Eenvoudig is goed, behalve als dat niet het geval is

In deze blog sturen we het gesprek in de richting van het transformatieve potentieel van technologie op het gebied van voorraadbeheer. De discussie draait om de beperkingen van eenvoudig denken bij het beheren van voorraadbeheerprocessen en de noodzaak van het adopteren van systematische softwareoplossingen. Dr. Tom Willemain benadrukt het contrast tussen Smart Software en de basale, zij het comfortabele, benaderingen die doorgaans door veel bedrijven worden toegepast. Deze elementaire methoden, die vaak de voorkeur genieten vanwege hun gebruiksgemak en nulkosten, worden onder de loep genomen vanwege hun tekortkomingen bij het aanpakken van de dynamische uitdagingen van voorraadbeheer.

Het belang van dit onderwerp ligt in de cruciale rol die voorraadbeheer speelt in de operationele efficiëntie van een bedrijf en de directe impact ervan op klanttevredenheid en winstgevendheid. Dr. Tom Willemain wijst op de veelvoorkomende valkuilen van het vertrouwen op te eenvoudige vuistregels, zoals het grillige kinderrijmpje dat door een bedrijf wordt gebruikt om de herschikkingspunten te bepalen, of de onderbuikgevoel-methode, die afhangt van niet-kwantificeerbare intuïtie in plaats van van gegevens. Hoewel deze benaderingen aantrekkelijk zijn in hun eenvoud, slagen ze er niet in zich aan te passen aan marktschommelingen, de betrouwbaarheid van leveranciers of veranderingen in de vraag, waardoor aanzienlijke risico's voor het bedrijf ontstaan. De video bekritiseert ook de praktijk van het vaststellen van herschikkingspunten op basis van veelvouden van de gemiddelde vraag, waarbij de minachting voor de volatiliteit van de vraag wordt benadrukt, een fundamentele overweging in de voorraadtheorie.

Concluderend pleit de presentator voor een meer geavanceerde, datagestuurde benadering van voorraadbeheer. Door gebruik te maken van geavanceerde softwareoplossingen zoals die van Smart Software, kunnen bedrijven complexe vraagpatronen nauwkeurig modelleren en voorraadregels stresstesten aan de hand van talloze toekomstscenario's. Deze wetenschappelijke methode maakt het mogelijk om bestelpunten in te stellen die rekening houden met de reële variabiliteit, waardoor het risico op voorraadtekorten en de daaraan verbonden kosten worden geminimaliseerd. De video benadrukt dat, hoewel eenvoudige heuristieken verleidelijk kunnen zijn vanwege hun gebruiksgemak, ze niet geschikt zijn voor de huidige dynamische marktomstandigheden. De presentator moedigt kijkers aan om technologische oplossingen te omarmen die professionele nauwkeurigheid en aanpassingsvermogen bieden en duurzaam zakelijk succes garanderen.

 

 

Centreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen

Net zoals de beroemde astronoom Copernicus ons begrip van de astronomie transformeerde door de zon in het centrum van ons universum te plaatsen, nodigen wij u vandaag uit om uw benadering van voorraadbeheer opnieuw centraal te stellen. En ook al is dit advies niet zo verhelderend, het zal uw bedrijf helpen voorkomen dat u verstrikt raakt in de aantrekkingskracht van voorraadproblemen – voortdurend heen en weer geslingerd tussen voorraadtekorten, overtollige zwaartekracht en de onverwachte kosmische kosten van het bespoedigen van goederen.

In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren.

In servicegerichte bedrijven zijn de gevolgen van voorraadtekorten vaak zeer groot. Het bereiken van een hoog serviceniveau is afhankelijk van de beschikbaarheid van de juiste onderdelen op het juiste moment. Het hebben van de juiste onderdelen is echter niet de enige factor. Uw Supply Chain-team moet voor elk onderdeel een consensusinventarisatieplan ontwikkelen en dit vervolgens voortdurend bijwerken om realtime veranderingen in vraag, aanbod en financiële prioriteiten weer te geven.

 

Voorraadbeheer met serviceniveaugestuurde planning combineert de mogelijkheid om duizenden items te plannen met strategische modellering op hoog niveau. Dit vereist het aanpakken van de kernproblemen waarmee voorraadmanagers worden geconfronteerd:

  • Gebrek aan controle over het aanbod en de bijbehorende doorlooptijden.
  • Onvoorspelbare intermitterende vraag.
  • Conflicterende prioriteiten tussen onderhouds-/mechanische teams en materiaalbeheer.
  • Reactieve ‘afwachtende’ benadering van planning.
  • Verkeerd toegewezen voorraad, waardoor voorraadtekorten en overschotten ontstaan.
  • Gebrek aan vertrouwen in systemen en processen.

De sleutel tot optimaal beheer van serviceonderdelen is het vinden van de balans tussen het bieden van uitstekende service en het beheersen van de kosten. Om dit te doen, moeten we de kosten van stockout vergelijken met de kosten van het aanhouden van extra voorraad reserveonderdelen. De kosten van een stockout zullen hoger zijn voor kritieke of noodreserveonderdelen, wanneer er een serviceniveauovereenkomst is met externe klanten, voor onderdelen die in meerdere activa worden gebruikt, voor onderdelen met langere doorlooptijden van leveranciers, en voor onderdelen met één enkele leverancier. De voorraadkosten kunnen worden beoordeeld door rekening te houden met de eenheidskosten, de rentetarieven, de magazijnruimte die zal worden verbruikt en de kans op veroudering (onderdelen die worden gebruikt in een wagenpark dat binnenkort met pensioen gaat, hebben bijvoorbeeld een hoger risico op veroudering).

Om te bepalen hoeveel voorraad er voor elk onderdeel op de plank moet worden gelegd, is het van cruciaal belang om consensus te bereiken over de gewenste sleutelgegevens die de afwegingen blootleggen die het bedrijf moet maken om de gewenste KPI's te bereiken. Deze KPI's omvatten serviceniveaus die u vertellen hoe vaak u aan de gebruiksbehoeften voldoet zonder dat u tekortschiet in de voorraad, vulpercentages die u vertellen welk percentage van de vraag is gevuld, en bestelkosten geven een gedetailleerd overzicht van de kosten die u maakt wanneer u aanvullingsorders plaatst en ontvangt. Je hebt ook holdingkosten, die uitgaven omvatten zoals veroudering, belastingen en opslag, en tekortkosten die betrekking hebben op uitgaven die worden gemaakt wanneer er voorraadtekorten optreden.

Een MRO-bedrijf of een team voor aftermarket-onderdelenplanning wenst mogelijk een 99%-serviceniveau voor alle onderdelen – dat wil zeggen dat het minimale voorraadrisico dat zij bereid zijn te accepteren 1% is. Maar wat als de hoeveelheid voorraad die nodig is om dat serviceniveau te ondersteunen, te duur is? Om een weloverwogen beslissing te kunnen nemen over de vraag of die extra voorraadinvestering rendement oplevert, moet u de voorraadkosten kennen en die vergelijken met de voorraadkosten. Om de stockoutkosten te berekenen, vermenigvuldigt u twee belangrijke elementen: de kosten per stockout en het verwachte aantal stockouts. Om de voorraadwaarde te bepalen, vermenigvuldigt u de vereiste eenheden met de eenheidskosten van elk onderdeel. Bepaal vervolgens de jaarlijkse holdingkosten (doorgaans 25-35% van de eenheidskosten). Kies de optie die in totaal lagere kosten oplevert. Met andere woorden: als het voordeel dat gepaard gaat met het toevoegen van meer voorraad (lagere tekortkosten) groter is dan de kosten (hogere voorraadkosten), ga er dan voor. Een grondig begrip van deze statistieken en de bijbehorende afwegingen dient als kompas voor de besluitvorming.

Moderne software helpt bij dit proces doordat u een groot aantal toekomstscenario's kunt simuleren. Door dit te doen, kunt u beoordelen hoe goed uw huidige voorraadbevoorradingsstrategieën waarschijnlijk zullen presteren in het licht van verschillende vraag- en aanbodpatronen. Als er iets tekortschiet of misgaat, is het tijd om uw aanpak opnieuw te kalibreren, waarbij u rekening houdt met actuele gegevens over de gebruiksgeschiedenis, doorlooptijden van leveranciers en kosten om zowel voorraad- als overvoorraadsituaties te voorkomen.

 

Verbeter uw op serviceniveau gebaseerde voorraadplan op consistente wijze.

Concluderend is het van cruciaal belang om uw serviceniveaugestuurde plan voortdurend te beoordelen. Door systematisch prestatiescenario's op te stellen en te verfijnen, kunt u belangrijke meetgegevens en doelen definiëren, de verwachte prestaties benchmarken en de berekening van het voorraadbeleid voor alle artikelen automatiseren. Dit iteratieve proces omvat het monitoren, herzien en herhalen van elke planningscyclus.

De diepgang van uw analyse binnen dit voorraadbeleid is afhankelijk van de gegevens waarover u beschikt en de configuratiemogelijkheden van uw planningssysteem. Om optimale resultaten te bereiken, is het noodzakelijk om voortdurende gegevensanalyses uit te voeren. Dit impliceert dat een handmatige benadering van dataonderzoek doorgaans onvoldoende is voor de behoeften van de meeste organisaties.

Bezoek de volgende blogs voor informatie over hoe Smart Software u kan helpen de doelstellingen van uw servicetoeleveringsketen te bereiken met servicegestuurde planning en meer.

–   “Uitleggen wat serviceniveau betekent in uw voorraadoptimalisatiesoftware”  Aanbevelingen voor kous kunnen verwarrend zijn, vooral als ze botsen met de behoeften in de echte wereld. In dit bericht leggen we uit wat dat 99%-serviceniveau betekent en waarom het cruciaal is om de voorraad effectief te beheren en klanten tevreden te houden in het huidige competitieve landschap.

– “Servicegestuurde planning voor bedrijven met serviceonderdelenService-level-driven serviceonderdelenplanning is een proces in vier stappen dat verder gaat dan vereenvoudigde prognoses en vuistregels voor veiligheidsvoorraden. Het biedt planners van serviceonderdelen datagestuurde, risico-aangepaste beslissingsondersteuning.

–   “Hoe u een doelserviceniveau kiest.Dit is een strategische beslissing over voorraadrisicobeheer, waarbij rekening wordt gehouden met de huidige serviceniveaus en opvullingspercentages, de doorlooptijden van de bevoorrading en de afwegingen tussen kapitaal-, voorraad- en opportuniteitskosten. Leer benaderingen die kunnen helpen.

–   “De juiste voorspellingsnauwkeurigheid voor voorraadplanning.”  Het feit dat u een serviceniveaudoel stelt, betekent niet dat u dit ook daadwerkelijk zult bereiken. Als u geïnteresseerd bent in het optimaliseren van de voorraadniveaus, concentreer u dan op de nauwkeurigheid van de projectie van het serviceniveau. Leren hoe.

 

Software voor planning van reserveonderdelen

De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

 

 

Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

 

Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

 

    Leren van voorraadmodellen

    In deze videoblog onderzoeken we de integrale rol die voorraadmodellen spelen bij het vormgeven van de besluitvormingsprocessen van professionals in verschillende sectoren. Deze modellen, of het nu tastbare computersimulaties zijn of immateriële mentale constructies, dienen als cruciale hulpmiddelen bij het beheersen van de complexiteit van moderne zakelijke omgevingen. De discussie begint met een overzicht van hoe deze modellen worden gebruikt om resultaten te voorspellen en activiteiten te stroomlijnen, waarbij de relevantie ervan in een voortdurend evoluerend marktlandschap wordt benadrukt.

    De discussie onderzoekt verder hoe verschillende modellen strategische besluitvormingsprocessen duidelijk beïnvloeden. De mentale modellen die professionals door ervaring ontwikkelen, vormen bijvoorbeeld vaak een leidraad voor de eerste reacties op operationele uitdagingen. Deze modellen zijn subjectief en opgebouwd op basis van persoonlijke inzichten en ervaringen uit het verleden met vergelijkbare situaties, waardoor snelle, intuïtieve besluitvorming mogelijk is. Aan de andere kant bieden computergebaseerde modellen een objectiever raamwerk. Ze gebruiken historische gegevens en algoritmische berekeningen om toekomstige scenario's te voorspellen en bieden zo een kwantitatieve basis voor beslissingen waarbij rekening moet worden gehouden met meerdere variabelen en mogelijke uitkomsten. In dit gedeelte worden specifieke voorbeelden belicht, zoals de impact van het aanpassen van bestelhoeveelheden op voorraadkosten en bestelfrequentie of de effecten van fluctuerende doorlooptijden op serviceniveaus en klanttevredenheid.

    Concluderend: terwijl mentale modellen een raamwerk bieden dat is gebaseerd op ervaring en intuïtie, bieden computermodellen een gedetailleerder en getalsmatig perspectief. Het combineren van beide typen modellen zorgt voor een robuuster besluitvormingsproces, waarbij theoretische kennis in evenwicht wordt gebracht met praktische ervaring. Deze aanpak vergroot het inzicht in de voorraaddynamiek en geeft professionals de tools in handen om zich effectief aan veranderingen aan te passen, waardoor duurzaamheid en concurrentievermogen op hun respectieve vakgebieden worden gewaarborgd.

     

     

    Op zoek naar problemen met uw voorraadgegevens

    In deze videoblog wordt een cruciaal aspect van voorraadbeheer in de schijnwerpers gezet: de analyse en interpretatie van voorraadgegevens. De focus ligt specifiek op een dataset van een openbaar vervoersbedrijf met details over reserveonderdelen voor bussen. Met meer dan 13.700 geregistreerde onderdelen bieden de gegevens een uitstekende gelegenheid om in de complexiteit van voorraadoperaties te duiken en verbeterpunten te identificeren.

    Het begrijpen en aanpakken van afwijkingen in inventarisgegevens is om verschillende redenen belangrijk. Het zorgt niet alleen voor een efficiënte werking van voorraadsystemen, maar minimaliseert ook de kosten en verbetert de servicekwaliteit. Deze videoblog onderzoekt vier fundamentele regels van voorraadbeheer en laat aan de hand van praktijkgegevens zien hoe afwijkingen van deze regels onderliggende problemen kunnen signaleren. Door aspecten als artikelkosten, doorlooptijden, voorhanden en in bestelling zijnde eenheden en de parameters die het aanvulbeleid sturen te onderzoeken, biedt de video een uitgebreid overzicht van de potentiële uitdagingen en inefficiënties die op de loer liggen in voorraadgegevens. 

    We benadrukken het belang van regelmatige analyse van voorraadgegevens en hoe een dergelijke analyse kan dienen als een krachtig hulpmiddel voor voorraadbeheerders, waardoor ze problemen kunnen detecteren en corrigeren voordat ze escaleren. Het vertrouwen op verouderde benaderingen kan tot onnauwkeurigheden leiden, resulterend in overtollige voorraden of onvervulde klantverwachtingen, wat op zijn beurt aanzienlijke financiële gevolgen en inefficiënties in de bedrijfsvoering kan veroorzaken.

    Door een gedetailleerd onderzoek van de dataset van het openbaar vervoersbedrijf brengt de videoblog een duidelijke boodschap over: proactieve beoordeling van inventarisgegevens is essentieel voor het handhaven van een optimale voorraadoperatie, om ervoor te zorgen dat onderdelen beschikbaar zijn wanneer dat nodig is en om onnodige uitgaven te vermijden.

    Door gebruik te maken van geavanceerde voorspellende analysetools zoals Smart Inventory Planning en Optimization kunt u uw voorraadgegevens onder controle houden. Smart IP&O geeft u op elk moment beslissende vraag- en voorraadinzichten in veranderende vraagpatronen voor reserveonderdelen, waardoor uw organisatie beschikt over de informatie die nodig is voor strategische besluitvorming.

     

     

    Bottom Line-strategieën voor de planning van reserveonderdelen

    Het beheer van reserveonderdelen brengt tal van uitdagingen met zich mee, zoals onverwachte storingen, veranderende schema's en inconsistente vraagpatronen. Traditionele prognosemethoden en handmatige benaderingen zijn niet effectief in het omgaan met deze complexiteit. Om deze uitdagingen het hoofd te bieden, schetst deze blog de belangrijkste strategieën die prioriteit geven aan serviceniveaus, probabilistische methoden gebruiken om bestelpunten te berekenen, het voorraadbeleid regelmatig aanpassen en een speciaal planningsproces implementeren om overmatige voorraad te voorkomen. Verken deze strategieën om de inventaris van reserveonderdelen te optimaliseren en de operationele efficiëntie te verbeteren.

    Onder aan de streep vooraf

    1. Voorraadbeheer is Risicomanagement.

    2. Kan risico's niet goed of op schaal beheren subjectieve planning - Noodzaak om service versus kosten te kennen.

    3. Dat is het niet variabiliteit van vraag en aanbod dat is het probleem – het is hoe je ermee omgaat.

    4. Reserveonderdelen hebben periodieke vraag naar dus traditionele methoden werken niet.

    5.Vuistregel benaderingen houden geen rekening met de variabiliteit van de vraag en wijzen voorraad verkeerd toe.

    6.Gebruik Service Level Driven Planning  (afwegingen tussen service en kosten) om voorraadbeslissingen te stimuleren.

    7.Probabilistisch benaderingen zoals Bootstrapping nauwkeurige schattingen van bestelpunten opleveren.

    8.Onderdelen classificeren en wijs doelen op serviceniveau toe per klasse.

    9.Kalibreer vaak opnieuw - duizenden onderdelen hebben oude, verouderde bestelpunten.

    10.Herstelbare onderdelen speciale behandeling nodig hebben.

     

    Concentreer u op de echte grondoorzaken

    Bottom Line strategies for Spare Parts Planning Causes

    Intermittent Demand

    Bottom Line strategies for Spare Parts Planning Intermittent Demand

     

    • Langzaam bewegend, onregelmatig of sporadisch met een groot percentage nulwaarden.
    • Waarden die niet gelijk zijn aan nul worden willekeurig gemengd – spikes zijn groot en gevarieerd.
    • Is niet klokvormig (de vraag is niet normaal verdeeld rond het gemiddelde.)
    • Ten minste 70% van de onderdelen van een typisch nutsbedrijf wordt met tussenpozen gevraagd.

    Bottom Line strategies for Spare Parts Planning 4

     

    Normale vraag

    Bottom Line strategies for Spare Parts Planning Intermittent Demand

    • Zeer weinig periodes zonder vraag (uitzondering zijn seizoensgebonden onderdelen.)
    • Vertoont vaak trend-, seizoens- of cyclische patronen.
    • Lagere niveaus van vraagvariabiliteit.
    • Is klokvormig (de vraag is normaal verdeeld rond het gemiddelde.)

    Bottom Line strategies for Spare Parts Planning 5

    Ga niet af op gemiddelden

    Bottom Line strategies for Spare Parts Planning Averages

    • OK voor het bepalen van typisch gebruik gedurende langere tijd.
    • Voorspelt vaak meer "nauwkeurig" dan sommige geavanceerde methoden.
    • Maar... onvoldoende om te bepalen wat je in voorraad moet hebben.

     

    Buffer niet met veelvouden van gemiddelden

    Voorbeeld: twee even belangrijke onderdelen, dus laten we ze hetzelfde behandelen.
    We zullen meer bestellen wanneer Voorraad ≤ 2 x Gem. Levertijd Vraag.

    Bottom Line strategies for Spare Parts Planning Multiple Averages

     

    Gebruik Service Level-afwegingscurven om de veiligheidsvoorraad te berekenen

    Bottom Line strategies for Spare Parts Planning Service Level

    Standaard Normale Kansen

    OK voor normale vraag. Werkt niet met periodieke vraag!

    Bottom Line strategies for Spare Parts Planning Standard Probabilities

     

    Gebruik geen normale (klokvormige) verdelingen

    • U krijgt de afwegingscurve verkeerd:

    - u richt zich bijvoorbeeld op 95% maar bereikt 85%.

    - u richt zich bijvoorbeeld op 99% maar bereikt 91%.

    • Dit is een enorme misser met kostbare implicaties:

    – U slaat vaker een voorraad op dan verwacht.

    – U begint met het toevoegen van subjectieve buffers ter compensatie en vervolgens met overstock.

    – Gebrek aan vertrouwen/twijfelen aan output verlamt de planning.

     

    Waarom traditionele methoden mislukken bij intermitterende vraag: 

    Traditionele methoden zijn niet ontworpen om kernproblemen in het beheer van reserveonderdelen aan te pakken.

    Behoefte: Kansverdeling (niet klokvormig) van vraag over variabele doorlooptijd.

    • Get: Voorspelling van gemiddeld vraag in elke maand, geen totaal over de doorlooptijd.
    • Get: vastgeschroefd model van variabiliteit, meestal het normale model, meestal verkeerd.

    Behoefte: blootstelling van afwegingen tussen beschikbaarheid van artikelen en voorraadkosten.

    • Krijg: niets van dit alles; krijg in plaats daarvan veel inconsistente, ad-hocbeslissingen.

     

    Gebruik statistische bootstrapping om de verdeling te voorspellen:

    Benut vervolgens de distributie om het voorraadbeleid te optimaliseren.

    Bottom Line strategies for Spare Parts Planning Predict Distribution

     

    Hoe werkt Bootstrapping?

    24 maanden historische vraaggegevens.

    Bottom Line strategies for Spare Parts Planning Bootstrapping 1

    Bootstrap-scenario's voor een doorlooptijd van 3 maanden.

    Bottom Line strategies for Spare Parts Planning Bootstrapping 2

    Bootstrapping bereikt het doel van het serviceniveau met een nauwkeurigheid van bijna 100%!

    • Nationale opslagoperatie.

    Taak: voorraadniveaus voorspellen voor 12.000 periodiek gevraagde SKU's op serviceniveaus 95% en 99%

    Resultaten:

    Op serviceniveau 95% was 95.23% niet op voorraad.

    Op serviceniveau 99% was 98.66% niet op voorraad.

    Dit betekent dat u kunt vertrouwen op output om verwachtingen te scheppen en met vertrouwen gerichte voorraadaanpassingen door te voeren die de voorraad verlagen en de service verbeteren.

     

    Stel doelserviceniveaus in op basis van bestelfrequentie en -omvang

    Set Target Service Levels According to Order Frequency

     

    Herbestelpunten regelmatig opnieuw kalibreren

    • Statische ROP's veroorzaken overschotten en tekorten.
    • Naarmate de doorlooptijd toeneemt, neemt ook de ROP toe en vice versa.
    • Naarmate het gebruik afneemt, moet de ROP dat ook doen en vice versa.
    • Hoe langer u wacht met herijken, hoe groter de onbalans.
    • Bergen onderdelen te vroeg of te laat besteld.
    • Verspilt de tijd van kopers door de verkeerde bestellingen te plaatsen.
    • Wekt wantrouwen in systemen en dwingt gegevenssilo's af.

    Recalibrate Reorder Points Frequently

    Doe plannen draaibaar (Onderdelen repareren) Anders

    Do Plan Rotables (Repair Parts) Differently

     

    Overzicht

    1. Voorraadbeheer is Risicomanagement.

    2. Kan risico's niet goed of op schaal beheren subjectieve planning - Noodzaak om service versus kosten te kennen.

    3. Dat is het niet variabiliteit van vraag en aanbod dat is het probleem – het is hoe je ermee omgaat.

    4. Reserveonderdelen hebben periodieke vraag naar dus traditionele methoden werken niet.

    5.Vuistregel benaderingen houden geen rekening met de variabiliteit van de vraag en wijzen voorraad verkeerd toe.

    6.Gebruik Service Level Driven Planning  (afwegingen tussen service en kosten) om voorraadbeslissingen te stimuleren.

    7.Probabilistisch benaderingen zoals Bootstrapping nauwkeurige schattingen van bestelpunten opleveren.

    8.Onderdelen classificeren en wijs doelen op serviceniveau toe per klasse.

    9.Kalibreer vaak opnieuw - duizenden onderdelen hebben oude, verouderde bestelpunten.

    10.Herstelbare onderdelen speciale behandeling nodig hebben.

     

    Software voor planning van reserveonderdelen

    De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

    Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

     

     

    Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

     

    Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.