Het Supply Chain Blame-spel: Top 3 excuses voor voorraadtekorten en -overschotten

1. Tekorten wijten aan variabiliteit in de doorlooptijd
Leveranciers komen vaak te laat, soms veel. Vertragingen in de doorlooptijd en variabiliteit in de levering zijn levensfeiten in de toeleveringsketen, toch worden voorraaddragende organisaties vaak verrast als een leverancier te laat is. Een effectief inventarisplanningsproces omarmt deze feiten van het leven en ontwikkelt beleid dat effectief rekening houdt met deze onzekerheid. Natuurlijk zullen er momenten zijn waarop vertragingen in de doorlooptijd uit het niets komen. Maar meestal wordt het voorraadbeleid, zoals bestelpunten, veiligheidsvoorraden en Min/Max-niveaus, niet vaak genoeg opnieuw gekalibreerd om veranderingen in de doorlooptijd in de loop van de tijd op te vangen. Veel bedrijven beoordelen het bestelpunt pas nadat het is geschonden, in plaats van opnieuw te kalibreren na elke nieuwe ontvangst van de doorlooptijd. We hebben situaties gezien waarin de Min/Max-instellingen alleen jaarlijks opnieuw worden gekalibreerd of zelfs volledig handmatig zijn. Als u een berg onderdelen heeft met oude Min/Max-niveaus en bijbehorende doorlooptijden die een jaar geleden relevant waren, zou het geen verrassing moeten zijn dat u niet genoeg voorraad heeft om u vast te houden tot de volgende bestelling arriveert.

 

2. Overdaad de schuld geven van slechte verkoop-/klantprognoses
Prognoses van uw klanten of uw verkoopteam worden vaak opzettelijk overschat om de levering te garanderen, als reactie op voorraadtekorten in het verleden waar ze werden achtergelaten om te drogen. Of de vraagprognoses zijn onnauwkeurig, simpelweg omdat het verkoopteam niet echt weet wat de vraag van hun klant zal zijn, maar gedwongen wordt een cijfer op te geven. Variabiliteit van de vraag is een ander feit van het leven in de toeleveringsketen, dus planningsprocessen moeten er beter rekening mee houden. Waarom zouden verkoopteams moeten vertrouwen op het voorspellen wanneer ze het bedrijf het beste van dienst kunnen zijn door te verkopen? Waarom zou je het spel spelen van het veinzen van acceptatie van klantprognoses als beide partijen weten dat het vaak niets meer is dan een WAG? Een betere manier is om de onzekerheid te accepteren en overeenstemming te bereiken over een mate van voorraadrisico die acceptabel is voor groepen artikelen. Zodra het voorraadrisico is overeengekomen, kunt u een nauwkeurige schatting maken van de veiligheidsvoorraad die nodig is om de variabiliteit van de vraag tegen te gaan. De vangst is buy-in, omdat u zich misschien niet superhoge serviceniveaus voor alle items kunt veroorloven. Klanten moeten bereid zijn een hogere prijs per eenheid te betalen om extreem hoge serviceniveaus te kunnen leveren. Verkopers moeten accepteren dat bepaalde artikelen meer kans hebben op nabestellingen als ze prioriteit geven aan voorraadinvesteringen in andere artikelen. Het gebruik van een consensus-veiligheidsvoorraadproces zorgt ervoor dat u op de juiste manier buffert en de juiste verwachtingen schept. Wanneer je dit doet, bevrijd je alle partijen van het voorspellingsspel waar ze in de eerste plaats niet voor waren uitgerust.

 

3. Problemen de schuld geven van slechte gegevens
"Garbage In/Garbage Out" is een veelvoorkomend excuus waarom het nu niet het juiste moment is om te investeren in planningssoftware. Het is natuurlijk waar dat als je slechte gegevens in een model invoert, je geen goede resultaten krijgt, maar hier komt het: ergens in de organisatie is iemand bezig met het plannen van de inventaris, het opstellen van een prognose en het nemen van beslissingen over wat te kopen . Doen ze dit blindelings of gebruiken ze gegevens die ze in een spreadsheet hebben verzameld om hen te helpen bij het nemen van beslissingen over voorraadplanning? Hopelijk het laatste. Combineer die interne kennis met software, het automatiseren van gegevensimport uit het ERP en het opschonen van gegevens. Eenmaal geharmoniseerd, levert uw planningssoftware voortdurend bijgewerkte, goed gestructureerde vraag- en doorlooptijdsignalen die nu effectieve vraagprognose en voorraadoptimalisatie mogelijk maken. Smart Software-medeoprichter Tom Willemain schreef in een IBF-nieuwsbrief dat "veel gegevensproblemen voortkomen uit gegevens die zijn verwaarloosd totdat een prognoseproject ze belangrijk maakte." Dus start dat prognoseproject, want stap één is ervoor zorgen dat "wat erin gaat" een ongerept, gedocumenteerd en nauwkeurig vraagsignaal is.

 

 

Vraagplanning met raamcontracten

Klant als leraar

Onze klanten zijn geweldige docenten die ons altijd hebben geholpen om de kloof te overbruggen tussen de leerboektheorie en de praktische toepassing van prognoses en vraagplanning. Ons laatste stukje scholing gaat over "algemene bestellingen" en hoe deze te verantwoorden als onderdeel van het vraagplanningsproces. 

Uitbreiding van het leerboek inventarisatietheorie

De leerboekinventarisatietheorie richt zich op de drie meest gebruikte aanvullingsbeleidslijnen: (1) Periodieke herziening order-up-to-beleid, aangeduid (T, S) in de boeken (2) Continu herzieningsbeleid met vaste bestelhoeveelheid, aangeduid (R, Q) en (3) beleid voor continue beoordeling van bestelling tot en met, aangeduid met (s, S) maar gewoonlijk "Min/Max" genoemd. Onze klanten hebben erop gewezen dat hun eigenlijke bestelproces vaak gepaard gaat met veelvuldig gebruik van "algemene bestellingen". Deze blog richt zich op het opnemen van raamcontracten in het vraagplanningsproces en beschrijft hoe de voorraaddoelen dienovereenkomstig kunnen worden aangepast.

Vraagplanning met raamcontracten is anders

Raamcontracten zijn contracten met leveranciers voor vaste aanvullingshoeveelheden die met vaste tussenpozen aankomen. U kunt bijvoorbeeld met uw leverancier overeenkomen om elke 7 dagen 20 eenheden te ontvangen via een algemene bestelling in plaats van 60 tot 90 eenheden elke 28 dagen volgens het beleid voor periodieke evaluatie. Raamcontracten contrasteren zelfs nog meer met het beleid voor continue beoordeling, waarbij zowel bestelschema's als bestelhoeveelheden willekeurig zijn. Over het algemeen is het efficiënt om flexibiliteit in te bouwen in het herbevoorradingsproces, zodat u alleen bestelt wat u nodig heeft en alleen bestelt wanneer u het nodig heeft. Volgens die norm zou Min/Max het meest logisch moeten zijn en algemeen beleid het minst logisch.

De zaak voor algemeen beleid

Hoewel efficiëntie belangrijk is, is het nooit de enige overweging. Een van onze klanten, laten we ze bedrijf X noemen, legde uit hoe aantrekkelijk algemene polissen in hun omstandigheden zijn. Bedrijf X maakt hoogwaardige onderdelen voor motorfietsen en ATV's. Ze veranderen ruw staal in coole dingen. Maar ze moeten omgaan met het staal. Staal is duur. Staal is omvangrijk en zwaar. Staal wordt niet van de ene op de andere dag op speciale bestelling gemaakt. De voorraadbeheerder van bedrijf X wil geen grote maar willekeurige bestellingen plaatsen op willekeurige tijdstippen. Hij wil niet op een berg van staal passen. Zijn leveranciers willen geen bestellingen voor willekeurige hoeveelheden op willekeurige tijdstippen ontvangen. En Bedrijf X geeft er de voorkeur aan zijn betalingen te spreiden. Het resultaat: algemene bestellingen.

De fatale fout in algemeen beleid

Voor Bedrijf X zijn raamcontracten bedoeld om de aankoop van aanvullingen gelijk te maken en om onpraktische stapels staal te voorkomen voordat ze klaar zijn voor gebruik. Maar de logica achter het voorraadbeleid voor continue beoordeling is nog steeds van toepassing. Pieken in de vraag, anders welkom, zullen optreden en kunnen leiden tot stockouts. Evenzo kunnen pauzes in de vraag een vraagoverschot creëren. Naarmate de tijd verstrijkt, wordt het duidelijk dat een algemeen beleid een fatale fout heeft: alleen als de raamorders exact overeenkomen met de gemiddelde vraag, kunnen ze op hol geslagen voorraad in beide richtingen, omhoog of omlaag, vermijden. In de praktijk zal het onmogelijk zijn om de gemiddelde vraag exact te matchen. Bovendien is de gemiddelde vraag een bewegend doel en kan deze stijgen of dalen.

Raamcontracten opnemen bij vraagplanning 

Een algemeen beleid heeft wel voordelen, maar rigiditeit is de achilleshiel. Vraagplanners zullen vaak improviseren door toekomstige bestellingen aan te passen om veranderingen in de vraag aan te kunnen, maar dit is niet schaalbaar voor duizenden artikelen. Om het voorraadaanvulbeleid robuust te maken tegen willekeur in de vraag, stellen we een hybride beleid voor dat begint met algemene bestellingen, maar de flexibiliteit behoudt om automatisch (niet handmatig) extra voorraad te bestellen wanneer dat nodig is. Door de algemene polis aan te vullen met een Min/Max back-up is het mogelijk om aanpassingen te doen zonder handmatige tussenkomst. Deze combinatie zal enkele van de voordelen van raamcontracten vastleggen, terwijl de klantenservice wordt beschermd en op hol geslagen voorraad wordt vermeden.

Het ontwerpen van een vraagplanningsproces dat rekening houdt met raamcontracten, vereist de keuze uit vier besturingsparameters. Twee parameters zijn de vaste omvang en vaste timing van de algemene polis. Twee andere zijn de waarden van Min en Max. Hierdoor wordt de voorraadbeheerder geconfronteerd met een vierdimensionaal optimalisatieprobleem. Geavanceerde voorraadoptimalisatiesoftware maakt het mogelijk om keuzes voor de waarden van de vier parameters te evalueren en om onderhandelingen met leveranciers te ondersteunen bij het opstellen van raamcontracten.

 

 

Voorraad optimaliseren rond de minimale bestelhoeveelheden van leveranciers

Onlangs had ik een interessant gesprek met een voorraadbeheerder en de VP Financiën. We bespraken de voordelen van het automatisch optimaliseren van zowel bestelpunten als bestelhoeveelheden. De VP Finance was bezorgd dat ze, gezien hun grote leverancier die minimale bestelhoeveelheden vereiste, er niet van zouden kunnen profiteren. Hij zei dat zijn leveranciers alle macht in handen hadden, hem dwongen enorme minimale bestelhoeveelheden te accepteren en zijn handen vastbinden. Hoewel hij zich hier rot over voelde, zag hij een zilveren randje: hij hoefde geen planning te maken. Hij zou een grote voorraadinvestering accepteren, maar zijn klantenserviceniveau zou uitzonderlijk zijn. Misschien werd aangenomen dat de grote voorraadinvestering de kosten van het zakendoen waren.

Ik duwde terug en wees erop dat hij niet zo machteloos was als hij zich voelde. Hij had nog steeds controle over de andere helft van het inkoopproces: hoewel hij niet kon bepalen hoeveel hij moest bestellen, kon hij wel bepalen wanneer hij moest bestellen door het bestelpunt aan te passen. Met andere woorden, er is altijd ruimte voor zorgvuldige kwantitatieve analyse in voorraadbeheer, zelfs als u één hand op de rug hebt gebonden.

Een voorbeeld

Om wat cijfers achter mijn argument te plaatsen, heb ik een scenario gemaakt en het vervolgens geanalyseerd met behulp van onze methodologie om te laten zien hoe consequent het kan zijn om software voor voorraadoptimalisatie te gebruiken, zelfs in krappe situaties. In dit scenario is de vraag naar artikelen gemiddeld 2,2 eenheden per dag, maar deze varieert aanzienlijk per dag van de week. Laten we zeggen dat de denkbeeldige leverancier aandringt op een minimale bestelhoeveelheid van 500 eenheden (ver buiten proportie met de vraag) en de aanvullingsorders in drie dagen of tien dagen in gelijke verhoudingen uitvoert (vrij inconsistent). Laten we, om de schuld te verspreiden, ook aannemen dat de denkbeeldige klant van de denkbeeldige leverancier een dwaze regel gebruikt dat het bestelpunt 10% van de minimale bestelhoeveelheid moet zijn. (Waarom deze regel? Te veel bedrijven gebruiken eenvoudige/simplistische vuistregels in plaats van een goede analyse.)

We hebben dus een basisscenario waarin de bestelhoeveelheid 500 eenheden is en het bestelpunt 50 eenheden is. In dit geval is het opvulpercentage 100%, maar het gemiddelde aantal beschikbare eenheden is maar liefst 330. Als de klant het bestelpunt eenvoudigweg zou verlagen van 50 naar 15, zou het opvulpercentage nog steeds 99,5% zijn, maar de gemiddelde voorraad bij de hand zou dalen met 11% tot 295 eenheden. Met de ene hand die niet op zijn rug gebonden was, kon de voorraadbeheerder zijn voorraadinvestering met meer dan 10% verminderen, wat een merkbare overwinning zou zijn.

Overigens, als de minimale bestelhoeveelheid zou worden afgeschaft, zou de klant vrij zijn om tot een nieuwe en veel betere oplossing te komen. Door de bestelhoeveelheid in te stellen op 45 en het bestelpunt op 25 zou een opvulpercentage van 99% worden bereikt ten koste van een dagelijks voorraadniveau van slechts 35 eenheden: bijna een 90%-reductie in voorraadinvestering: een belangrijke verbetering ten opzichte van de status-quo.

naschrift

Deze berekeningen zijn mogelijk met behulp van onze software, die de anders onbekende relaties tussen de ontwerpkeuzes van het voorraadsysteem (bijv. bestelhoeveelheid en bestelpunt) en belangrijke prestatie-indicatoren (bijv. gemiddelde beschikbare eenheden en opvulpercentage) zichtbaar kan maken. Gewapend met dit vermogen om deze berekeningen uit te voeren, kunnen nu alternatieve afspraken met de leverancier worden overwogen. Wat als de leverancier, in ruil voor het betalen van een hogere prijs per eenheid, bijvoorbeeld instemt met een lagere MOQ. Door de software te gebruiken om een analyse uit te voeren van de belangrijkste prestatie-indicatoren met behulp van de "wat als"-kosten en MOQ's, zouden de kosten per eenheid en MOQ worden onthuld die nodig zouden zijn om een meer winstgevende deal te ontwikkelen. Eenmaal geïdentificeerd, hebben alle partijen er baat bij. De leverancier genereert nu een betere marge op de verkoop van zijn producten en de koper houdt aanzienlijk minder voorraad aan, wat leidt tot een verlaging van de holdingkosten die de toegevoegde kosten per eenheid in de schaduw stelt. Iedereen wint.