Voorraad beheren te midden van regimeverandering

Als je de uitdrukking "regimeverandering" op het nieuws hoort, denk je meteen aan een beladen geopolitieke gebeurtenis. Statistici gebruiken de uitdrukking anders, op een manier die van groot belang is voor vraagplanning en voorraadoptimalisatie. Deze blog gaat over “regime change” in statistische zin, dat wil zeggen een grote verandering in het karakter van de vraag naar een voorraadartikel.

De vraaggeschiedenis van een artikel is de brandstof die de prognosemachines van vraagplanners aandrijft. Over het algemeen geldt: hoe meer brandstof, hoe beter, waardoor we een betere oplossing hebben voor het gemiddelde niveau, de volatiliteit, de grootte en frequentie van eventuele pieken, de vorm van elk seizoenspatroon en de grootte en richting van elke trend.

Maar er is één grote uitzondering op de regel dat "meer gegevens betere gegevens zijn." Als er een grote verschuiving in uw wereld plaatsvindt en de nieuwe vraag lijkt niet op de oude vraag, dan worden oude gegevens gevaarlijk.

Moderne software kan nauwkeurige prognoses maken van de vraag naar artikelen en verstandige keuzes voorstellen voor voorraadparameters zoals bestelpunten en bestelhoeveelheden. Maar de geldigheid van deze berekeningen hangt af van de relevantie van de gegevens die in hun berekening worden gebruikt. Oude gegevens van een oud regime weerspiegelen niet langer de huidige realiteit, dus door ze in berekeningen op te nemen, ontstaan voorspellingsfouten voor vraagplanners en ofwel overtollige voorraad of onaanvaardbare stockout-percentages voor voorraadplanners.

Dat gezegd hebbende, als je een recente regimewisseling zou doorstaan en de verouderde gegevens zou weggooien, zou je veel minder gegevens hebben om mee te werken. Dit heeft zijn eigen kosten, omdat alle schattingen die op basis van de gegevens worden berekend een grotere statistische onzekerheid zouden hebben, ook al zouden ze minder vertekend zijn. In dit geval zouden uw berekeningen meer moeten steunen op een combinatie van statistische analyse en uw eigen deskundig oordeel.

Op dit punt kunt u zich afvragen: "Hoe kan ik weten of en wanneer er een regimewisseling heeft plaatsgevonden?" Als je al een tijdje aan het werk bent en je je op je gemak voelt bij het bekijken van tijdschema's van de vraag naar items, zul je over het algemeen regimeverandering herkennen wanneer je het ziet, tenminste als het niet te subtiel is. Afbeelding 1 toont enkele praktijkvoorbeelden die voor de hand liggen.

Figure 1 Four examples of regime change in real-world item demand

Afbeelding 1: Vier voorbeelden van regimeverandering in de vraag naar artikelen in de echte wereld

 

Helaas kunnen minder voor de hand liggende veranderingen toch significante effecten hebben. Bovendien hebben de meeste van onze klanten het te druk om alle items die ze beheren zelfs maar één keer per kwartaal handmatig te controleren. Als je bijvoorbeeld 100 items overschrijdt, wordt het een zware taak om al die tijdreeksen te bekijken. Gelukkig kan software goed de vraag naar tienduizenden items monitoren en u waarschuwen voor items die mogelijk uw aandacht nodig hebben. Ook dan kunt u ervoor zorgen dat de software niet alleen regimeverandering detecteert, maar ook automatisch alle gegevens uitsluit die zijn verzameld vóór de meest recente regimeverandering, indien van toepassing. Met andere woorden, u kunt zowel automatische waarschuwing voor regimeverandering als automatische bescherming tegen regimeverandering krijgen.

Zie onze vorige blog over dit onderwerp voor meer informatie over de basisprincipes van regimeverandering: https://smartcorp.com/blog/demandplanningregimechange/  

 

Een voorbeeld met getallen erin

Als u meer wilt weten, lees dan verder om een numeriek voorbeeld te zien van hoeveel regimeverandering de berekening van een bestelpunt voor een kritisch reserveonderdeel kan veranderen. Hier is een scenario om het punt te illustreren.

Scenario

  • Doel: bereken het bestelpunt dat nodig is om het risico van voorraadtekort te beheersen tijdens het wachten op aanvulling. Neem aan dat het beoogde voorraadrisico 5% is.
  • Stel dat het artikel een intermitterende dagelijkse vraag heeft, met vele dagen zonder vraag.
  • Stel dat de dagelijkse vraag een Poisson-verdeling heeft met een gemiddelde van 1,0 eenheden per dag.
  • Stel dat de doorlooptijd van de aanvulling altijd 30 dagen is.
  • De doorlooptijdvraag zal willekeurig zijn, dus het heeft een kansverdeling en het bestelpunt is de 95e percentiel van de verdeling.
  • Neem aan dat het effect van regimewisseling is dat de gemiddelde dagelijkse vraag wordt verhoogd of verlaagd.
  • Neem aan dat er een jaar aan dagelijkse gegevens beschikbaar zijn voor het schatten van de gemiddelde dagelijkse vraag per eenheid.

 

Figure 2 Example of change in mean demand and sample of random daily demand

Figuur 2 Voorbeeld van verandering in gemiddelde vraag en steekproef van willekeurige dagelijkse vraag

 

Figuur 2 toont een vorm van dit scenario. Het bovenste paneel laat zien dat de gemiddelde dagelijkse vraag na 270 dagen stijgt van 1,0 naar 1,5. Het onderste paneel toont een manier waarop de dagelijkse vraag van een jaar kan verschijnen. (Op dit moment heb je misschien het gevoel dat het berekenen van al deze dingen ingewikkeld is, zelfs voor wat een vereenvoudigd scenario blijkt te zijn. Daarom hebben we software!)

Analyse

Succesvolle berekening van het juiste bestelpunt hangt af van wanneer regimeverandering plaatsvindt en hoe groot een verandering plaatsvindt. We simuleerden regimewisselingen van verschillende groottes op verschillende tijdstippen binnen een periode van 365 dagen. Rond een basisvraag van 1,0 eenheden per dag hebben we verschuivingen in de vraag ("shift") van ±25% en ±50% bestudeerd, evenals een referentiegeval zonder verandering. We hebben het tijdstip van de wijziging ("t.break") vastgesteld op 90, 180 en 270 dagen. In elk geval hebben we twee schattingen van het bestelpunt berekend: de "ideale" waarde gegeven perfecte kennis van de gemiddelde vraag in het nieuwe regime ("ROP.true"), en de geschatte waarde van de gemiddelde vraag berekend door de regimeverandering te negeren en het gebruik van alle vraaggegevens van het afgelopen jaar (“ROP.all”).

Tabel 1 toont de schattingen van het bestelpunt berekend over 100 simulaties. Het middelste blok is het referentiegeval, waarin er geen verandering is in de dagelijkse vraag, die vast blijft op 1 eenheid per dag. Het gekleurde blok onderaan is het meest extreem stijgende scenario, waarbij de vraag stijgt tot 1,5 eenheden/dag ofwel een derde, de helft of tweederde van het jaar.

Uit deze simulaties kunnen we verschillende conclusies trekken.

ROP.true: De juiste keuze voor bestelpunt neemt toe of af volgens de verandering in de gemiddelde vraag na de regimeverandering. De relatie is niet eenvoudig lineair: de tabel omvat een 600%-bereik van vraagniveaus (0,25 tot 1,50) maar een 467%-bereik van bestelpunten (van 12 tot 56).

ROP.all: Het negeren van de regimewisseling kan leiden tot grove overschattingen van het bestelpunt wanneer de vraag daalt en tot grove onderschattingen wanneer de vraag toeneemt. Zoals we zouden verwachten, hoe later de regimewisseling, hoe erger de fout. Als de vraag bijvoorbeeld twee derde van het jaar onopgemerkt stijgt van 1,0 naar 1,5 eenheden per dag, zou het berekende bestelpunt van 43 eenheden 13 eenheden minder zijn dan het zou moeten zijn.

Een woord van waarschuwing: Tabel 1 laat zien dat het baseren van de berekeningen van bestelpunten met alleen gegevens van na een regimewisseling meestal het juiste antwoord geeft. Wat het niet laat zien, is dat de schattingen onstabiel kunnen zijn als er na de wijziging zeer weinig vraaggeschiedenis is. Daarom moet je in de praktijk wachten met reageren op de regimewisseling totdat er een behoorlijk aantal waarnemingen is verzameld in het nieuwe regime. Dit kan betekenen dat u alle vraaggeschiedenis moet gebruiken, zowel vóór als na de wijziging, totdat bijvoorbeeld 60 of 90 dagen aan geschiedenis zijn verzameld voordat de gegevens vóór de wijziging worden genegeerd.

 

Table 1 Correct and Estimated Reorder Points for different regime change scenarios

Tabel 1 Correcte en geschatte bestelpunten voor verschillende scenario's voor regimeverandering

Vraagplanning met raamcontracten

Klant als leraar

Onze klanten zijn geweldige docenten die ons altijd hebben geholpen om de kloof te overbruggen tussen de leerboektheorie en de praktische toepassing van prognoses en vraagplanning. Ons laatste stukje scholing gaat over "algemene bestellingen" en hoe deze te verantwoorden als onderdeel van het vraagplanningsproces. 

Uitbreiding van het leerboek inventarisatietheorie

De leerboekinventarisatietheorie richt zich op de drie meest gebruikte aanvullingsbeleidslijnen: (1) Periodieke herziening order-up-to-beleid, aangeduid (T, S) in de boeken (2) Continu herzieningsbeleid met vaste bestelhoeveelheid, aangeduid (R, Q) en (3) beleid voor continue beoordeling van bestelling tot en met, aangeduid met (s, S) maar gewoonlijk "Min/Max" genoemd. Onze klanten hebben erop gewezen dat hun eigenlijke bestelproces vaak gepaard gaat met veelvuldig gebruik van "algemene bestellingen". Deze blog richt zich op het opnemen van raamcontracten in het vraagplanningsproces en beschrijft hoe de voorraaddoelen dienovereenkomstig kunnen worden aangepast.

Vraagplanning met raamcontracten is anders

Raamcontracten zijn contracten met leveranciers voor vaste aanvullingshoeveelheden die met vaste tussenpozen aankomen. U kunt bijvoorbeeld met uw leverancier overeenkomen om elke 7 dagen 20 eenheden te ontvangen via een algemene bestelling in plaats van 60 tot 90 eenheden elke 28 dagen volgens het beleid voor periodieke evaluatie. Raamcontracten contrasteren zelfs nog meer met het beleid voor continue beoordeling, waarbij zowel bestelschema's als bestelhoeveelheden willekeurig zijn. Over het algemeen is het efficiënt om flexibiliteit in te bouwen in het herbevoorradingsproces, zodat u alleen bestelt wat u nodig heeft en alleen bestelt wanneer u het nodig heeft. Volgens die norm zou Min/Max het meest logisch moeten zijn en algemeen beleid het minst logisch.

De zaak voor algemeen beleid

Hoewel efficiëntie belangrijk is, is het nooit de enige overweging. Een van onze klanten, laten we ze bedrijf X noemen, legde uit hoe aantrekkelijk algemene polissen in hun omstandigheden zijn. Bedrijf X maakt hoogwaardige onderdelen voor motorfietsen en ATV's. Ze veranderen ruw staal in coole dingen. Maar ze moeten omgaan met het staal. Staal is duur. Staal is omvangrijk en zwaar. Staal wordt niet van de ene op de andere dag op speciale bestelling gemaakt. De voorraadbeheerder van bedrijf X wil geen grote maar willekeurige bestellingen plaatsen op willekeurige tijdstippen. Hij wil niet op een berg van staal passen. Zijn leveranciers willen geen bestellingen voor willekeurige hoeveelheden op willekeurige tijdstippen ontvangen. En Bedrijf X geeft er de voorkeur aan zijn betalingen te spreiden. Het resultaat: algemene bestellingen.

De fatale fout in algemeen beleid

Voor Bedrijf X zijn raamcontracten bedoeld om de aankoop van aanvullingen gelijk te maken en om onpraktische stapels staal te voorkomen voordat ze klaar zijn voor gebruik. Maar de logica achter het voorraadbeleid voor continue beoordeling is nog steeds van toepassing. Pieken in de vraag, anders welkom, zullen optreden en kunnen leiden tot stockouts. Evenzo kunnen pauzes in de vraag een vraagoverschot creëren. Naarmate de tijd verstrijkt, wordt het duidelijk dat een algemeen beleid een fatale fout heeft: alleen als de raamorders exact overeenkomen met de gemiddelde vraag, kunnen ze op hol geslagen voorraad in beide richtingen, omhoog of omlaag, vermijden. In de praktijk zal het onmogelijk zijn om de gemiddelde vraag exact te matchen. Bovendien is de gemiddelde vraag een bewegend doel en kan deze stijgen of dalen.

Raamcontracten opnemen bij vraagplanning 

Een algemeen beleid heeft wel voordelen, maar rigiditeit is de achilleshiel. Vraagplanners zullen vaak improviseren door toekomstige bestellingen aan te passen om veranderingen in de vraag aan te kunnen, maar dit is niet schaalbaar voor duizenden artikelen. Om het voorraadaanvulbeleid robuust te maken tegen willekeur in de vraag, stellen we een hybride beleid voor dat begint met algemene bestellingen, maar de flexibiliteit behoudt om automatisch (niet handmatig) extra voorraad te bestellen wanneer dat nodig is. Door de algemene polis aan te vullen met een Min/Max back-up is het mogelijk om aanpassingen te doen zonder handmatige tussenkomst. Deze combinatie zal enkele van de voordelen van raamcontracten vastleggen, terwijl de klantenservice wordt beschermd en op hol geslagen voorraad wordt vermeden.

Het ontwerpen van een vraagplanningsproces dat rekening houdt met raamcontracten, vereist de keuze uit vier besturingsparameters. Twee parameters zijn de vaste omvang en vaste timing van de algemene polis. Twee andere zijn de waarden van Min en Max. Hierdoor wordt de voorraadbeheerder geconfronteerd met een vierdimensionaal optimalisatieprobleem. Geavanceerde voorraadoptimalisatiesoftware maakt het mogelijk om keuzes voor de waarden van de vier parameters te evalueren en om onderhandelingen met leveranciers te ondersteunen bij het opstellen van raamcontracten.

 

 

Voorraad optimaliseren rond de minimale bestelhoeveelheden van leveranciers

Onlangs had ik een interessant gesprek met een voorraadbeheerder en de VP Financiën. We bespraken de voordelen van het automatisch optimaliseren van zowel bestelpunten als bestelhoeveelheden. De VP Finance was bezorgd dat ze, gezien hun grote leverancier die minimale bestelhoeveelheden vereiste, er niet van zouden kunnen profiteren. Hij zei dat zijn leveranciers alle macht in handen hadden, hem dwongen enorme minimale bestelhoeveelheden te accepteren en zijn handen vastbinden. Hoewel hij zich hier rot over voelde, zag hij een zilveren randje: hij hoefde geen planning te maken. Hij zou een grote voorraadinvestering accepteren, maar zijn klantenserviceniveau zou uitzonderlijk zijn. Misschien werd aangenomen dat de grote voorraadinvestering de kosten van het zakendoen waren.

Ik duwde terug en wees erop dat hij niet zo machteloos was als hij zich voelde. Hij had nog steeds controle over de andere helft van het inkoopproces: hoewel hij niet kon bepalen hoeveel hij moest bestellen, kon hij wel bepalen wanneer hij moest bestellen door het bestelpunt aan te passen. Met andere woorden, er is altijd ruimte voor zorgvuldige kwantitatieve analyse in voorraadbeheer, zelfs als u één hand op de rug hebt gebonden.

Een voorbeeld

Om wat cijfers achter mijn argument te plaatsen, heb ik een scenario gemaakt en het vervolgens geanalyseerd met behulp van onze methodologie om te laten zien hoe consequent het kan zijn om software voor voorraadoptimalisatie te gebruiken, zelfs in krappe situaties. In dit scenario is de vraag naar artikelen gemiddeld 2,2 eenheden per dag, maar deze varieert aanzienlijk per dag van de week. Laten we zeggen dat de denkbeeldige leverancier aandringt op een minimale bestelhoeveelheid van 500 eenheden (ver buiten proportie met de vraag) en de aanvullingsorders in drie dagen of tien dagen in gelijke verhoudingen uitvoert (vrij inconsistent). Laten we, om de schuld te verspreiden, ook aannemen dat de denkbeeldige klant van de denkbeeldige leverancier een dwaze regel gebruikt dat het bestelpunt 10% van de minimale bestelhoeveelheid moet zijn. (Waarom deze regel? Te veel bedrijven gebruiken eenvoudige/simplistische vuistregels in plaats van een goede analyse.)

We hebben dus een basisscenario waarin de bestelhoeveelheid 500 eenheden is en het bestelpunt 50 eenheden is. In dit geval is het opvulpercentage 100%, maar het gemiddelde aantal beschikbare eenheden is maar liefst 330. Als de klant het bestelpunt eenvoudigweg zou verlagen van 50 naar 15, zou het opvulpercentage nog steeds 99,5% zijn, maar de gemiddelde voorraad bij de hand zou dalen met 11% tot 295 eenheden. Met de ene hand die niet op zijn rug gebonden was, kon de voorraadbeheerder zijn voorraadinvestering met meer dan 10% verminderen, wat een merkbare overwinning zou zijn.

Overigens, als de minimale bestelhoeveelheid zou worden afgeschaft, zou de klant vrij zijn om tot een nieuwe en veel betere oplossing te komen. Door de bestelhoeveelheid in te stellen op 45 en het bestelpunt op 25 zou een opvulpercentage van 99% worden bereikt ten koste van een dagelijks voorraadniveau van slechts 35 eenheden: bijna een 90%-reductie in voorraadinvestering: een belangrijke verbetering ten opzichte van de status-quo.

naschrift

Deze berekeningen zijn mogelijk met behulp van onze software, die de anders onbekende relaties tussen de ontwerpkeuzes van het voorraadsysteem (bijv. bestelhoeveelheid en bestelpunt) en belangrijke prestatie-indicatoren (bijv. gemiddelde beschikbare eenheden en opvulpercentage) zichtbaar kan maken. Gewapend met dit vermogen om deze berekeningen uit te voeren, kunnen nu alternatieve afspraken met de leverancier worden overwogen. Wat als de leverancier, in ruil voor het betalen van een hogere prijs per eenheid, bijvoorbeeld instemt met een lagere MOQ. Door de software te gebruiken om een analyse uit te voeren van de belangrijkste prestatie-indicatoren met behulp van de "wat als"-kosten en MOQ's, zouden de kosten per eenheid en MOQ worden onthuld die nodig zouden zijn om een meer winstgevende deal te ontwikkelen. Eenmaal geïdentificeerd, hebben alle partijen er baat bij. De leverancier genereert nu een betere marge op de verkoop van zijn producten en de koper houdt aanzienlijk minder voorraad aan, wat leidt tot een verlaging van de holdingkosten die de toegevoegde kosten per eenheid in de schaduw stelt. Iedereen wint.