escala. Con miles de elementos, no resulta práctico seleccionar manualmente un método de pronóstico para cada uno. La previsión automática utiliza software para tomar estas decisiones, garantizando precisión y eficiencia en el proceso de previsión. Su importancia radica en su capacidad para manejar de manera eficiente necesidades de pronóstico complejas y a gran escala. Elimina la necesidad de selección manual, ahorrando tiempo y reduciendo errores. Este enfoque es particularmente beneficioso en entornos con diversos patrones de demanda, donde cada artículo puede requerir un método de pronóstico diferente.

 

Consideraciones clave para una previsión eficaz

  1. Desafíos de la previsión manual:
    • Inviabilidad: Elegir manualmente métodos de pronóstico para miles de artículos es inmanejable.
    • Inconsistencia: el error humano puede generar pronósticos inconsistentes e inexactos.
  2. Criterios para la selección del método:
    • Medición de errores: el criterio principal para seleccionar un método de pronóstico es el error de pronóstico típico, definido como la diferencia entre los valores previstos y reales. Este error se promedia a lo largo del horizonte de pronóstico (por ejemplo, pronósticos mensuales durante un año).
    • Análisis de reserva: esta técnica simula el proceso de esperar a que transcurra un año ocultando algunos datos históricos, haciendo pronósticos y luego revelando los datos ocultos para calcular errores. Esto ayuda a elegir el mejor método en tiempo real.
  3. Torneo de pronóstico:
    • Comparación de métodos: diferentes métodos compiten para pronosticar cada elemento, ganando el método que produce el error promedio más bajo.
    • Ajuste de parámetros: cada método se prueba con varios parámetros para encontrar la configuración óptima. Por ejemplo, se puede intentar un suavizado exponencial simple con diferentes factores de ponderación.

 

Los algoritmos detrás de la previsión automática eficaz

La previsión automática es altamente computacional pero factible con tecnología moderna. El proceso implica:

  • Segmentación de datos: Dividir los datos históricos en segmentos ayuda a gestionar y aprovechar diferentes aspectos de los datos históricos para realizar pronósticos más precisos. Por ejemplo, para un producto con demanda estacional, los datos pueden segmentarse por temporadas para capturar tendencias y patrones específicos de cada temporada. Esta segmentación permite a los pronosticadores hacer y probar pronósticos de manera más efectiva.
  • Simulaciones repetidas: El uso de simulaciones deslizantes implica probar y refinar pronósticos repetidamente durante diferentes períodos. Este método valida la precisión de los métodos de pronóstico aplicándolos a diferentes segmentos de datos. Un ejemplo es el método de ventana deslizante, donde una ventana de tamaño fijo se mueve a través de los datos de la serie temporal, generando pronósticos para cada posición para evaluar el desempeño.
  • Optimización de parámetros: La optimización de parámetros implica probar múltiples variantes de cada método de pronóstico para encontrar el que tenga mejor rendimiento. Al ajustar parámetros, como el factor de suavizado en los métodos de suavizado exponencial o el número de observaciones pasadas en los modelos ARIMA, los pronosticadores pueden ajustar los modelos para mejorar el rendimiento.

Por ejemplo, en nuestro software permitimos que varios métodos de pronóstico compitan por el mejor desempeño en un elemento determinado. El conocimiento de la previsión automática se traslada inmediatamente a la media móvil simple, la media móvil lineal, el suavizado exponencial único, el suavizado exponencial doble, el suavizado exponencial de Winters y el pronóstico promocional. Esta competencia garantiza que se seleccione el método más adecuado basándose en evidencia empírica, no en juicios subjetivos. El ganador del torneo es el método más cercano a predecir valores de datos nuevos a partir de los antiguos. La precisión se mide mediante el error absoluto promedio (es decir, el error promedio, ignorando los signos menos). El promedio se calcula sobre un conjunto de pronósticos, cada uno usando una porción de los datos, en un proceso conocido como simulación deslizante, que hemos explicado anteriormente en un blog anterior.

 

Métodos utilizados en la previsión automática

Normalmente, hay seis métodos de pronóstico extrapolativo que compiten en el torneo de pronóstico automático:

  • media móvil simple
  • Media móvil lineal
  • Suavizado exponencial simple
  • Suavizado exponencial doble
  • Versión aditiva del suavizado exponencial de Winters
  • Versión multiplicativa del suavizado exponencial de Winters

Los dos últimos métodos son apropiados para series estacionales; sin embargo, quedan automáticamente excluidos del torneo si hay menos de dos ciclos estacionales completos de datos (por ejemplo, menos de 24 períodos de datos mensuales u ocho períodos de datos trimestrales). Estos seis métodos clásicos basados en suavizado han demostrado ser fáciles de entender, fáciles de calcular y precisos. Puedes excluir cualquiera de estos métodos del torneo si tienes preferencia por algunos de los competidores y no por otros.

La previsión automática de datos de series temporales es esencial para gestionar proyecciones de demanda a gran escala de manera eficiente y precisa. Las empresas pueden lograr una mayor precisión de los pronósticos y optimizar sus procesos de planificación automatizando la selección de métodos de pronóstico y utilizando técnicas como el análisis de reservas y los torneos de pronóstico. Adoptar estas técnicas avanzadas de pronóstico garantiza que las empresas se mantengan a la vanguardia en entornos de mercado dinámicos y tomen decisiones informadas basadas en proyecciones de datos confiables.

 

 

 

Gestión de inventario basada en pronósticos para una mejor planificación

La gestión de inventario basada en pronósticos, o lógica MRP (planificación de requisitos de materiales), es una metodología de planificación anticipada para gestionar el inventario. Este método garantiza que las empresas puedan satisfacer la demanda sin exceso de existencias, lo que inmoviliza el capital, o falta de existencias, lo que puede provocar pérdidas de ventas y clientes insatisfechos.

Al anticipar la demanda y ajustar los niveles de inventario en consecuencia, este enfoque ayuda a mantener el equilibrio adecuado entre tener suficiente stock para satisfacer las necesidades de los clientes y minimizar los costos de exceso de inventario. Las empresas pueden optimizar las operaciones, reducir el desperdicio y mejorar la satisfacción del cliente al predecir las necesidades futuras. Analicemos cómo funciona esto.

 

Conceptos básicos de la gestión de inventarios basada en pronósticos

Modelos de dinámica de inventario: Los modelos de dinámica de inventario son fundamentales para comprender y gestionar los niveles de inventario. El modelo más simple, conocido como modelo “diente de sierra”, demuestra que los niveles de inventario disminuyen con la demanda y se reponen justo a tiempo. Sin embargo, los escenarios del mundo real suelen requerir modelos más sofisticados. Al incorporar elementos estocásticos y variabilidad, como las simulaciones de Monte Carlo, las empresas pueden tener en cuenta las fluctuaciones aleatorias en la demanda y el tiempo de entrega, proporcionando un pronóstico más realista de los niveles de inventario.

plataforma IP&O mejora el modelado de la dinámica del inventario a través de capacidades avanzadas de simulación y análisis de datos. Al aprovechar la IA y los algoritmos de aprendizaje automático, nuestra plataforma IP&O puede predecir los patrones de demanda con mayor precisión, ajustando los modelos en tiempo real en función de los datos más recientes. Esto conduce a niveles de inventario más precisos, lo que reduce el riesgo de desabastecimiento y exceso de existencias.

Determinación de la cantidad y el momento del pedido: La gestión eficaz del inventario requiere saber cuándo y cuánto pedir. Esto implica pronosticar la demanda futura y calcular el tiempo de reposición de existencias. Al predecir cuándo el inventario alcanzará los niveles de seguridad, las empresas pueden planificar sus pedidos para garantizar un suministro continuo.

Nuestras últimas herramientas destacan por optimizar las cantidades y los plazos de los pedidos mediante el uso de análisis predictivos e inteligencia artificial. Estos sistemas pueden analizar grandes cantidades de datos, incluidas ventas históricas y tendencias del mercado. Al hacerlo, proporcionan pronósticos de demanda más precisos y optimizan los puntos de reorden, asegurando que el inventario se reponga justo a tiempo y sin exceso.

Calcular el tiempo de entrega: El tiempo de entrega es el período desde que se realiza un pedido hasta que se recibe el stock. Varía según la disponibilidad de componentes. Por ejemplo, si un producto se ensambla a partir de varios componentes, el plazo de entrega lo determinará el componente con el plazo de entrega más largo.

Las soluciones inteligentes impulsadas por IA mejoran el cálculo del tiempo de entrega al integrarse con los sistemas de gestión de la cadena de suministro. Estos sistemas rastrean el desempeño de los proveedores y los plazos de entrega históricos para proporcionar estimaciones de plazos de entrega más precisas. Además, las tecnologías inteligentes pueden alertar a las empresas sobre posibles retrasos, lo que permite realizar ajustes proactivos en los planes de inventario.

Cálculo del stock de seguridad: El stock de seguridad actúa como un amortiguador para proteger contra la variabilidad en la oferta y la demanda. Calcular el stock de seguridad implica analizar la variabilidad de la demanda y establecer un nivel de stock que cubra la mayoría de los escenarios potenciales, minimizando así el riesgo de desabastecimiento.

La tecnología IP&O mejora significativamente el cálculo del stock de seguridad mediante análisis avanzados. Al monitorear continuamente los patrones de demanda y las variables de la cadena de suministro, los sistemas inteligentes pueden ajustar dinámicamente los niveles de existencias de seguridad. Los algoritmos de aprendizaje automático pueden predecir picos o caídas de la demanda y ajustar el stock de seguridad en consecuencia, garantizando niveles óptimos de inventario y minimizando los costos de mantenimiento.

La importancia de una previsión precisa en la gestión de inventarios

Una previsión precisa es clave para minimizar los errores de previsión, que pueden provocar un exceso de inventario o desabastecimiento. Técnicas como la utilización de datos históricos, la mejora de la entrada de datos y la aplicación de métodos de pronóstico avanzados ayudan a lograr una mayor precisión. Los errores de pronóstico pueden tener implicaciones financieras importantes: un pronóstico excesivo genera un exceso de inventario, mientras que un pronóstico insuficiente conduce a la pérdida de oportunidades de ventas. Gestionar estos errores mediante el seguimiento sistemático y el ajuste de los métodos de previsión es crucial para mantener niveles óptimos de inventario.

El stock de seguridad garantiza que las empresas satisfagan las necesidades de los clientes incluso si la demanda real se desvía de la previsión. Este colchón protege contra picos imprevistos de demanda o retrasos en el reabastecimiento. Los pronósticos precisos, la gestión eficaz de errores y el uso estratégico del stock de seguridad mejoran la gestión de inventario basada en pronósticos. Las empresas pueden comprender la dinámica del inventario, determinar las cantidades y los plazos correctos para los pedidos, calcular plazos de entrega precisos y establecer niveles de existencias de seguridad adecuados.

El uso de tecnología de vanguardia como IP&O proporciona ventajas significativas al ofrecer información de datos en tiempo real, análisis predictivos y modelos adaptativos. Esto conduce a una gestión de inventario más eficiente, costos reducidos y una mayor satisfacción del cliente. En general, IP&O permite a las empresas planificar mejor y responder rápidamente a los cambios del mercado, garantizando que mantengan el equilibrio de inventario adecuado para satisfacer las necesidades de los clientes sin incurrir en costos innecesarios.

 

 

Aprovechando las listas de materiales de Epicor Kinetic Planning con Smart IP&O para pronosticar con precisión

​​En un entorno de fabricación altamente configurable, pronosticar productos terminados puede convertirse en una tarea compleja y desalentadora. El número de posibles productos terminados se dispara cuando muchos componentes son intercambiables. Un MRP tradicional nos obligaría a pronosticar cada producto terminado, lo que puede resultar poco realista o incluso imposible. Varias soluciones líderes introducen el concepto de "Planificación BOM", que permite el uso de pronósticos a un nivel superior en el proceso de fabricación. En este artículo, analizaremos esta funcionalidad en Epicor Kinetic y cómo puede aprovecharla con Epicor Smart Inventory Planning and Optimization (Smart IP&O) para adelantarse a su demanda ante esta complejidad.

¿Por qué necesitaría una lista de materiales de planificación?

Tradicionalmente, cada producto terminado o SKU tenía una lista de materiales rígidamente definida. Si almacenamos ese producto y queremos planificar en torno a la demanda pronosticada, pronosticaremos la demanda de esos productos y luego alimentaremos MRP para llevar esta demanda pronosticada desde el nivel del producto terminado hasta sus componentes a través de la lista de materiales.

Sin embargo, muchas empresas ofrecen productos altamente configurables donde los clientes pueden seleccionar opciones sobre el producto que compran. Como ejemplo, recuerde la última vez que compró un teléfono móvil. Elegiste una marca y un modelo, pero a partir de ahí probablemente se te presentaron opciones: ¿qué tamaño de pantalla quieres? ¿Cuánto almacenamiento quieres? ¿Qué color prefiere usted? Si esa empresa quiere tener estos teléfonos móviles listos y disponibles para enviárselos en un tiempo razonable, de repente, ya no solo anticipan la demanda de ese modelo: deben pronosticar ese modelo para cada tipo de tamaño de pantalla, para todas las capacidades de almacenamiento, ¡Para todos los colores y todas las combinaciones posibles de ellos también! Para algunos fabricantes, estas configuraciones pueden dar lugar a cientos o miles de posibles permutaciones de productos terminados.

Puede haber tantas personalizaciones posibles que la demanda a nivel del producto terminado sea completamente impredecible en el sentido tradicional. Es posible que se vendan miles de esos teléfonos móviles cada año, pero para cada configuración posible, la demanda puede ser extremadamente baja y esporádica; tal vez ciertas combinaciones se vendan una vez y nunca más.

Esto a menudo obliga a estas empresas a planificar puntos de reorden y niveles de existencias de seguridad principalmente a nivel de componentes, mientras reaccionan en gran medida a la demanda firme en el nivel de producto terminado a través de MRP. Si bien este es un enfoque válido, carece de una forma sistemática de aprovechar los pronósticos que puedan dar cuenta de la actividad futura anticipada, como promociones, próximos proyectos u oportunidades de ventas. Hacer pronósticos a nivel “configurado” es efectivamente imposible, y tratar de incorporar estos supuestos de pronóstico a nivel de componentes tampoco es factible.

Explicación de la lista de materiales de planificación Aquí es donde entran las listas de materiales de planificación. Quizás el equipo de ventas esté trabajando en una gran oportunidad B2B para ese modelo, o haya una promoción planificada para el Cyber Monday. Si bien no es realista intentar trabajar con esos supuestos para cada configuración posible, hacerlo a nivel de modelo es totalmente factible y tremendamente valioso.

La lista de materiales de planificación puede utilizar una previsión a un nivel superior y luego reducir la demanda en función de proporciones predefinidas para sus posibles componentes. Por ejemplo, el fabricante de teléfonos móviles puede saber que la mayoría de las personas optan por 128 GB de almacenamiento y que muchas menos optan por actualizaciones a 256 GB o 512 GB. La lista de materiales de planificación permite a la organización (por ejemplo) reducir 60% de la demanda a la opción de 128 GB, 30% a la opción de 256 GB y 10% a la opción de 512 GB. Podrían hacer lo mismo con los tamaños de pantalla, los colores u otras personalizaciones disponibles.

La empresa ahora puede centrar su pronóstico en este nivel de modelo, dejando que la lista de materiales de planificación determine la combinación de componentes. Claramente, definir estas proporciones requiere algo de reflexión, pero la planificación de listas de materiales permite efectivamente a las empresas pronosticar lo que de otro modo sería impredecible.

La importancia de un buen pronóstico

Por supuesto, todavía necesitamos un buen pronóstico para cargar en Epicor Kinetic. Como se explica en este artículo, si bien Epicor Kinetic puede importar un pronóstico, a menudo no puede generar uno y, cuando lo hace, tiende a requerir una gran cantidad de configuraciones difíciles de usar que no suelen revisarse, lo que genera pronósticos inexactos. . Por lo tanto, corresponde a la empresa elaborar sus propios conjuntos de pronósticos, a menudo elaborados manualmente en Excel. La elaboración de pronósticos manualmente generalmente presenta una serie de desafíos, que incluyen, entre otros:

  • La incapacidad de identificar patrones de demanda como estacionalidad o tendencia.
  • Dependencia excesiva de las previsiones de clientes o de ventas.
  • Falta de precisión o seguimiento del desempeño.

No importa qué tan bien configurado esté el MRP con sus listas de materiales de planificación cuidadosamente consideradas, un pronóstico deficiente significa una producción deficiente del MRP y desconfianza en el sistema: basura que entra, basura que sale. Siguiendo con el ejemplo de la “compañía de telefonía celular”, sin una forma sistemática de capturar patrones de demanda clave y/o conocimiento del dominio en el pronóstico, MRP nunca podrá verlo.

 

IP&O inteligente: una solución integral

Smart IP&O respalda la planificación en todos los niveles de su lista de materiales, aunque el “soplado” se maneja a través de MRP dentro de Epicor Kinetic. Este es el método que utilizamos para nuestros clientes de Epicor Kinetic, que es sencillo y efectivo:

  • Planificador de la demanda: La plataforma contiene una aplicación de pronóstico especialmente diseñada llamada Smart Demand Planner que utilizará para pronosticar la demanda de sus productos manufacturados (generalmente productos terminados). Genera pronósticos estadísticos, permite a los planificadores realizar ajustes y/o incorporar otros pronósticos (como pronósticos de ventas o de clientes) y realiza un seguimiento de la precisión. El resultado de esto es un pronóstico que ingresa a la entrada de pronóstico dentro de Epicor Kinetic, donde MRP lo recogerá. Posteriormente, MRP utilizará la demanda en el nivel del producto terminado y también eliminará los requisitos de material a través de la lista de materiales, de modo que la demanda también se reconozca en niveles más bajos.
  • Optimización del inventario: Puede utilizar simultáneamente la optimización inteligente de inventario para establecer niveles mínimos/máximos/de seguridad tanto para cualquier producto terminado que fabrique para almacenar (si corresponde; algunos de nuestros clientes operan exclusivamente bajo pedido según la demanda firme), así como para materias primas. materiales. La clave aquí es que a nivel de materia prima, Smart aprovechará la demanda de uso del trabajo, los tiempos de entrega de los proveedores, etc., para optimizar estos parámetros y al mismo tiempo utilizará los pedidos/envíos de ventas como demanda en el nivel del producto terminado. Smart maneja estas múltiples entradas de demanda de manera elegante a través de la integración bidireccional con Epicor Kinetic.

Cuando se ejecuta MRP, compara la oferta y la demanda (que, una vez más, incluye la demanda de materia prima extraída del pronóstico del producto terminado) con los niveles mínimo/máximo/de seguridad que ha establecido para sugerir PO y sugerencias de trabajo.

 

Amplíe Epicor Kinetic con Smart IP&O

Smart IP&O está diseñado para ampliar su sistema Epicor Kinetic con muchas soluciones integradas de planificación de la demanda y optimización de inventario. Por ejemplo, puede generar pronósticos estadísticos automáticamente para una gran cantidad de artículos, permite ajustes de pronóstico intuitivos, realiza un seguimiento de la precisión del pronóstico y, en última instancia, le permite generar verdaderos pronósticos basados en consenso para anticipar mejor las necesidades de sus clientes.

Gracias a las jerarquías de productos altamente flexibles, Smart IP&O se adapta perfectamente a la previsión en el nivel de planificación de la lista de materiales, por lo que puede capturar patrones clave e incorporar conocimiento empresarial en los niveles más importantes. Además, puede analizar e implementar niveles óptimos de existencias de seguridad en cualquier nivel de su lista de materiales.

Aprovechar las capacidades de planificación de BOM de Epicor Kinetic junto con las funciones avanzadas de optimización de inventario y pronóstico de Smart IP&O garantiza que pueda satisfacer la demanda de manera eficiente y precisa, independientemente de la complejidad de las configuraciones de su producto. Esta sinergia no sólo mejora la precisión de los pronósticos, sino que también fortalece la eficiencia operativa general, ayudándole a mantenerse a la vanguardia en un mercado competitivo.

 

 

Escenarios de demanda diaria

En este Videoblog explicaremos cómo la previsión de series temporales se ha convertido en una herramienta fundamental, especialmente a nivel diario, en la que Smart Software ha sido pionero desde sus inicios hace más de cuarenta años. La evolución de las prácticas comerciales de incrementos temporales anuales a incrementos temporales más refinados, como el análisis de datos mensual y ahora diario, ilustra un cambio significativo en las estrategias operativas.

Inicialmente, durante la década de 1980, la práctica habitual de utilizar datos anuales para realizar pronósticos y la introducción de datos mensuales se consideró innovadora. Este período marcó el comienzo de una tendencia hacia el aumento de la resolución del análisis de datos, lo que permitió a las empresas capturar y reaccionar ante cambios más rápidos en la dinámica del mercado. A medida que avanzamos hacia la década de 2000, la norma del análisis de datos mensual estaba bien establecida, pero los "chicos geniales" (innovadores en el borde de la analítica empresarial) comenzaron a experimentar con datos semanales. Este cambio fue impulsado por la necesidad de sincronizar las operaciones comerciales con condiciones de mercado cada vez más volátiles y comportamientos de los consumidores que exigían respuestas más rápidas que las que podían proporcionar los ciclos mensuales. Hoy, en la década de 2020, si bien el análisis de datos mensuales sigue siendo común, la frontera se ha desplazado nuevamente, esta vez hacia el análisis de datos diario, y algunos pioneros incluso se han aventurado en el análisis por horas.

El verdadero poder del análisis de datos diario radica en su capacidad de proporcionar una vista detallada de las operaciones comerciales, capturando las fluctuaciones diarias que podrían pasar desapercibidas en los datos mensuales o semanales. Sin embargo, las complejidades de los datos diarios requieren enfoques analíticos avanzados para extraer información significativa. En este nivel, comprender la demanda requiere lidiar con conceptos como intermitencia, estacionalidad, tendencia y volatilidad. La intermitencia, o la aparición de días sin demanda, se vuelve más pronunciada en una granularidad diaria y exige técnicas de pronóstico especializadas como el método de Croston para predicciones precisas. La estacionalidad a nivel diario puede revelar múltiples patrones (como mayores ventas los fines de semana o días festivos) que los datos mensuales enmascararían. Las tendencias se pueden observar como aumentos o disminuciones de la demanda a corto plazo, lo que exige estrategias de ajuste ágiles. Finalmente, la volatilidad a nivel diario se acentúa, mostrando oscilaciones de la demanda más significativas que las observadas en los análisis mensuales o semanales, lo que puede afectar las estrategias de gestión de inventarios y la necesidad de existencias de reserva. Este nivel de complejidad subraya la necesidad de herramientas analíticas sofisticadas y experiencia en el análisis de datos diario.

En conclusión, la evolución de pronósticos de series temporales menos frecuentes a pronósticos diarios marca un cambio sustancial en la forma en que las empresas abordan el análisis de datos. Esta transición no solo refleja el ritmo acelerado de los negocios, sino que también resalta la necesidad de herramientas que puedan manejar una mayor granularidad de los datos. La dedicación de Smart Software para perfeccionar sus capacidades analíticas para gestionar los datos diarios destaca el movimiento más amplio de la industria hacia una toma de decisiones más dinámica, receptiva y basada en datos. Este cambio no se trata simplemente de mantener el ritmo del tiempo, sino de aprovechar conocimientos detallados para forjar ventajas competitivas en un entorno empresarial en constante cambio.

 

Los métodos de previsión

​El software de planificación de la demanda y pronóstico estadístico desempeña un papel fundamental en la gestión empresarial eficaz al incorporar funciones que mejoran significativamente la precisión de los pronósticos. Un aspecto clave implica la utilización de modelos extrapolativos o basados ​​en suavizado, que permiten a las empresas hacer predicciones rápidamente basadas únicamente en datos históricos. Esta base basada en el desempeño pasado es crucial para comprender tendencias y patrones, especialmente en variables como las ventas o la demanda de productos. El software de pronóstico va más allá del mero análisis de datos al permitir combinar el juicio profesional con pronósticos estadísticos, reconociendo que el pronóstico no es un proceso único para todos. Esta flexibilidad permite a las empresas incorporar conocimientos humanos y de la industria en el modelo de pronóstico, lo que garantiza una predicción más matizada y precisa.

Funciones como pronosticar múltiples artículos como grupo, considerar la demanda impulsada por la promoción y manejar patrones de demanda intermitentes son capacidades esenciales para las empresas que manejan carteras de productos diversas y condiciones de mercado dinámicas. La implementación adecuada de estas aplicaciones brinda a las empresas herramientas de pronóstico versátiles, lo que contribuye significativamente a la toma de decisiones informadas y la eficiencia operativa.

Modelos extrapolativos

Nuestras soluciones de pronóstico de la demanda admiten una variedad de enfoques de pronóstico, incluidos modelos de pronóstico extrapolativos o basados en suavizamiento, como el suavizado exponencial y los promedios móviles. La filosofía detrás de estos modelos es simple: intentan detectar, cuantificar y proyectar hacia el futuro cualquier patrón repetitivo en los datos históricos.

  Hay dos tipos de patrones que se pueden encontrar en los datos históricos:

  • Tendencia
  • Estacionalidad

Estos patrones se ilustran en la siguiente figura junto con datos aleatorios.

The Methods of Forecasting

 

Ilustración de datos de series de tiempo aleatorias, estacionales y de tendencia

Si el patrón es una tendencia, entonces los modelos extrapolativos, como el suavizado exponencial doble y el promedio móvil lineal, estiman la tasa de aumento o disminución en el nivel de la variable y proyectan esa tasa en el futuro.

Si el patrón es estacionalidad, entonces modelos como Winters y el suavizamiento exponencial triple estiman multiplicadores estacionales o factores de suma estacionales y luego los aplican a las proyecciones de la porción no estacional de los datos.

Muy a menudo, especialmente en el caso de los datos de ventas minoristas, intervienen patrones tanto de tendencia como estacionales. Si estos patrones son estables, se pueden aprovechar para dar pronósticos muy precisos.

A veces, sin embargo, no hay patrones obvios, de modo que los gráficos de los datos parecen ruido aleatorio. A veces los patrones son claramente visibles, pero cambian con el tiempo y no se puede confiar en que se repitan. En estos casos, los modelos extrapolativos no intentan cuantificar ni proyectar patrones. En cambio, intentan promediar el ruido y hacer buenas estimaciones del punto medio de la distribución de los valores de los datos. Estos valores típicos se convierten entonces en pronósticos. A veces, cuando los usuarios ven una trama histórica con muchos altibajos, se preocupan cuando el pronóstico no replica esos altibajos. Normalmente, esto no debería ser motivo de preocupación. Esto ocurre cuando los patrones históricos no son lo suficientemente fuertes como para justificar el uso de un método de pronóstico que replique el patrón. Quiere asegurarse de que sus pronósticos no sufran el "efecto de movimiento" que se describe en este entrada en el blog.

El pasado como predictor del futuro.

El supuesto clave implícito en los modelos extrapolativos es que el pasado es una buena guía para el futuro. Esta suposición, sin embargo, puede fracasar. Algunos de los datos históricos pueden estar obsoletos. Por ejemplo, los datos podrían describir un entorno empresarial que ya no existe. O bien, el mundo que representa el modelo puede estar listo para cambiar pronto, dejando todos los datos obsoletos. Debido a factores tan complicados, los riesgos del pronóstico extrapolativo son menores cuando se pronostica sólo a corto plazo en el futuro.

Los modelos extrapolativos tienen la ventaja práctica de ser baratos y fáciles de construir, mantener y utilizar. Sólo requieren registros precisos de los valores pasados de las variables que necesita pronosticar. A medida que pasa el tiempo, simplemente agrega los últimos puntos de datos a la serie temporal y vuelve a pronosticar. Por el contrario, los modelos causales que se describen a continuación requieren más pensamiento y más datos. La simplicidad de los modelos extrapolativos se aprecia más cuando se tiene un problema de pronóstico masivo, como hacer pronósticos de la demanda de un día para otro para los 30.000 artículos en el inventario de un almacén.

Ajustes de juicio

Los modelos extrapolativos se pueden ejecutar en modo completamente automático con Demand Planner sin necesidad de intervención. Los modelos causales requieren un juicio sustancial para una selección inteligente de variables independientes. Sin embargo, ambos tipos de modelos estadísticos pueden mejorarse mediante ajustes de juicio. Ambos pueden beneficiarse de sus conocimientos.

Tanto el modelo causal como el extrapolativo se basan en datos históricos. Sin embargo, es posible que tenga información adicional que no se refleja en los números que se encuentran en el registro histórico. Por ejemplo, es posible que sepa que las condiciones competitivas pronto cambiarán, tal vez debido a descuentos de precios, tendencias de la industria, la aparición de nuevos competidores o el anuncio de una nueva generación de sus propios productos. Si estos eventos ocurren durante el período para el cual usted está pronosticando, pueden arruinar la precisión de los pronósticos puramente estadísticos. La función de ajuste gráfico de Smart Demand Planner le permite incluir estos factores adicionales en sus pronósticos a través del proceso de ajuste gráfico en pantalla.

Tenga en cuenta que aplicar ajustes del usuario al pronóstico es un arma de doble filo. Si se utiliza adecuadamente, puede mejorar la precisión de los pronósticos al explotar un conjunto más rico de información. Si se utiliza de forma promiscua, puede añadir ruido adicional al proceso y reducir la precisión. Le recomendamos que utilice ajustes de juicio con moderación, pero que nunca acepte ciegamente las predicciones de un método de pronóstico puramente estadístico. También es muy importante medir el valor añadido previsto. Es decir, el valor agregado al proceso de pronóstico por cada paso incremental. Por ejemplo, si aplica anulaciones basadas en conocimientos comerciales, es importante medir si esos ajustes agregan valor al mejorar la precisión del pronóstico. Smart Demand Planner admite la medición del valor agregado del pronóstico mediante el seguimiento de cada pronóstico considerado y la automatización de los informes de precisión del pronóstico. Puede seleccionar pronósticos estadísticos, medir sus errores y compararlos con los anulados. Al hacerlo, informa el proceso de previsión para que se puedan tomar mejores decisiones en el futuro. 

Pronósticos de múltiples niveles

Otra situación común implica la previsión de múltiples niveles, donde se pronostican varios elementos como un grupo o incluso puede haber varios grupos, y cada grupo contiene varios elementos. Generalmente llamaremos a este tipo de pronóstico Pronóstico multinivel. El mejor ejemplo es el pronóstico de líneas de productos, donde cada artículo es miembro de una familia de artículos y el total de todos los artículos de la familia es una cantidad significativa.

Por ejemplo, como en la siguiente figura, es posible que tenga una línea de tractores y desee pronósticos de ventas para cada tipo de tractor y para toda la línea de tractores.

The Methods of Forecasting 2

Ilustración de pronósticos de productos de múltiples niveles

 Smart Demand Planner proporciona pronósticos acumulativos y descendentes. Esta función es crucial para obtener pronósticos completos de todos los artículos de productos y el total de su grupo. El método Roll Down/Roll Up dentro de esta función ofrece dos opciones para obtener estos pronósticos:

Acumular (de abajo hacia arriba): esta opción inicialmente pronostica cada artículo individualmente y luego agrega los pronósticos a nivel de artículo para generar un pronóstico a nivel de familia.

Desplazar hacia abajo (de arriba hacia abajo): alternativamente, la opción de desplazamiento hacia abajo comienza formando el total histórico a nivel de familia, lo pronostica y luego asigna proporcionalmente el total al nivel de artículo.

Al utilizar Roll Down/Roll Up, tiene acceso a la gama completa de métodos de pronóstico proporcionados por Smart Demand Planner tanto a nivel de artículo como de familia. Esto garantiza flexibilidad y precisión en la previsión, atendiendo a las necesidades específicas de su negocio en diferentes niveles jerárquicos.

La investigación sobre pronósticos no ha establecido condiciones claras que favorezcan el enfoque de pronóstico de arriba hacia abajo o de abajo hacia arriba. Sin embargo, el enfoque ascendente parece preferible cuando los historiales de los artículos son estables y el énfasis está en las tendencias y patrones estacionales de los artículos individuales. La estrategia descendente suele ser una mejor opción si algunos elementos tienen un historial muy ruidoso o si el énfasis está en la previsión a nivel de grupo. Dado que Smart Demand Planner hace que sea rápido y fácil probar un enfoque tanto ascendente como descendente, debe probar ambos métodos y comparar los resultados. Puede utilizar la función "Retener lo actual" de Smart Demand Planner en "Pronóstico versus real" para probar ambos enfoques con sus propios datos y ver cuál produce un pronóstico más preciso para su negocio. 

 

¿Puede la aleatoriedad ser un aliado en la batalla de los pronósticos?

La perspectiva de Feynman ilumina nuestro viaje: “En sus esfuerzos por aprender todo lo posible sobre la naturaleza, la física moderna ha descubierto que ciertas cosas nunca pueden “saberse” con certeza. Gran parte de nuestro conocimiento debe permanecer siempre incierto. Lo máximo que podemos saber es en términos de probabilidades”. - Richard Feynman, Las conferencias Feynman sobre física.

Cuando intentamos comprender el complejo mundo de la logística, la aleatoriedad juega un papel fundamental. Esto introduce una paradoja interesante: en una realidad donde se valoran la precisión y la certeza, ¿podría la naturaleza impredecible de la oferta y la demanda servir realmente como un aliado estratégico?

La búsqueda de pronósticos precisos no es sólo un ejercicio académico; es un componente crítico del éxito operativo en numerosas industrias. Para los planificadores de la demanda que deben anticipar la demanda de un producto, las ramificaciones de hacerlo bien (o mal) son fundamentales. Por lo tanto, reconocer y aprovechar el poder de la aleatoriedad no es simplemente un ejercicio teórico; es una necesidad de resiliencia y adaptabilidad en un entorno en constante cambio.

Aceptando la incertidumbre: métodos dinámicos, estocásticos y de Monte Carlo

Modelado dinámico: la búsqueda de una precisión absoluta en los pronósticos ignora la imprevisibilidad intrínseca del mundo. Los métodos de pronóstico tradicionales, con sus marcos rígidos, no logran adaptarse al dinamismo de los fenómenos del mundo real. Al aceptar la incertidumbre, podemos girar hacia modelos más ágiles y dinámicos que incorporen la aleatoriedad como componente fundamental. A diferencia de sus rígidos predecesores, estos modelos están diseñados para evolucionar en respuesta a nuevos datos, garantizando resiliencia y adaptabilidad. Este cambio de paradigma de un enfoque determinista a uno probabilístico permite a las organizaciones navegar la incertidumbre con mayor confianza, tomando decisiones informadas incluso en entornos volátiles.

Los modelos estocásticos guían a los pronosticadores a través de la niebla de la imprevisibilidad con los principios de probabilidad. Lejos de intentar eliminar la aleatoriedad, los modelos estocásticos la adoptan. Estos modelos evitan la noción de un futuro singular y predeterminado, presentando en cambio una serie de resultados posibles, cada uno con su probabilidad estimada. Este enfoque ofrece una representación más matizada y realista del futuro, reconociendo la variabilidad inherente de los sistemas y procesos. Al trazar un espectro de futuros potenciales, el modelado estocástico proporciona a quienes toman decisiones una comprensión integral de la incertidumbre, lo que permite una planificación estratégica informada y flexible.

Las simulaciones de Monte Carlo, que llevan el nombre del centro histórico del azar y la fortuna, aprovechan el poder de la aleatoriedad para explorar el vasto panorama de posibles resultados. Esta técnica implica la generación de miles, si no millones, de escenarios a través de un muestreo aleatorio, cada escenario pinta una imagen diferente del futuro basada en las incertidumbres inherentes del mundo real. Los tomadores de decisiones, armados con conocimientos de las simulaciones de Monte Carlo, pueden medir el rango de posibles impactos de sus decisiones, lo que la convierte en una herramienta invaluable para la evaluación de riesgos y la planificación estratégica en entornos inciertos.

Éxitos del mundo real: aprovechar la aleatoriedad

La estrategia de integrar la aleatoriedad en los pronósticos ha demostrado ser invaluable en diversos sectores. Por ejemplo, las principales empresas de inversión y bancos dependen constantemente de modelos estocásticos para hacer frente al comportamiento volátil del mercado de valores. Un ejemplo notable es cómo los fondos de cobertura emplean estos modelos para predecir los movimientos de precios y gestionar el riesgo, lo que lleva a opciones de inversión más estratégicas.

De manera similar, en la gestión de la cadena de suministro, muchas empresas confían en las simulaciones de Monte Carlo para abordar la imprevisibilidad de la demanda, especialmente durante las temporadas altas como las vacaciones. Al simular varios escenarios, pueden prepararse para una variedad de resultados, asegurándose de tener niveles de existencias adecuados sin comprometer demasiado los recursos. Este enfoque minimiza el riesgo de desabastecimiento y exceso de inventario.

Estos éxitos del mundo real resaltan el valor de integrar la aleatoriedad en los esfuerzos de pronóstico. Lejos de ser el adversario que a menudo se percibe, la aleatoriedad emerge como un aliado indispensable en el intrincado ballet de la previsión. Al adoptar métodos que respetan la incertidumbre inherente del futuro (reforzados por herramientas avanzadas como Smart IP&O), las organizaciones pueden navegar lo impredecible con confianza y agilidad. Por lo tanto, en el gran esquema de la previsión, puede ser prudente abrazar la noción de que, si bien no podemos controlar la tirada de los dados, ciertamente podemos elaborar estrategias en torno a ella.