Beheersing van automatische prognoses voor tijdreeksgegevens

In deze blog analyseren we de automatische prognoses voor vraagprojecties in tijdreeksen, waarbij we ons concentreren op de belangrijkste technieken, uitdagingen en best practices. Er zijn meerdere methoden om de toekomstige vraag naar een artikel te voorspellen, en dit wordt complex als het om duizenden artikelen gaat, die elk een andere voorspellingstechniek vereisen vanwege hun unieke vraagpatronen. Sommige artikelen hebben een stabiele vraag, andere vertonen een stijgende of dalende trend en sommige vertonen seizoensinvloeden. Het selecteren van de juiste methode voor elk item kan overweldigend zijn. Hier onderzoeken we hoe automatische prognoses dit proces vereenvoudigen.

Automatische prognoses worden van fundamenteel belang bij het beheren van grootschalige vraagprojecties. Met duizenden items is het handmatig selecteren van een prognosemethode voor elk item onpraktisch. Automatische prognoses maken gebruik van software om deze beslissingen te nemen, waardoor nauwkeurigheid en efficiëntie in het prognoseproces worden gegarandeerd. Het belang ervan ligt in het vermogen om complexe, grootschalige prognosebehoeften efficiënt af te handelen. Het elimineert de noodzaak van handmatige selectie, waardoor tijd wordt bespaard en fouten worden verminderd. Deze aanpak is vooral nuttig in omgevingen met uiteenlopende vraagpatronen, waarbij voor elk artikel mogelijk een andere prognosemethode nodig is.

 

Belangrijke overwegingen voor effectieve prognoses

  1. Uitdagingen van handmatige prognoses:
    • Onhaalbaarheid: het handmatig kiezen van prognosemethoden voor duizenden items is onbeheersbaar.
    • Inconsistentie: Menselijke fouten kunnen leiden tot inconsistente en onnauwkeurige voorspellingen.
  2. Criteria voor methodeselectie:
    • Foutmeting: Het primaire criterium voor het selecteren van een voorspellingsmethode is de typische voorspellingsfout, gedefinieerd als het verschil tussen voorspelde en werkelijke waarden. Deze fout wordt gemiddeld over de prognosehorizon (bijvoorbeeld maandelijkse prognoses over een jaar).
    • Holdout-analyse: deze techniek simuleert het proces van wachten tot een jaar is verstreken door enkele historische gegevens te verbergen, voorspellingen te doen en vervolgens de verborgen gegevens te onthullen om fouten te berekenen. Dit helpt bij het kiezen van de beste methode in realtime.
  3. Prognose toernooi:
    • Methodevergelijking: Verschillende methoden concurreren om elk item te voorspellen, waarbij de methode de laagste gemiddelde fout oplevert.
    • Parameterafstemming: Elke methode wordt getest met verschillende parameters om de optimale instellingen te vinden. Eenvoudige exponentiële afvlakking kan bijvoorbeeld worden geprobeerd met verschillende wegingsfactoren.

 

De algoritmen achter effectieve automatische prognoses

Automatische prognoses zijn zeer rekenkundig, maar haalbaar met moderne technologie. Het proces omvat:

  • Gegevenssegmentatie: Door historische gegevens in segmenten te verdelen, kunt u verschillende aspecten van historische gegevens beheren en benutten voor nauwkeurigere prognoses. Voor een product met een seizoensgebonden vraag kunnen de gegevens bijvoorbeeld worden gesegmenteerd op basis van seizoenen om seizoensspecifieke trends en patronen vast te leggen. Door deze segmentatie kunnen voorspellers effectiever voorspellingen maken en testen.
  • Herhaalde simulaties: Het gebruik van glijdende simulaties houdt in dat voorspellingen over verschillende perioden herhaaldelijk worden getest en verfijnd. Deze methode valideert de nauwkeurigheid van voorspellingsmethoden door ze toe te passen op verschillende gegevenssegmenten. Een voorbeeld is de glijdende-venstermethode, waarbij een venster met een vaste grootte door de tijdreeksgegevens beweegt en voor elke positie voorspellingen wordt gegenereerd om de prestaties te evalueren.
  • Parameteroptimalisatie: Parameteroptimalisatie omvat het uitproberen van meerdere varianten van elke prognosemethode om de best presterende te vinden. Door parameters aan te passen, zoals de afvlakkingsfactor bij exponentiële afvlakkingsmethoden of het aantal eerdere waarnemingen in ARIMA-modellen, kunnen voorspellers modellen verfijnen om de prestaties te verbeteren.

In onze software laten we bijvoorbeeld verschillende prognosemethoden met elkaar concurreren om de beste prestaties op een bepaald item. Kennis van automatische prognoses wordt onmiddellijk overgedragen op Simple Moving Average, lineair voortschrijdend gemiddelde, Single Exponential Smoothing, Double Exponential Smoothing, Winters' Exponential Smoothing en Promo-voorspellingen. Deze competitie zorgt ervoor dat de meest geschikte methode wordt geselecteerd op basis van empirisch bewijs, en niet op basis van subjectief oordeel. De winnaar van het toernooi komt het dichtst in de buurt van het voorspellen van nieuwe gegevenswaarden uit oude gegevens. De nauwkeurigheid wordt gemeten aan de hand van de gemiddelde absolute fout (dat wil zeggen de gemiddelde fout, waarbij eventuele mintekens worden genegeerd). Het gemiddelde wordt berekend over een reeks voorspellingen, waarbij elk een deel van de gegevens gebruikt, in een proces dat bekend staat als glijdende simulatie. eerder uitgelegd in een eerdere blog.

 

Methoden die worden gebruikt bij automatische prognoses

Normaal gesproken zijn er zes extrapolatieve voorspellingsmethoden die meedoen aan het automatische voorspellingstoernooi:

  • Eenvoudig voortschrijdend gemiddelde
  • Lineair voortschrijdend gemiddelde
  • Enkele exponentiële afvlakking
  • Dubbele exponentiële afvlakking
  • Additieve versie van Winters' exponentiële afvlakking
  • Multiplicatieve versie van Winters' exponentiële afvlakking

De laatste twee methoden zijn geschikt voor seizoensreeksen; ze worden echter automatisch uitgesloten van het toernooi als er minder dan twee volledige seizoenscycli met gegevens zijn (bijvoorbeeld minder dan 24 perioden met maandelijkse gegevens of acht perioden met driemaandelijkse gegevens). Deze zes klassieke, op afvlakking gebaseerde methoden hebben bewezen gemakkelijk te begrijpen, eenvoudig te berekenen en nauwkeurig te zijn. Je kunt elk van deze methoden uitsluiten van het toernooi als je een voorkeur hebt voor sommige deelnemers en niet voor andere.

Automatische prognoses voor tijdreeksgegevens zijn essentieel voor het efficiënt en nauwkeurig beheren van grootschalige vraagprojecties. Bedrijven kunnen een betere voorspellingsnauwkeurigheid bereiken en hun planningsprocessen stroomlijnen door de selectie van voorspellingsmethoden te automatiseren en technieken zoals holdout-analyse en voorspellingstoernooien te gebruiken. Het omarmen van deze geavanceerde voorspellingstechnieken zorgt ervoor dat bedrijven voorop blijven lopen in dynamische marktomgevingen en weloverwogen beslissingen nemen op basis van betrouwbare gegevensprojecties.

 

 

 

Kan willekeur een bondgenoot zijn in de voorspellingsstrijd?

Feynmans perspectief belicht onze reis: “In haar pogingen om zoveel mogelijk over de natuur te leren, heeft de moderne natuurkunde ontdekt dat bepaalde dingen nooit met zekerheid ‘gekend’ kunnen worden. Veel van onze kennis moet altijd onzeker blijven. Het meeste wat we kunnen weten is in termen van waarschijnlijkheden.” – Richard Feynman, The Feynman Lectures on Physics.

Wanneer we de complexe wereld van de logistiek proberen te begrijpen, speelt willekeur een cruciale rol. Dit introduceert een interessante paradox: in een realiteit waarin precisie en zekerheid worden gewaardeerd, zou de onvoorspelbare aard van vraag en aanbod daadwerkelijk als een strategische bondgenoot kunnen dienen?

De zoektocht naar nauwkeurige voorspellingen is niet alleen een academische oefening; het is een cruciaal onderdeel van operationeel succes in tal van sectoren. Voor vraagplanners die moeten anticiperen op de productvraag zijn de gevolgen van het goed of fout doen van de vraag van cruciaal belang. Daarom is het herkennen en benutten van de kracht van willekeur niet slechts een theoretische oefening; het is een noodzaak voor veerkracht en aanpassingsvermogen in een steeds veranderende omgeving.

Onzekerheid omarmen: dynamische, stochastische en Monte Carlo-methoden

Dynamische modellering: De zoektocht naar absolute precisie in voorspellingen negeert de intrinsieke onvoorspelbaarheid van de wereld. Traditionele voorspellingsmethoden, met hun rigide raamwerken, schieten tekort in het accommoderen van de dynamiek van verschijnselen in de echte wereld. Door onzekerheid te omarmen, kunnen we overgaan op flexibelere en dynamischere modellen waarin willekeur als fundamentele component is opgenomen. In tegenstelling tot hun rigide voorgangers zijn deze modellen ontworpen om te evolueren als reactie op nieuwe gegevens, waardoor veerkracht en aanpassingsvermogen worden gegarandeerd. Deze paradigmaverschuiving van een deterministische naar een probabilistische benadering stelt organisaties in staat met meer vertrouwen door onzekerheid te navigeren en weloverwogen beslissingen te nemen, zelfs in volatiele omgevingen.

Stochastische modellering leidt voorspellers door de mist van onvoorspelbaarheid met de principes van waarschijnlijkheid. In plaats van te proberen willekeur te elimineren, omarmen stochastische modellen het. Deze modellen schuwen het idee van een enkelvoudige, vooraf bepaalde toekomst, maar presenteren in plaats daarvan een reeks mogelijke uitkomsten, elk met een geschatte waarschijnlijkheid. Deze benadering biedt een genuanceerder en realistischer beeld van de toekomst, waarbij de inherente variabiliteit van systemen en processen wordt erkend. Door een spectrum van potentiële toekomsten in kaart te brengen, voorziet stochastische modellering besluitvormers van een alomvattend inzicht in onzekerheid, waardoor strategische planning mogelijk is die zowel geïnformeerd als flexibel is.

Vernoemd naar het historische centrum van toeval en fortuin, maken Monte Carlo-simulaties gebruik van de kracht van willekeur om het uitgestrekte landschap van mogelijke uitkomsten te verkennen. Deze techniek omvat het genereren van duizenden, zo niet miljoenen, scenario's door middel van willekeurige steekproeven, waarbij elk scenario een ander toekomstbeeld schetst, gebaseerd op de inherente onzekerheden van de echte wereld. Beslissers kunnen, gewapend met inzichten uit Monte Carlo-simulaties, de reikwijdte van de mogelijke gevolgen van hun beslissingen inschatten, waardoor het een instrument van onschatbare waarde is voor risicobeoordeling en strategische planning in onzekere omgevingen.

Successen in de echte wereld: het benutten van willekeur

De strategie om willekeur in de prognoses te integreren is in diverse sectoren van onschatbare waarde gebleken. Grote beleggingsondernemingen en banken vertrouwen bijvoorbeeld voortdurend op stochastische modellen om het volatiele gedrag van de aandelenmarkt het hoofd te bieden. Een opmerkelijk voorbeeld is de manier waarop hedgefondsen deze modellen gebruiken om prijsbewegingen te voorspellen en risico's te beheren, wat leidt tot meer strategische beleggingskeuzes.

Op dezelfde manier vertrouwen veel bedrijven op het gebied van supply chain management op Monte Carlo-simulaties om de onvoorspelbaarheid van de vraag aan te pakken, vooral tijdens piekseizoenen zoals de feestdagen. Door verschillende scenario's te simuleren, kunnen ze zich op een reeks uitkomsten voorbereiden en ervoor zorgen dat ze over voldoende voorraadniveaus beschikken zonder dat ze te veel middelen inzetten. Deze aanpak minimaliseert het risico op voorraadtekorten en overtollige voorraad.

Deze successen uit de praktijk benadrukken de waarde van het integreren van willekeur in voorspellingsinspanningen. In plaats van de tegenstander te zijn die vaak wordt gezien, ontpopt willekeur zich als een onmisbare bondgenoot in het ingewikkelde ballet van voorspellingen. Door methoden te hanteren die rekening houden met de inherente onzekerheid van de toekomst – ondersteund door geavanceerde tools als Smart IP&O – kunnen organisaties met vertrouwen en flexibiliteit door het onvoorspelbare navigeren. In het grote geheel van voorspellingen kan het dus verstandig zijn om het idee te omarmen dat we weliswaar geen controle hebben over de worp van de dobbelstenen, maar dat we er wel een strategie omheen kunnen bedenken.

 

 

 

Beantwoord de precisie van het pronóstico: een precisie-cambio met de meetmetrieken

Het meten van de nauwkeurigheid van prognoses is een onmiskenbaar belangrijk onderdeel van het vraagplanningsproces. Deze voorspellingsscorekaart zou kunnen worden opgebouwd op basis van een van de twee contrasterende gezichtspunten voor het berekenen van metrieken. Vanuit het foutperspectief wordt de vraag gesteld: “Hoe ver lag de voorspelling van de werkelijkheid?” Vanuit het nauwkeurigheidsperspectief wordt de vraag gesteld: “Hoe dicht lag de voorspelling bij de werkelijkheid?” Beide zijn geldig, maar foutstatistieken bieden meer informatie.

Nauwkeurigheid wordt weergegeven als een percentage tussen nul en 100, terwijl foutpercentages bij nul beginnen maar geen bovengrens hebben. Rapporten van MAPE (gemiddelde absolute procentuele fout) of andere foutstatistieken kunnen de titel 'voorspellingsnauwkeurigheid'-rapporten krijgen, waardoor het onderscheid vervaagt. Het kan dus zijn dat u wilt weten hoe u vanuit het foutenperspectief kunt overstappen naar het nauwkeurigheidsperspectief dat uw bedrijf omarmt. In deze blog wordt aan de hand van enkele voorbeelden beschreven hoe.

Nauwkeurigheidsgegevens worden zo berekend dat wanneer de werkelijke waarde gelijk is aan de voorspelling, de nauwkeurigheid 100% is en wanneer de voorspelling het dubbele of de helft is van de werkelijke, de nauwkeurigheid 0% is. Rapporten waarin de voorspelling met de werkelijkheid wordt vergeleken, bevatten vaak het volgende:

  • De daadwerkelijke
  • De prognose
  • Eenheidsfout = Prognose – Werkelijk
  • Absolute fout = Absolute waarde van eenheidsfout
  • Absolute %-fout = Abs-fout / Werkelijk, als een %
  • Nauwkeurigheid % = 100% – Absolute %-fout

Bekijk een paar voorbeelden die het verschil in aanpak illustreren. Stel dat de Werkelijke = 8 en de voorspelling is 10.

Eenheidsfout is 10 – 8 = 2

Absolute %-fout = 2/8, als % = 0,25 * 100 = 25%

Nauwkeurigheid = 100% – 25% = 75%.

Laten we nu zeggen dat de werkelijke waarde 8 is en de voorspelling 24.

Eenheidsfout is 24– 8 = 16

Absolute %-fout = 16/8 als % = 2 * 100 = 200%

Nauwkeurigheid = 100% – 200% = negatief is ingesteld op 0%.

In het eerste voorbeeld leveren nauwkeurigheidsmetingen dezelfde informatie op als foutmetingen, aangezien de voorspelling en de werkelijke situatie al relatief dicht bij elkaar liggen. Maar als de fout meer dan het dubbele is van de werkelijke, komen de nauwkeurigheidsmetingen uit op nul. Het geeft wel correct aan dat de voorspelling helemaal niet accuraat was. Maar het tweede voorbeeld is nauwkeuriger dan een derde, waarbij de werkelijke waarde 8 is en de voorspelling 200. Dat is een onderscheid dat een nauwkeurigheidsbereik van 0 tot 100% niet registreert. In dit laatste voorbeeld:

Eenheidsfout is 200 – 8 = 192

Absolute %-fout = 192/8, als % = 24 * 100 = 2,400%

Nauwkeurigheid = 100% – 2.400% = negatief is ingesteld op 0%.

Foutstatistieken blijven informatie verschaffen over hoe ver de voorspelling afwijkt van de werkelijke en geven aantoonbaar een betere weergave van de nauwkeurigheid van de voorspelling.

Wij moedigen aan om het foutperspectief te hanteren. U hoopt eenvoudigweg op een klein foutpercentage dat aangeeft dat de voorspelling niet ver van de werkelijkheid ligt, in plaats van te hopen op een groot nauwkeurigheidspercentage dat aangeeft dat de voorspelling dicht bij de werkelijkheid ligt. Deze mentaliteitsverandering biedt dezelfde inzichten en elimineert vervormingen.

 

 

 

 

De automatische prognosefunctie

Automatische prognoses zijn de populairste en meest gebruikte functie van SmartForecasts en Smart Demand Planner. Automatische prognoses maken is eenvoudig. Maar de eenvoud van Automatic Forecasting maskeert een krachtige interactie van een aantal zeer effectieve prognosemethoden. In deze blog bespreken we een deel van de theorie achter deze kernfunctie. We richten ons op automatische prognoses, deels vanwege de populariteit ervan en deels omdat veel andere prognosemethoden vergelijkbare resultaten opleveren. Kennis van automatische prognoses wordt onmiddellijk overgedragen naar eenvoudig voortschrijdend gemiddelde, lineair voortschrijdend gemiddelde, enkele exponentiële afvlakking, dubbele exponentiële afvlakking, Winters' exponentiële afvlakking en promoprognoses.

 

Prognose toernooi

Automatische prognoses werken door een toernooi uit te voeren met een reeks concurrerende methoden. Omdat personal computers en cloud computing snel zijn, en omdat we zeer efficiënte algoritmen hebben gecodeerd in de automatische voorspellingsengine van SmartForecasts, is het praktisch om een puur empirische benadering te volgen om te beslissen welke extrapolatieve voorspellingsmethode moet worden gebruikt. Dit betekent dat u het zich kunt veroorloven om een aantal benaderingen uit te proberen en vervolgens degene te behouden die het beste presteert bij het voorspellen van de betreffende gegevensreeks. SmartForecasts automatiseert dit proces volledig voor u door de verschillende voorspellingsmethoden uit te proberen in een gesimuleerd voorspellingstoernooi. De winnaar van het toernooi is de methode die het dichtst bij het voorspellen van nieuwe gegevenswaarden van oude komt. Nauwkeurigheid wordt gemeten aan de hand van de gemiddelde absolute fout (dat wil zeggen de gemiddelde fout, waarbij eventuele mintekens worden genegeerd). Het gemiddelde wordt berekend over een reeks voorspellingen, die elk een deel van de gegevens gebruiken, in een proces dat bekend staat als glijdende simulatie.

 

Glijdende simulatie

De glijdende simulatie veegt herhaaldelijk door steeds langere delen van de historische gegevens, waarbij in elk geval het gewenste aantal perioden in uw prognosehorizon wordt voorspeld. Stel dat er 36 historische gegevenswaarden zijn en dat u zes perioden vooruit moet voorspellen. Stel je voor dat je de voorspellingsnauwkeurigheid van een bepaalde methode, bijvoorbeeld een voortschrijdend gemiddelde van vier waarnemingen, wilt beoordelen op de gegevensreeks die voorhanden is.

Op een gegeven moment in de glijdende simulatie worden de eerste 24 punten (alleen) gebruikt om de 25e tot en met 30e historische gegevenswaarden te voorspellen, die we tijdelijk als onbekend beschouwen. We zeggen dat de punten 25-30 buiten de analyse worden gehouden. Het berekenen van de absolute waarden van de verschillen tussen de zes prognoses en de overeenkomstige werkelijke historische waarden levert één exemplaar op van elk een 1-staps, 2-staps, 3-staps, 4-staps, 5-staps en 6-staps vooruit absolute voorspelling fout. Als u dit proces herhaalt met de eerste 25 punten, krijgt u meer voorbeelden van 1-staps, 2-staps, 3-staps vooruit-fouten, enzovoort. Het gemiddelde van alle absolute foutschattingen die op deze manier zijn verkregen, geeft een samenvatting van de nauwkeurigheid in één getal.

 

Methoden die worden gebruikt bij automatische prognoses

Normaal gesproken zijn er zes extrapolatieve voorspellingsmethoden die meedoen aan het automatische voorspellingstoernooi:

  • Eenvoudig voortschrijdend gemiddelde
  • Lineair voortschrijdend gemiddelde
  • Enkele exponentiële afvlakking
  • Dubbele exponentiële afvlakking
  • Additieve versie van Winters' exponentiële afvlakking
  • Multiplicatieve versie van Winters' exponentiële afvlakking

 

De laatste twee methoden zijn geschikt voor seizoenreeksen; ze worden echter automatisch uitgesloten van het toernooi als er minder dan twee volledige seizoensgegevenscycli zijn (bijvoorbeeld minder dan 24 periodes met maandelijkse gegevens of acht periodes met driemaandelijkse gegevens).

Deze zes klassieke, op afvlakking gebaseerde methoden hebben bewezen gemakkelijk te begrijpen, gemakkelijk te berekenen en nauwkeurig te zijn. Je kunt elk van deze methoden uitsluiten van het toernooi als je een voorkeur hebt voor sommige deelnemers en niet voor andere.

 

 

 

 

6 observaties over succesvolle vraagvoorspellingsprocessen

1. Voorspellen is een kunst die een combinatie van professioneel oordeel en objectieve statistische analyse vereist. Succesvolle vraagprognoses vereisen een basisvoorspelling die gebruikmaakt van statistische prognosemethoden. Eenmaal vastgesteld, kan het proces zich richten op hoe u statistische prognoses het beste kunt aanpassen op basis van uw eigen inzichten en zakelijke kennis.

2. Het prognoseproces is meestal iteratief. Het kan zijn dat u uw aanvankelijke prognose een aantal keer moet verfijnen voordat u tevreden bent. Het is belangrijk om snel en eenvoudig alternatieve prognoses te kunnen genereren en vergelijken. Het volgen van de nauwkeurigheid van deze prognoses in de loop van de tijd, inclusief alternatieven die niet werden gebruikt, helpt het proces te informeren en te verbeteren.

3. De geloofwaardigheid van prognoses hangt sterk af van grafische vergelijkingen met historische gegevens. Een beeld zegt meer dan duizend woorden, dus geef prognoses altijd weer via direct beschikbare grafische displays met ondersteunende numerieke rapporten.

4. Een van de belangrijkste technische taken bij prognoses is om de keuze van de prognosetechniek af te stemmen op de aard van de gegevens. Effectieve vraagvoorspellingsprocessen maken gebruik van mogelijkheden die de juiste methode identificeren om te gebruiken. Kenmerken van een datareeks zoals trend, seizoensinvloeden of abrupte niveauverschuivingen suggereren bepaalde technieken in plaats van andere. Een automatische selectie, die automatisch de juiste prognosemethode selecteert en gebruikt, bespaart tijd en zorgt ervoor dat uw basisvoorspelling zo nauwkeurig mogelijk is.

5. Succesvolle vraagvoorspellingsprocessen werken samen met andere bedrijfsprocessen. Prognoses kunnen bijvoorbeeld een essentiële eerste stap zijn in financiële analyse. Bovendien zijn nauwkeurige prognoses voor verkoop en productvraag fundamentele input voor de processen voor productieplanning en voorraadbeheer van een productiebedrijf.

6. Een goed planningsproces erkent dat prognoses nooit precies kloppen. Omdat zelfs in het beste prognoseproces een fout sluipt, zijn eerlijke schattingen van de foutmarge en prognosebias een van de nuttigste aanvullingen op een prognose.